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Structural and mechanical features of the order-disorder transition
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Here we present an experimental and numerical investigation on the grain-scale geometrical and mechanical
properties of partially crystallized structures made of macroscopic frictional grains. Crystallization is inevitable
in arrangements of monosized hard spheres with packing densities exceeding Bernal’s limiting density φBernal ≈
0.64. We study packings of monosized hard spheres whose density spans over a wide range (0.59 < φ <

0.72). These experiments harness x-ray computed tomography, three-dimensional image analysis, and numerical
simulations to access precisely the geometry and the 3D structure of internal forces within the sphere packings.
We show that clear geometrical transitions coincide with modifications of the mechanical backbone of the packing
both at the grain and global scale. Notably, two transitions are identified at φBernal ≈ 0.64 and φc ≈ 0.68. These
results provide insights on how geometrical and mechanical features at the grain scale conspire to yield partially
crystallized structures that are mechanically stable.
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I. INTRODUCTION

The hard-sphere model provides a powerful paradigm of
condensed matter that has led to considerable advances in our
understanding of crystallization and vitrification in thermal
systems. Fundamentally, it reflects that a simple ingredient,
e.g., sphere impenetrability, can produce a remarkably rich
phase diagram via entropic interactions only. This fact un-
derlies the continued interest in dense packings problems
[1–4]. At the other end of the hard-sphere spectrum, athermal
layers or packings made of macroscopic grains have shown
striking molecularlike behaviors when they are subjected
to vibrational protocols [5–12]. In particular, packings have
a propensity to form crystalline structures under strong
vibrations. No fundamental understanding has emerged yet
for the crystallization in these dissipative materials.

The modern history of experimental studies on monosized
hard spheres dates back to the 1950s when Bernal performed
a seemingly simple experiment by pouring 8000 glass balls
in a box [4]. Bernal reported that the density of disordered
packings seems to be bounded by φBernal � 0.64 and that
the balls had an average number of six contacts. Numerous
experimental and numerical studies have extended Bernal’s
seminal findings and reported that a stable configuration of
frictional monodisperse spheres can exist at densities ranging
from φ ≈ 0.55 to φ ≈ 0.64 [4,13–15]. Some recent numerical
studies suggest that this range is even wider [3,16–19].
The possible analogy between the “jamming” (the structural
arrest observed in dense amorphous packings with densities
0.55 < φ < φBernal) and the glass transition has monopolized
most of the studies on sphere packings during the past two
decades [5,20,21]. In comparison, considerably less is known
about the crystallization mechanism in frictional packings
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of spheres. To date, ordered phases observed in granular
materials have demonstrated both striking resemblances and
profound differences to those observed in thermal systems
[7–12]. Accordingly, several questions remain outstanding
such as those about the existence of a basic principle governing
the order-disorder transition in frictional packings, or the
description of the crystal growth at the grain scale.

Here we experimentally study three-dimensional (3D)
packings made of cohesionless macroscopic spheres. This
material is athermal, dissipative, and naturally forms amor-
phous structures, yet it can massively crystallize if strongly
vibrated or sheared [11,22]. The presence of friction poses
a considerable challenge to our understanding of this order-
disorder transition and of packing mechanical stability in
general [5,23–25]. In the disordered domain (φ < φBernal),
polytetrahedral structures, i.e., large aggregates made of
weakly distorted tetrahedral patterns of beads, are essential
components of amorphous packings [4]. These aggregates can
form a rich range of mechanically stable motifs, which are built
uniquely on face-adjacent tetrahedra, but none can periodically
tile the space [1,26,27]. Beyond Bernal’s density, φBernal,
crystalline clusters inevitably appear in highly monodisperse
packings. This emerging order enforces the disappearance
of the polytetrahedral aggregates, which are geometrically
frustrated. Three successive structural transitions associated
with the formation and the evolution of the polytetrahedral
aggregates have recently been identified at φBernal ≈ 0.64,
φc ≈ 0.68, and φ ≈ 0.72 [22]. In addition to these topological
and geometrical changes, the mechanics of these systems also
undergoes remarkable changes when φ > φBernal showing a
behavior closely entangled with the structural features of
the packing [30]. Understanding these relations requires a
detailed and accurate investigation of each grain’s neigh-
borhood in terms of both their mechanical and geometrical
properties [5,28]. In particular, recent numerical studies of the
crystallization process in idealistic frictionless 3D packings
suggest that the order-disorder transition in packings show
some analogies with a first-order phase transition over the
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density range [φBernal,φc] [29]. Some crucial features of this
study have recently been observed in 3D realistic packings
(i.e., weakly polydisperse and frictional) by the authors of
the present paper [30]. Here we intend to extend this first
experimental study and draw a more exhaustive picture of the
structure of partially crystallized packings.

In this contribution, we take advantage of a helical x-ray
tomography setup to image 3D packings containing up to
200 000 frictional spheres in both cylindrical and spherical
containers. We employ a simple vibrational protocol to
produce partially crystallized packings. Using state-of-the-art
experimental and numerical techniques, we can study the
evolution of geometrical and mechanical features at the global
and at the grain scale during the disordered-ordered transition.

