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Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal
fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in
an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by
random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which
then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory
traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which
circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even
topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the
Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified
Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale
colloidal spheres in optical tweezers.
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I. INTRODUCTION

Stochastic systems can be driven out of equilibrium in
various ways. Thermal ratchets and Brownian motors use
time-dependent forces to rectify Brownian motion [1–6].
Other systems evolve in response to spatial and temporal
variations in the temperature [6,7]. Even if none of these
systems can reach thermodynamic equilibrium, some can
achieve nonequilibrium steady states. Recently, a distinct class
of stochastic machines was discovered that use noise to extract
work from a static nonconservative force field [8–11]. These
systems, which have been dubbed Brownian vortexes [9,12],
perform no work at all in the absence of stochastic forces.
When activated by noise, they enter into steady-state motion
characterized by toroidal vortexes in the time-averaged or
ensemble-averaged probability current. These cyclic processes
in principle can be coupled to external systems to extract
useful work. Since their initial observation in the fluctuations
of optically trapped colloidal beads [8,9], Brownian vortexes
have been reported in trapped colloidal rods [10] and other
more complicated shapes [13], in trapped spheres subjected to
shear flows [11,14], in the response of bacterial populations to
antibiotics [15], and in models for population dynamics [16].

Brownian vortexes arise in time-independent force fields
that include at least one point of stable equilibrium. In the ab-
sence of thermal forces, such systems remain stationary at their
fixed points and so perform no work. They differ in this respect
from conventional machines that move deterministically under
the influence of nonconservative forces. Random thermal
forces allow a Brownian vortex to explore its force landscape.
Were the force field purely conservative, the system would
reach thermal equilibrium in the Boltzmann distribution, and
so would have no means to perform work. In force fields with
solenoidal components, however, the probability distribution
can be advected by the nonconservative force. Probability
currents then flow through the system under the competing
influences of advection and diffusion. These currents must
form closed cycles if the system’s overall probability is
conserved, raising the possibility that the system can reach
steady state.

Initial studies have identified two broad categories of
Brownian vortex behavior: trivial Brownian vortexes that
circulate in the direction dictated by the nonconservative
component of the force landscape, and general Brownian
vortexes that select their own topology and circulation. Both
types of behavior have been explained with master equations
on discrete networks [12]. Solutions for continuous systems
have been obtained for special cases [12,15–17], with most
examples representing trivial Brownian vortexes. Here, we
introduce a perturbative theory that accounts for both trivial
and general cases in continuous systems.

II. THEORY

Our approach is based on the observation that systems
governed by linear forces can be mapped to a generalization of
the Ornstein-Uhlenbeck process, for which a general solution
is known [18]. For nonlinear forces, a common approach is
to solve the system using perturbation theory [19]. Here we
develop a perturbation theory for the specific case where the
nonconservative force is weak compared to the conservative
one. We show that this approach captures the important
features of general Brownian vortex circulation, including
topological transitions and flux reversal.

Following earlier studies [9,12,18,19], we describe a system
capable of undergoing steady-state stochastic circulation as a
Brownian particle of mobility μ moving through a static force
landscape F(r) at absolute temperature T . Such a description
applies naturally to the motion of a colloidal particle in an
optical force field, and also may be applied to more general
systems such as an ensemble of identical particles interacting
through conservative forces and confined by a force landscape.
Assuming that the system reaches steady state, we seek
the steady-state probability distribution ρ(r) describing the
likelihood of finding the particle near position r, and the
associated steady-state flux of probability j(r) flowing through
that point. The flux is generated both by advection of the
probability distribution and by diffusion:

j(r) = μρ(r) F(r) − D∇ρ(r). (1)
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Because the probability density is non-negative, we may
express it as the exponential of an effective potential φ(r):

ρ(r) = e−βφ(r), (2)

so that

j(r) = μρ(r)[F(r) + ∇φ(r)]. (3)

The Helmholtz decomposition theorem guarantees that the
force field can be separated into a conservative gradient term
and a nonconservative solenoidal component,

F(r) = −∇U (r) + ∇ × A(r), (4)

where U (r) is the potential energy and A(r) is the vector
potential. The probability current may be written in terms of
these potentials as

j(r) = μρ(r) {∇ × A(r) + ∇[φ(r) − U (r)]}. (5)

Equation (5) makes clear that the system can only reach
thermodynamic equilibrium with j0(r) = 0 if the nonconser-
vative force vanishes, ∇ × A(r) = 0. The remaining term in
Eq. (5) then yields Boltzmann’s distribution for the probability
density,

ρ0(r) = e−βU (r), (6)

with φ0(r) = βU (r), where β−1 = kBT is the thermal energy
scale.