This paper is organized as follows. Section II describes
the experimental setup and the procedure used to obtain
partially crystallized packings. Section III details the nu-
merical calculations performed on the experimental data in
order to describe the force network with numerical precision
and access the tangential forces. Section IV characterizes
the geometrical transition when the packing density crosses
φBernal = 0.64. Section V focuses on the mechanical features
of the crystallization process in terms of grain contacts and the
evolution of a topological descriptor.

II. EXPERIMENTAL DETAILS

We use monosized acrylic beads (diameter d = 1.00 and
1.62 mm; polydispersity = 0.025 mm), which are packed into
large containers (inner diameter = 66 mm). The beads are
covered with graphite to reduce electrostatic repulsion between
them. Nine packings of beads are prepared in cylindrical and
spherical containers (see details in Table I). Five of them
are produced by simply pouring the beads into the container
following the methods described in [14]. The other four, with a
density φ � φBernal, are generated according to the vibrational
protocol described below.

Our experimental method is based on compaction by
an intense fluidization of the packing [22,31]. A batch of
beads is initially poured into a container forming a random
packing. The container is then placed on a shaker allowing
for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f = 50 Hz; the vertical
component of the acceleration γν is set to be five times

TABLE I. Summary of the experimental packings used in this
study. N is the number of grains used for the analysis, φ is the global
packing density, and D is the grain diameter.

Container N φ D (mm)

1 Cylinder 26498 0.59 1.62
2 Cylinder 25797 0.61 1.62
3 Cylinder 27555 0.60 1.62
4 Cylinder 27665 0.61 1.62
5 Cylinder 156315 0.63 1.00
6 Cylinder 31005 0.66 1.62
7 Cylinder 216722 0.685 1.00
8 Spherical 60205 0.685 1.00
9 Spherical 64042 0.72 1.00

FIG. 1. (Color online) 3D visualization of a partially crystallized
packing containing ≈200 000 beads. Bright regions indicate the
location of disordered aggregates of beads, which have been identified
using the q6 metrics (see Sec. IV).

larger than the horizontal one γh. In these experiments, γν

is constant and set to 2.5g (where g is the gravitational
acceleration). The container is vibrated intensely for 20 s.
The resulting packings show substantial crystallization, with
a global packing density well beyond Bernal’s limit, ranging
from 0.66 to 0.72. The compaction protocol presented here
is robust and allows us to consistently generate partially
crystallized packings irrespective of the packing container.

Figure 1(a) shows a 3D rendering of a partially crystallized
structure. The bright regions correspond to locally disordered
aggregates of beads; a disordered core and the boundaries
between different crystal domains are signified by the bright
regions. Both random and crystalline phases coexist in the
packing, yielding nonuniform packing densities across the
sample. Helical x-ray computed tomography (XCT) is utilized
to digitally access the internal 3D structure of the packings
with a spatial resolution of ≈30 microns [14,22,32–34]. All
our analyses have been carried out over the inner region of
the packings, four sphere diameters away from the container
walls to avoid the boundary effects. These inner regions are
then decomposed into nonoverlapping cubical subsets each
containing 4000 beads. A total of 94 subsets are produced
from all the packings listed in Table I. As a consequence of
structural heterogeneity in our partially crystallized packings
(see Fig. 1), the 4000-bead subsets cover a wide range of
packing densities spanning from φ = 0.58 to φ = 0.73.

III. DEM SIMULATION

The digital representation of each packing is realized using
XCT and a range of postprocessing image analysis techniques.
Each grain in the 3D digital representation (tomogram) is
made of a cluster of ≈19 000 voxels and each tricubic voxel
represents 303 μm of space known as the image resolution. As
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a result of this large grain digital representation, the precision
with which grain centers are determined is extremely high
(<10−3 μm). Similarly, a grain’s diameter can be estimated
with great precision (≈5 × 10−2 μm). It allows a highly accu-
rate experimental measure of both the grain’s center-center
distance and the grain overlap. From these high precision
experimental data we are able to calculate normal contact
forces as low as ≈10−4N , while the average normal force
is typically 〈Fn〉 � 10−1N in our experiments. The tangential
component of the contact forces, however, cannot be trivially
measured from the experimental data [35].

Force bearing contacts are an extremely sensitive feature
of hard-sphere packings [5,28]. Its digital representation will
inevitably be affected by intrinsic experimental limitations
(finite spatial resolution, binarization segmentation of the
tomogram). To further assess the robustness of our mechanical
characterization, experimental packing structures are subse-
quently postprocessed by a discrete element method (DEM)
code [36]. We use LIGGGHTS, an open-source DEM code
widely used in the granular community [37]. We note that
the DEM computation gives access to both components of the
intergranular forces. The DEM uses a Hertz-Mindlin model to
compute the forces between the grains by virtually relaxing
the experimental packings under gravity over a period of a few
physical seconds, which takes ≈12 h of simulation time on
a 64-processor cluster. The combining of the experimental
data from XCT with the DEM simulations allows us to
map the network of force bearing contacts with numerical
precision. Crucially, the results can be compared with the direct
experimental characterization. Additionally, the use of DEM
allows us to investigate the sensitivity of our results to the
friction coefficient by virtually tuning it (see Sec. V).