Systems subject to nonconservative forces may not reach
thermodynamic equilibrium, but still must satisfy the continu-
ity equation,

∇ · j(r) = −∂ρ(r,t)
∂t

, (7)

where ρ(r,t) is the time-dependent probability density. Equa-
tion (7) is the Fokker-Planck equation for Brownian vortexes.
Any steady-state solution of Eq. (7) satisfies

∇ · j(r) = 0, (8)

which also ensures conservation of probability.
Quite remarkably, Eq. (8) implies that the steady-state

distribution ρ(r) does not depend on the particle’s mobility, μ,
or on any other transport property. Indeed, substituting Eq. (5)
for the current density into Eq. (8) yields an equation that is
independent of μ. This happens because of the assumption,
implicit in Eq. (1), that the particle responds in the same
way to an applied force whether or not it is conservative. For
a potential force, the Einstein relation D = kBT μ between
the diffusion coefficient D and mobility μ follows from the
condition that there exists an equilibrium state which obeys the
detailed balance condition j(r) = 0. In the presence of a non-
conservative force, the system does not come to equilibrium, it
does not satisfy detailed balance. Nevertheless, its probability
distribution remains independent of the particle’s transport
properties, and depends only on the form of the force field. In
this sense, the steady-state probability distribution resembles
Boltzmann’s distribution despite the system’s departure from
equilibrium.

To find the specific steady-state probability distribution, we
introduce the projection

p(r) = ∇ U (r) · ∇ × A(r) (9)

of the nonconservative force onto the direction of the conser-
vative force. An exact solution to Eqs. (3) and (8) is known
[12] only for the special case p(r) = 0. In this case, the
steady-state probability distribution retains the form of the
Boltzmann distribution, Eq. (6), and is simply advected by
the nonconservative force:

j(r) = μe−βU (r)∇ × A(r). (10)

The direction of j(r) in this case is fixed by ∇ × A(r) regardless
of the temperature. Equation (10) therefore describes a trivial
Brownian vortex. Examples of trivial Brownian vortexes
include the biased Brownian pendulum and colloidal spheres
circulating in circularly polarized optical tweezers [20].

To move beyond this special case, we consider systems in
which ∇ × A(r) is not necessarily aligned with ∇ U (r), but
may be treated as a perturbation whose scale is characterized
by a small parameter ε. We therefore replace ∇ × A(r) in
Eq. (4) with ε∇ × A(r). Assuming the perturbation not to be
singular, the effective potential may be expanded in orders of
ε as

φ(r) = φ0(r) + εφ1(r) + O{ε2}, (11)

with φ0(r) = U (r). The associated expansion of the probability
current,

j(r) = εj1(r) + O{ε2}, (12)

has no contribution at zeroth order in ε. The first-order
correction,

j1(r) = μe−βU (r)[∇ × A(r) + ∇φ1(r)] (13a)

retains the advective term from Eq. (10), although this now
distorts the probability distribution as well as transporting it.
The second term in Eq. (13a) describes diffusive relaxation of
that distortion.

Because these two terms depend on temperature in different
ways the first-order expansion admits the possibility of
temperature-dependent transitions such as those characterizing
general Brownian vortexes. These transitions, moreover, may
be understood to arise from competition between advection
and diffusion. The balance depends on the distortion of the
probability distribution away from ρ0(r).

As explained in Appendix A, substituting Eq. (13a) into
Eq. (8) yields a differential equation for φ1(r),

∇2φ1(r) − β∇U (r) · ∇φ1(r) = βp(r). (13b)

Solutions to Eq. (13b) are difficult to find for arbitrary
force fields. Provided that U (r) has at least one minimum,
however, the associated operator ĤU = ∇2 − β∇U (r) · ∇ has
eigenfunctions ψn(r) with eigenvalues λn that satisfy

ĤUψn(r) = λnψn(r). (13c)

Symmetrized functions of the form e−(1/2)βU (r)ψn(r) constitute
a complete orthogonal basis with the orthonormalization
condition ∫

e−βU (r)ψn(r)ψm(r)dr = δnm. (13d)
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We therefore can expand φ1(r) in this basis,

φ1(r) =
∑

n

cnψn(r) (13e)

with expansion coefficients

cn = β

λn

∫
e−βU (r)ψn(r)p(r)dr. (13f)

Equations (13) are the principal result of this study. They
describe the lowest-order extension of a trivial Brownian
vortex into a general Brownian vortex under the influence of
a weakly nonconservative force. The nature of the resulting
topological transformations and flux reversals depends on
details of F(r), and particularly on the projection of its
solenoidal component onto its conservative part.