The Hertz-Mindlin model characterizes the interaction
between frictional grains as follows: two overlapping grains
with radii R1 and R2, mass m, normal overlap of δ, normal
relative velocity v, tangential relative velocity vt , and a
tangential displacement vector δt will experience a normal
repulsive force,

Fn = 4

3
Y

√
R∗δ3/2 + 2v

√
5

6
β
√

Snm, (1)

and a tangential force,

Ft = 8G
√

R∗δδt + 2vt

√
5

6
β
√

Stm, (2)

where R∗ = R1R2/(R1 + R2), β = ln(e)
ln2(e)+π2 , and e is the

coefficient of restitution. The prefactors Sn = 2Y
√

R∗δ and
St = 8G

√
R∗δ depend on the Young’s modulus Y and the

shear modulus G = Y
4(1−ν)∗(2+ν) , where ν is the Poisson’s ratio.

The tangential force is truncated according to the value of
friction μ to satisfy the Coulomb condition Ft � μFn. Beads
used in our experiments are made of PMMA with the following
material properties: Young’s modulus Y = 1.8 GPa, Poisson’s
ratio ν = 0.35, coefficient of restitution e = 0.7, and density
ρ = 1200 kg/m3. We experimentally measure the coefficient
of friction μ = 0.7 ± 0.08. On a technical note, we fix the
position of the grains up to four grain diameter from the
container walls to ensure that boundary conditions are identical
to the experimental ones.

IV. GEOMETRICAL CHARACTERIZATION

To identify and characterize locally ordered motifs within
the packings, we use different local measures based on the
spatial position or orientation of grains surrounding any given
grain. Such measures are commonly known as the bond order
parameter method [38], where the order parameter, ql , is
defined for each sphere with respect to its fixed number of
neighbors. In our calculations, we use Nnn = 12 as the nearest
number of neighbors and define ql as follows:

ql(i) =
(

4π

2l + 1

m=l∑
m=−l

(|qlm(i)|2)

)1/2

, (3)

where qlm(i) = 1
Nnn(i)

∑Nnn(i)
j=l (Ylm(rij)), with Ylm being the

spherical harmonics and rij the vector connecting the central
sphere at ri to its neighbor at rj.

Figure 2(a) shows the probability distribution functions
(PDF) of the order parameter q6 before and after φ ≈ 0.64. At
a density of φ ≈ 0.628, the PDF is wide and has a bell shape;
however, in a dense partially crystallized subset (φ ≈ 0.683),
two sharp peaks dominate the PDF. These peaks are located at
q6 = 0.48 and q6 = 0.57 and correspond to q6 values for hcp
and fcc crystalline structures, respectively [29,39]. Figure 2(b)
shows the dependence of the mean 〈q6〉 on the packing density
φ. Three regimes are evident from Fig. 2(b) as follows. (i) Be-
low φ ≈ 0.64, 〈q6〉 grows slowly. (ii) For packing densities in
the range φ ∈ [0.64,0.70], 〈q6〉 increases sharply, signaling the
onset of crystallization around φ ≈ 0.64. (iii) As the packing
density increases even further (φ > 0.70), 〈q6〉 shows some
sign of saturation around 〈q6〉 ≈ 0.54 and a high level of fluc-
tuations. These fluctuations are related to the competition be-
tween hcp and fcc patterns in highly crystalline packings [39].

We also investigate whether a grain belongs to an hcp-like or
fcc-like lattice structure by checking if its q6 value falls within
the intervals q6(hcp) = 0.48 ± 0.01 or q6(fcc) = 0.57 ± 0.01.
It allows us to measure the ratio of the number of beads be-
longing to a given crystal motif over the total number of beads
in the subsets. The behavior of these ratios versus φ is shown in
Fig. 2(c). Below φBernal, hcp dominates over fcc by almost two
orders of magnitude in quantity. While the ratio of hcp motifs
grows steadily over the whole density range, the fcc order
has a dramatic rise after φBernal and eventually it dominates
over the hcp order in highly crystalline packings φ > 0.70.
The prevalence of the fcc motifs over hcp patterns remains an
outstanding question in dissipative packings of beads [11]. We
plan to fully investigate this issue in a followup study.

To further explore the structural changes during crystal-
lization, we now employ a recent extension of the bond order
parameter method [40]. It is based on the parameter ql and the
Wigner 3j symbols which read

wl(i) =
∑

m1,m2,m3
m1 + m2 + m3 = 0

[
l l l

m1 m2 m3

]
qlm1 (i)qlm2 (i)qlm3 (i).