To illustrate practical applications of Eq. (13), we next
apply this formalism to the particular case of colloidal spheres
moving in optical tweezers, the context in which Brownian
vortexes were first observed [9,21]. This analysis casts new
light on the nature of this system’s behavior.

III. COLLOIDS IN AN OPTICAL TWEEZER

To facilitate comparisons with experimental studies of
colloidal spheres circulating in optical tweezers, we numer-
ically compute the forces acting on a trapped sphere with the
Lorenz-Mie theory of light scattering using methods described
in Appendix B. Typical results are presented in Fig. 1. Colors
in Fig. 1(a) represent the relative intensity of the light in an
optical tweezer, as viewed in the (r,z) plane in cylindrical
coordinates. The light propagates in the +ẑ direction (upward)
and comes to a focus along the axis defined by r = 0. Arrows
indicate the direction and strength of the resulting force F(r)

experienced by a colloidal sphere of radius ap = 0.5 μm at
position r within that light field. We have shifted the origin of
the coordinate system to coincide with the position of the trap
so that F(0) = 0. Away from the origin, F(r) directs the particle
back to the stable fixed point. All forces reported in Fig. 1 are
computed for a power of 1 mW, which is a reasonable scale
for typical optical trapping experiments.

Both the axial component of the force, plotted in
Fig. 1(b), and the radial component plotted in Fig. 1(c)
resemble a linear restoring force over a reasonably wide range
of axial displacements. The axial component of the optical
force shows a nontrivial dependence on radial position, as
shown in Figs. 1(d) and 1(e), that is reasonably modeled as a
quartic polynomial. This solenoidal dependence is responsible
for Brownian vortex circulation in optically trapped colloidal
spheres.

The three-dimensional force field is very nearly symmetric
with respect to rotations about the ẑ axis. Small distortions
along the axis of the light’s polarization have little influence
on the trapped particle’s motions, and will not be considered
here.

A. Simulated circulation

The data in Figs. 2(a)–2(c) show results of Brownian
dynamics simulations [22] of a colloidal silica sphere diffusing
through water at T = 300 K in the computed force field
from Fig. 1(a). The sphere’s trajectory rp(t) is computed
at 100 μs intervals for each of three values of the light’s
intensity: 1.38 mW in Fig. 2(a), 0.35 mW in Fig. 2(b), and
0.17 mW in Fig. 2(c). These correspond to values of the radial
stiffness, k, of 1 pNμm−1, 0.25 pNμm−1, and 0.12 pNμm−1,
respectively. These values are chosen for consistency with

FIG. 1. (Color online) (a) Force field F(r) experienced by a 1.0 − μm-diameter colloidal silica sphere of refractive index 1.45 in a 1 mW
Gaussian optical tweezer propagating upward along the ẑ axis with a 60◦ convergence angle. Colors indicate relative intensity of the beam.
Arrows denote direction of net force in the (r,z) plane. The superimposed semicircle indicates the size of the colloidal particle. (b) Axial
component of the restoring force, Fz(z), along r = 0. (c) Radial component of the restoring force, Fr (r), in the plane z = 0. Shaded rectangles
in (b) and (c) indicate the particle’s range of motion within the force field as a function of fluctuation energy in steps of 2kBT up to 10kBT .
(d) Nonconservative component of the force, Fz(r), in the plane z = 0. (e) Detail of (d) showing fit to a quartic polynomial.
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FIG. 2. (Color online) Streamlines of the current density for a
1 μm-diameter silica sphere in an optical tweezer as a function of
trap intensity. Sharp ends of the symbols point in the direction of j(r)
with colors determined by the relative probability ρ(r), as indicated
by the inset color bar. Light propagates in the ẑ direction. (a)–(c)
show results from Brownian dynamics simulations in force fields
computed for a Gaussian optical tweezer at a vacuum wavelength of
532 nm and a numerical aperture of 1.4. (d)–(f) show corresponding
results of analytical expressions in Eq. (27) for the same parameters.
(a), (d) 1

2 βka2
p = 30.5: a single toroidal roll is visible near the optical

axis. (b), (e) 1
2 βka2

p = 7.6: concentric counter-rotating toroidal
vortexes. (c), (f) 1

2 βka2
p = 3.6: weak confinement showing a single

flux-reversed roll. All of the qualitative features of the Brownian
vortex circulation observed in the simulation results are obtained also
in the analytical theory.

previous experimental studies [9,21]. Each trajectory then is
compiled into estimates for the probability density ρ(r) and
the probability current density j(r) using an adaptive kernel
density estimator [9,21,23]. Streamlines of j(r) are denoted by
barbs whose sharp ends point in the direction of motion and
whose length is proportional to the local current density. Each
barb is colored by the estimate for ρ(r).