(4)

The method goes as follow: first, the third-order rotational
invariant of rank six, w6 is computed, and then we determine
the value corresponding to the half-height of its cumulative
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FIG. 2. (Color online) (a) PDF of q6 for two distinct packing
densities φ. The value of q6 in perfect hcp or fcc crystals is
q6(hcp) � 0.48 and q6(fcc) � 0.57, respectively. (b) Average of the
local orientational parameter 〈q6〉 vs packing density φ. (c) The
percentage of grains that belong to either hcp or fcc motif vs packing
density φ.

distribution function (CDF) referred to as whh
6 . The CDF of

w6 is shown in Fig. 3(a) for several subsets over the whole
density range. The point where the CDF function reaches its
half height, i.e., whh

6 , differs remarkably for the subsets with
φ < φBernal and φ > φc. In Fig. 3(b) we show the values of whh

6
as a function of the packing density. Two clear transitions show
up: a sharp rise at φBernal ≈ 0.64 and a complete saturation
to w6 ≈ −0.0125 beyond φc ≈ 0.68. These transitions have
been seen only in numerical simulations [40]. Here, we
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FIG. 3. (Color online) (a) Cumulative distribution function
F (w6) of w6 for various packing densities. whh

6 is defined as F (w6) =
0.5. (b) whh

6 vs packing fraction φ.

confirm experimentally that whh
6 is an extremely sensitive

measure of the crystallization onset [40]. Interestingly, we
also note the similarities with the transitions observed in
the Voronoi volume fluctuations and the topology of packing
polytetrahedral structures as observed in [22].

Furthermore, we study the crystallization process through
the properties of different structural correlation functions. We
first use the cumulative coordination number Z(r), which is
defined as

Z(r) =
∫ d+r

d

4πr2g(r)dr, (5)

where g(r) is the radial distribution function (RDF), i.e., the
probability distribution of finding the center of a particle
at distance r from a reference sphere. Z(r) measures the
average number of grains at a radial distance r from a given
central grain. In jammed packings (φ < φBernal), Z(r) can be
accurately described by a power law in the near-contact range
r ∈ [d,1.3d] [41]:

Z(r) = Zm + γ (r − d)α, (6)

where Zm is the coordination number which characterizes
the contacts that bear mechanical forces and γ is a constant.
We note that this functional form is actually a signature of
the power-law singularity in the RDF in the near contact
regime [14]. The behavior of Z(r) and g(r) in amorphous
packings has been intensely studied during the past two
decades [5,14,41]. Here, we measure the evolution of α as
the amorphous-crystalline transition takes place.
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FIG. 4. (Color online) (a) Functional behavior of ∂z

∂r
for six

subsets with different packing densities. (b) α vs φ. α can be measured
for φ < 0.68 from power-law fit of the curves shown in (a).

In Fig. 4(a), we show the behavior of ∂z
∂r

in the near-contact
region r ∈ [d,1.3d] for increasing packing densities. Below
φc ≈ 0.68, the derivative ∂z

∂r
can be accurately fitted by a power

law. Above φc, the curve develops a pronounced bell shape and
the scaling law of Eq. (6) does not hold any more. Figure 4(b)
concerns the power-law regime, which shows the exponent α

[deduced from the power-law fit in Fig. 4(a)] as a function of
φ. α is slightly larger than 0.5 for φ < φBernal and it decreases
slowly to 0.5 at φBernal. Beyond φBernal, α decreases sharply and
reaches 0 at φc. The analysis of Z(r) confirms the presence of
two successive structural transitions at φBernal and φc.

We now employ the recently developed approach in [28,29]
to provide further insights into the grain’s neighborhood
rearrangements during the crystallization. This analysis as-
sumes that the densely populated neighborhood of each grain,
composed of almost-touching neighbors, can be described
in terms of a unique geometrical coordination number Zg .
This approach is based on a modified version of the RDF
g(r). The modified radial distribution function (MRDF),
gz(r), is made of two Heaviside step functions as formulated
below:

gz(r)= R2

Nr2

N∑
i=1

N∑
j<i

�

(
rij

r − R
−1

)
�

(
r + R

rij

− 1

)
, (7)

where R is the radius of spheres, N is the number of beads in
the subset, rij is the distance from the center of particle i to its
j th neighbor, and the two Heaviside step functions � check if
the criterion r − R � rij � r + R is fulfilled. For instance, if
r is increased incrementally, r = R + nε with 0 < ε 
 R and
n an integer number, then gz(r) counts the number of neighbors
in the range nε <= rij <= 2R + nε. It corresponds to both
the neighbors in true mechanical contact and the number of
grains so close that they can be considered as almost-touching
neighbors. So gz(r) gives the average number of grains in
contact with a virtual particle of radius r .

Figure 5(c) shows gz as a function of 
(r) = (r − R)/2R,
where R is the mean value of the bead radius in our weakly
polydisperse packings. gz(r) first increases with a slight
increase of r . This is a signature of the fact that each grain
neighborhood is densely populated. This primary feature of
dense sphere packings contributes to its mechanical stability
[18,42]. gz(r) eventually decreases with a further increase
of r; consequently gz shows a clear maximum as seen in
Fig. 5(c). The value of gz at this peak accounts for the grains
in mechanical contact as well as the grain neighborhood
geometry (i.e., the geometrical neighbors). For this reason,
it was used in [28,29] to offer a new perspective on packing
geometry and topology by defining a geometrical coordination
number Zg . We calculate gz(r) and subsequently obtain Zg for
each subset by finding its maximum value [Zg = max(gz(r))].
Figure 5(a) shows Zg versus φ for all subsets. Zg continuously
increases over the entire range of packing densities and it
can be fitted by Zg = α2

√
3φ/(1 − φ). This equation was

theoretically derived to describe isotropic packings [28]. It,
however, seems to remain valid (given a correction factor)
even in the case of highly anisotropic crystallized structures.

Figure 5(b) shows σg , the standard deviation of the
fluctuations in Zg , as a function of φ. This graph shows
three distinct regimes: (i) below φBernal, where there is a small
but almost constant level of fluctuations around σg � 1.0; (ii)
above φBernal up to φc � 0.68 there is a sudden increase in σg;
this is the density range where both disordered and ordered
states coexist in the system; (iii) beyond φ > φc, σg drops
sharply as the ordered phase begins to dominate the packing
structure.

It has recently been shown [22,26,27] that intense geomet-
rical rearrangements take place in the range φBernal < φ < φc.
More precisely, geometrically frustrated polytetrahedral ag-
gregates disassemble as a result of the formation of crystalline
nuclei.

The geometrical features of the hard-sphere packings are
intimately related to their mechanical properties to ensure
the packing stability. The subtle relation that constrains the
geometry and the mechanical backbone is one of the most
debated questions in the physics of packings [18,42,43]. To
contribute to this topic, we now investigate the effects of
crystallization on the mechanical features both at the local
grain scale and globally.

V. MECHANICAL PROPERTIES

The mechanical contacts through which intergranular
forces are exchanged are an essential predictor of the mechan-
ical properties of a granular assembly. The highly accurate
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FIG. 5. (Color online) (a) Geometrical coordination number Zg

vs packing density φ. Zg is averaged over 4000 bead subsets. The
geometrical coordination number is fitted by Zg = α2
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with a prefactor α � 1.1 added to the formula derived in [28].
(b) Standard deviation σg vs φ. (c) Typical behavior of the
modified radial distribution function gz(
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experimental value μ = 0.70. Inset: standard deviation σm of Zm vs φ.

(b) Zm averaged at the grain scale vs the local density φV or = 1/6πd3

Vvor
,

where Vvor is the volume of each Voronoi cell.

experimental data collected on the grain positions and radii
allows us to calculate the force bearing (mechanical) contacts
directly from raw experimental data by determining the
grain overlaps. Additionally, using the DEM simulations as
described previously, we can calculate the full intergranular
forces with numerical precision. Moreover, it allows us to
virtually explore the influence of the friction coefficient μ by
tuning it directly in the DEM code.

A. Mechanical coordination number Zm

First we investigate the behavior of the mechanical co-
ordination number Zm which characterizes the contacts that
bear forces. This descriptor is directly estimated from the
measurement of grain overlap. Figure 6(a) shows the evolution
of Zm with the subset packing density φ. It also compares
the experimental and the DEM results. Clearly Zm evolves
differently than Zg [see Fig. 5(a)]. In disordered packings,
φ < φBernal, Zm grows with the packing density. The onset
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of crystallization coincides with a clear change of trend in
Zm. Zm shows a plateau for 0.64 � φ � 0.68. We measure
Zmplat ≈ 5.6. Beyond φc � 0.68, Zm increases again up to
Zm � 6.8 at φ � 0.73. In these highly crystalline packings,
the difference between Zg and Zm is the largest. We emphasize
that this behavior of Zm is supported by direct experimental
measurements based on the estimation of grain overlaps as
well as the DEM results obtained with numerical precision.
It should be noted that the plateau behavior of Zm has only
been reported in numerical simulations of frictionless packings
[29]. Our results recover this important mechanical feature in
experimental frictional packings, thus proving some level of
universality of this feature.

In Fig. 6(a), Zm and the packing fraction are averaged over
4000 grains. However, Zm can also be measured at the scale of
individual grains. Figure 6(b) shows the evolution of Zm versus
the local packing density, φV or , defined as φV or = 1/6πd3

Vvor
. Vvor

is the volume surrounding a grain measured via the Voronoi
tessellation of the packing [22,44]. The trend of Zm versus
φV or is similar to that observed in Fig. 6(a). There is a clear
plateau in the density range [φBernal,φc].

The DEM code allows us to tune the friction coefficient. On
a technical note, we use the same initial packing configuration,
namely the one measured experimentally, and the value of

μ is modified in the code before starting the numerical
relaxation. Thus we have the ability to test the robustness
of the mechanical plateau with respect to packing dissipative
properties. Figure 6(b) demonstrates that the plateau in Zm is a
resilient mechanical feature of the packing structure. However,
the value of the plateau is friction dependent: Zmplat ≈ 6.7 for
μ = 0; Zmplat ≈ 5.5 for μ = 1.

An equally important mechanical quantity is the standard
deviation σm of Zm, which is an indication of the fluctuations
in the force network and the mechanical backbone. The inset
of Fig. 6(a) shows that σm increases steadily with φ and
eventually peaks at σm � 2.0 for φ � 0.73. This high level
of fluctuations for σm for the crystalline state (φ > φc), along
with a significant drop in the geometric fluctuations (σg) in this
density range, suggests that a geometrically ordered structure
still possesses a highly random mechanical backbone.

B. Topology of force network

The mechanical coordination number Zm is an essential
component of the mechanical properties of a granular assem-
bly. Yet it does not contain information on the global topology
of the force network, nor information on the intensity of
the force transmitted through the contact. The structure and
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topology of the network of intergranular forces play a crucial
role in the mechanical stability of a granular system, which
is an extremely rich nonlinear problem [5,24]. The intricate
and complex network of force transmitting grain contacts
governs the rich aspects of the jamming transition [23] and
gives the granular materials their unique characteristics such
as soft modes [5].

Having access to the intergranular forces in our packings,
we aim to quantify the connectivity of the global force network
and its evolution as the crystallization takes place. We use a
topological invariant called the Betti numbers β [45,46], whose
first component, β0, calculates the number of clusters formed
from mutually connected beads.

In order to relate this topological quantity to the mechanics
of our granular systems, we take the following procedure.
(I) In each subset, the value of the normal forces between
each pair of grains is normalized to the mean value of the
normal force in the entire corresponding subset: fn = Fn

〈Fn〉 . (II)
A force threshold, fth, is defined and we count the number of
isolated clusters formed by mutually connected particles with
fn � fth. (III) The number of isolated clusters is counted for
different values of fth in each subset. For fth = 0.0, β0 simply
measures the network of mechanical contacts. As fth increases,
particles whose mechanical contacts carry forces below fth are
eliminated from this network, changing its topology.

Figure 7(a) shows the zeroth Betti number normalized by
the number of spheres in each subset. For the force thresholds
fth � 1.5, β0 is a sensitive parameter of φ, and for fth � 2.2
the trend of β0 is remarkably peaked around φBernal. This
distinct behavior of β0 is shown more clearly in Fig. 7(b),
where fth is varied over a large range in four subsets. This
figure shows that there is a characteristic fth range (≈2.0 <

fth <≈< 2.5), in which the number of isolated componets of
the force networks is the largest. β0 decreases with further
increase of the force threshold as less contacts fulfill the
criterion of fn > fth. Figure 7(c) encapsulates the variation of
both φ and fth across all subsets. This phase diagram reveals
that for the characteristic fth range, large and small forces are
distributed more uniformly (homogeneously) near φBernal. In
other words, large and small forces are homogeneously mixed
inside the force network and as a result, thresholding the force
produces a large number of connected components. For φ

above φc � 0.68, the declining trend of β0 is mostly similar
to that observed in the range 0.58 < φ < 0.61 implying that
forces are distributed more unhomogeneously. This further
confirms the observation [see Fig. 6(a)] that even in regions
of highly crystallized order the topology of force network and
the mechanical backbone may resemble that of disordered
states.

VI. CONCLUSION

In this paper, we have conducted an exhaustive investigation
of the crystallization process in experimentally produced
hard-sphere packings. We combined experiments with state-
of-the-art 3D imaging and numerical simulation techniques to
understand the transition from disordered to ordered state in
terms of geometrical, mechanical and topological changes.

We have shown that for packing densities 0.64 < φ < 0.68
the local orientational order emerges in the system and
gradually dominates the entire packing when φ > 0.68.
The region 0.64 < φ < 0.68 is geometrically characterized
by a steep increase in the fluctuations of the geometrical
coordination number, Zg . These fluctuations are greatly
reduced for φ > 0.68 as highly ordered structures become
dominant in the system. These results are in agreement with
previous studies where large topological changes have been
observed for 0.64 < φ < 0.68 as a result of the disassembling
of the polytetrahedral structures [22].

In terms of the system’s mechanics, we have shown that
the density range of 0.64 < φ < 0.68 is accompanied by
drastic changes in the behavior of the mechanical coordination
number, Zm. Crucially, for 0.64 < φ < 0.68, where both
disordered and ordered states coexist, Zm reaches a plateau.
The phenomenon is robust and has been observed over a
broad range of values for the friction coefficient. This feature
of crystallization in frictional packings is reminiscent of some
classic aspects of first-order phase transition in equilibrium
thermodynamics [29].

Finally, we have shown that in almost fully ordered struc-
tures, Zm and the topology of the force network show a high
level of fluctuation. This behavior indicates the persistence
of a random mechanical backbone in highly crystallized
packings. These observations support the conclusions drawn
in recent numerical studies where the mechanical properties
of lattices made of weakly polydisperse beads [21] or jammed
lattice sphere packings in high dimensions [47] have been
shown to share similarities with those of amorphous packings.
These findings might also help in better understanding the
rheology of complex granular or suspension systems [48,49].
In conclusion, these results give hope for the elaboration of
basic principles for granular crystallization.
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Suárez, Phys. Rev. Lett. 102, 170601 (2009).

[9] P. M. Reis, R. A. Ingale, and M. D. Shattuck, Phys. Rev. Lett.
96, 258001 (2006).

[10] K. E. Daniels and R. P. Behringer, Phys. Rev. Lett. 94, 168001
(2005).

[11] A. Panaitescu, K. A. Reddy, and A. Kudrolli, Phys. Rev. Lett.
108, 108001 (2012).

[12] A. Prevost, P. Melby, D. A. Egolf, and J. S. Urbach, Phys. Rev.
E 70, 050301 (2004).

[13] G. Y. Onoda and E. G. Liniger, Phys. Rev. Lett. 64, 2727 (1990).
[14] T. Aste, M. Saadatfar, and T. J. Senden, Phys. Rev. E 71, 061302

(2005).
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158001 (2015).

[45] V. Robins, in Morphology of Condensed Matter: Physics and
Geometry of Spatially Complex Systems, edited by K. Mecke
and D. Stoyan, Lecture Notes in Physics Vol. 600 (Springer,
Berlin, Heidelberg, 2002), pp. 261–274.

[46] L. Kondic, A. Goullet, C. S. O’Hern, M. Kramar, K. Mischaikow,
and R. P. Behringer, Europhys. Lett. 97, 54001 (2012).

[47] Y. Kallus, E. Marcotte, and S. Torquato, Phys. Rev. E 88, 062151
(2013).

[48] F. Boyer, E. Guazzelli, and O. Pouliquen, Phys. Rev. Lett. 107,
188301 (2011).

[49] Y. Forterre and O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1
(2008).

062202-9

http://dx.doi.org/10.1103/PhysRevLett.102.170601
http://dx.doi.org/10.1103/PhysRevLett.102.170601
http://dx.doi.org/10.1103/PhysRevLett.102.170601
http://dx.doi.org/10.1103/PhysRevLett.102.170601
http://dx.doi.org/10.1103/PhysRevLett.96.258001
http://dx.doi.org/10.1103/PhysRevLett.96.258001
http://dx.doi.org/10.1103/PhysRevLett.96.258001
http://dx.doi.org/10.1103/PhysRevLett.96.258001
http://dx.doi.org/10.1103/PhysRevLett.94.168001
http://dx.doi.org/10.1103/PhysRevLett.94.168001
http://dx.doi.org/10.1103/PhysRevLett.94.168001
http://dx.doi.org/10.1103/PhysRevLett.94.168001
http://dx.doi.org/10.1103/PhysRevLett.108.108001
http://dx.doi.org/10.1103/PhysRevLett.108.108001
http://dx.doi.org/10.1103/PhysRevLett.108.108001
http://dx.doi.org/10.1103/PhysRevLett.108.108001
http://dx.doi.org/10.1103/PhysRevE.70.050301
http://dx.doi.org/10.1103/PhysRevE.70.050301
http://dx.doi.org/10.1103/PhysRevE.70.050301
http://dx.doi.org/10.1103/PhysRevE.70.050301
http://dx.doi.org/10.1103/PhysRevLett.64.2727
http://dx.doi.org/10.1103/PhysRevLett.64.2727
http://dx.doi.org/10.1103/PhysRevLett.64.2727
http://dx.doi.org/10.1103/PhysRevLett.64.2727
http://dx.doi.org/10.1103/PhysRevE.71.061302
http://dx.doi.org/10.1103/PhysRevE.71.061302
http://dx.doi.org/10.1103/PhysRevE.71.061302
http://dx.doi.org/10.1103/PhysRevE.71.061302
http://dx.doi.org/10.1103/PhysRevLett.101.018301
http://dx.doi.org/10.1103/PhysRevLett.101.018301
http://dx.doi.org/10.1103/PhysRevLett.101.018301
http://dx.doi.org/10.1103/PhysRevLett.101.018301
http://dx.doi.org/10.1103/PhysRevLett.84.2064
http://dx.doi.org/10.1103/PhysRevLett.84.2064
http://dx.doi.org/10.1103/PhysRevLett.84.2064
http://dx.doi.org/10.1103/PhysRevLett.84.2064
http://dx.doi.org/10.1103/PhysRevLett.104.165701
http://dx.doi.org/10.1103/PhysRevLett.104.165701
http://dx.doi.org/10.1103/PhysRevLett.104.165701
http://dx.doi.org/10.1103/PhysRevLett.104.165701
http://dx.doi.org/10.1103/PhysRevLett.109.205501
http://dx.doi.org/10.1103/PhysRevLett.109.205501
http://dx.doi.org/10.1103/PhysRevLett.109.205501
http://dx.doi.org/10.1103/PhysRevLett.109.205501
http://dx.doi.org/10.1103/PhysRevE.85.030301
http://dx.doi.org/10.1103/PhysRevE.85.030301
http://dx.doi.org/10.1103/PhysRevE.85.030301
http://dx.doi.org/10.1103/PhysRevE.85.030301
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1103/PhysRevLett.103.025701
http://dx.doi.org/10.1103/PhysRevLett.103.025701
http://dx.doi.org/10.1103/PhysRevLett.103.025701
http://dx.doi.org/10.1103/PhysRevLett.103.025701
http://dx.doi.org/10.1103/PhysRevLett.111.148001
http://dx.doi.org/10.1103/PhysRevLett.111.148001
http://dx.doi.org/10.1103/PhysRevLett.111.148001
http://dx.doi.org/10.1103/PhysRevLett.111.148001
http://dx.doi.org/10.1038/nature10667
http://dx.doi.org/10.1038/nature10667
http://dx.doi.org/10.1038/nature10667
http://dx.doi.org/10.1038/nature10667
http://dx.doi.org/10.1038/nature03805
http://dx.doi.org/10.1038/nature03805
http://dx.doi.org/10.1038/nature03805
http://dx.doi.org/10.1038/nature03805
http://dx.doi.org/10.1103/PhysRevLett.110.198002
http://dx.doi.org/10.1103/PhysRevLett.110.198002
http://dx.doi.org/10.1103/PhysRevLett.110.198002
http://dx.doi.org/10.1103/PhysRevLett.110.198002
http://dx.doi.org/10.1103/PhysRevLett.98.235504
http://dx.doi.org/10.1103/PhysRevLett.98.235504
http://dx.doi.org/10.1103/PhysRevLett.98.235504
http://dx.doi.org/10.1103/PhysRevLett.98.235504
http://dx.doi.org/10.1103/PhysRevE.77.031101
http://dx.doi.org/10.1103/PhysRevE.77.031101
http://dx.doi.org/10.1103/PhysRevE.77.031101
http://dx.doi.org/10.1103/PhysRevE.77.031101
http://dx.doi.org/10.1038/nature06981
http://dx.doi.org/10.1038/nature06981
http://dx.doi.org/10.1038/nature06981
http://dx.doi.org/10.1038/nature06981
http://dx.doi.org/10.1016/j.physa.2010.08.010
http://dx.doi.org/10.1016/j.physa.2010.08.010
http://dx.doi.org/10.1016/j.physa.2010.08.010
http://dx.doi.org/10.1016/j.physa.2010.08.010
http://dx.doi.org/10.1103/PhysRevLett.113.148001
http://dx.doi.org/10.1103/PhysRevLett.113.148001
http://dx.doi.org/10.1103/PhysRevLett.113.148001
http://dx.doi.org/10.1103/PhysRevLett.113.148001
http://dx.doi.org/10.1103/PhysRevLett.91.104302
http://dx.doi.org/10.1103/PhysRevLett.91.104302
http://dx.doi.org/10.1103/PhysRevLett.91.104302
http://dx.doi.org/10.1103/PhysRevLett.91.104302
http://dx.doi.org/10.1088/1742-5468/2006/07/P07010
http://dx.doi.org/10.1088/1742-5468/2006/07/P07010
http://dx.doi.org/10.1088/1742-5468/2006/07/P07010
http://dx.doi.org/10.1118/1.3633900
http://dx.doi.org/10.1118/1.3633900
http://dx.doi.org/10.1118/1.3633900
http://dx.doi.org/10.1118/1.3633900
http://dx.doi.org/10.1016/j.jmps.2011.10.001
http://dx.doi.org/10.1016/j.jmps.2011.10.001
http://dx.doi.org/10.1016/j.jmps.2011.10.001
http://dx.doi.org/10.1016/j.jmps.2011.10.001
http://dx.doi.org/10.1039/b927490a
http://dx.doi.org/10.1039/b927490a
http://dx.doi.org/10.1039/b927490a
http://dx.doi.org/10.1039/b927490a
http://www.cfdem.com/liggghts
http://dx.doi.org/10.1103/PhysRevLett.47.1297
http://dx.doi.org/10.1103/PhysRevLett.47.1297
http://dx.doi.org/10.1103/PhysRevLett.47.1297
http://dx.doi.org/10.1103/PhysRevLett.47.1297
http://dx.doi.org/10.1021/jp504537n
http://dx.doi.org/10.1021/jp504537n
http://dx.doi.org/10.1021/jp504537n
http://dx.doi.org/10.1021/jp504537n
http://dx.doi.org/10.1103/PhysRevB.83.184105
http://dx.doi.org/10.1103/PhysRevB.83.184105
http://dx.doi.org/10.1103/PhysRevB.83.184105
http://dx.doi.org/10.1103/PhysRevB.83.184105
http://dx.doi.org/10.1103/PhysRevE.71.011105
http://dx.doi.org/10.1103/PhysRevE.71.011105
http://dx.doi.org/10.1103/PhysRevE.71.011105
http://dx.doi.org/10.1103/PhysRevE.71.011105
http://dx.doi.org/10.1103/PhysRevLett.109.125502
http://dx.doi.org/10.1103/PhysRevLett.109.125502
http://dx.doi.org/10.1103/PhysRevLett.109.125502
http://dx.doi.org/10.1103/PhysRevLett.109.125502
http://dx.doi.org/10.1103/PhysRevLett.81.1634
http://dx.doi.org/10.1103/PhysRevLett.81.1634
http://dx.doi.org/10.1103/PhysRevLett.81.1634
http://dx.doi.org/10.1103/PhysRevLett.81.1634
http://dx.doi.org/10.1103/PhysRevLett.114.158001
http://dx.doi.org/10.1103/PhysRevLett.114.158001
http://dx.doi.org/10.1103/PhysRevLett.114.158001
http://dx.doi.org/10.1103/PhysRevLett.114.158001
http://dx.doi.org/10.1209/0295-5075/97/54001
http://dx.doi.org/10.1209/0295-5075/97/54001
http://dx.doi.org/10.1209/0295-5075/97/54001
http://dx.doi.org/10.1209/0295-5075/97/54001
http://dx.doi.org/10.1103/PhysRevE.88.062151
http://dx.doi.org/10.1103/PhysRevE.88.062151
http://dx.doi.org/10.1103/PhysRevE.88.062151
http://dx.doi.org/10.1103/PhysRevE.88.062151
http://dx.doi.org/10.1103/PhysRevLett.107.188301
http://dx.doi.org/10.1103/PhysRevLett.107.188301
http://dx.doi.org/10.1103/PhysRevLett.107.188301
http://dx.doi.org/10.1103/PhysRevLett.107.188301
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102142
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102142
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102142
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102142