At the highest intensity, Fig. 2(a), the trap is stiffest and
the particle is most strongly confined. A single toroidal roll is
evident in the probability current, and circulates downstream
along the optical axis. Reducing the intensity weakens the trap
and frees the particle to explore more of the force landscape.
Under these conditions, shown in Fig. 2(b), streamlines of j(r)
reveal a second counter-rotating roll. Reference [9] identifies
the appearance of this second roll as a topological transition.
Reducing the intensity still further allows the second, outer
roll to dominate the system’s dynamics. It subsumes the inner
roll so that only a single toroidal vortex remains. The single
remaining roll circulates with the flux directed upstream along
the optical axis, which signals a flux reversal relative to
Fig. 2(a) in addition to the topological transition relative to

Fig. 2(b). Precisely this behavior was reported in [9], which
lends credence both to the experimental results and also to the
present simulations.

The particle’s residence time in the trap is effectively
indefinite at the highest laser intensity. This corresponds to the
force field in Fig. 1 and the streamlines in Fig. 2(a). Reducing
the laser intensity reduces the residence time, which falls to 10s
under the conditions in Fig. 2(c). This is consistent with results
of experimental studies. Simulations under these conditions
are restarted every time the particle escapes, and the results
averaged to until the computed current density converges.
The streamlines in Fig. 2(c) therefore should be viewed as
an ensemble average.

B. Analytical model

The force field F(r) resembles a cylindrically symmetric
harmonic well for small excursions away from the equilibrium
point. This can be seen in Figs. 1(b) and 1(c). We therefore
model the trapping potential as

U (r) = 1
2k (r2 + η z2), (14)

where η characterizes the trap’s anisotropy. In this case,
Eq. (13c) has a complete set of eigenfunctions, given in
cylindrical coordinates by

ψn(r) = Nn Ln

(
1
2βkr2

)
Hnz

(√
1
2ηβkz

)
, (15a)

where Ln(·) is the Laguerre polynomial of index n, Hnz
(·) is

the Hermite polynomial of index nz, and where n = {n,nz} is a
set of whole-number indexes that are related to the associated
eigenvalues by

λn = −βk(2n + η nz). (15b)

The harmonic well’s basis functions are normalized by

Nn = η1/4

(
βk

2π

)3/4 1√
2nznz!

. (15c)

We have chosen basis functions that are independent of θ

to reflect the azimuthal symmetry of F(r).

1. Quadratic perturbation in an isotropic trap

To illustrate applications of Eq. (13), we first consider the
symmetric case, η = 1, subjected to a quadratic perturbation,

Fz(r) = εkap

(
1 − r2

a2
p

)
, (16)

with Fx(r) = Fy(r) = 0, where ε is the small parameter
characterizing the strength of the nonconservative force and ap

is the radius of the sphere. This perturbation is divergence-free
and thus has the solenoidal form assumed in Eq. (4). Choosing
Fz(r) to be proportional to k ensures that it scales with the
light’s intensity in the same way as the linear restoring force.
Scaling distances by the particle’s radius is reasonable because
typical realizations of Brownian vortex circulation involve
motions substantially smaller than ap [9,21,24]. In general,
both k and ε depend on the particle’s radius relative to the
wavelength of light. Parametrized in this way, the perturbation
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may be considered weak if

ε <

√
1
2βka2

p. (17)

Choosing a quadratic form for Fz(r) suggests that the
nonconservative force will dominate the linear restoring force
at large distances, and that the particle eventually will escape
from the trap. The rate at which probability leaks from the
system is limited by the smallness of ε. This is the case,
for example, in the system described by Fig. 1. Under these
conditions, the particle is likely to remain trapped over the
period of observation, and probability may be considered to
be conserved. This also is the case for the experimental studies
of optically trapped colloidal particles [9,21,25] that Eqs. (14)
and (16) are intended to model.

The projection factor for this system, defined in Eq. (9), has
the form

p(r) = −k2apz

(
1 − r2

a2
p

)
. (18)

It does not explicitly include ε because this parameter is
introduced in Eq. (11) for the effective potential and in Eq. (12)
for the current density. Substituting this form for p(r) into Eq.
(13) along with the basis functions from Eq. (15) yields the
first-order correction to the effective potential,

βφ1(r) = 1

3

z

ap

[
4 − βka2

p

(
3 − r2

a2
p

)]
. (19)

This correction’s linear dependence on z displaces the proba-
bility distribution down the optical axis, as would be expected
of radiation pressure. The distribution’s width

σ =
√∫ ∞

0 r3ρ(r)dr∫ ∞
0 rρ(r)dr

∣∣∣∣∣
z=0

=
√

2

βk
(20)

is the same as in the unperturbed case.
The associated current density,

j(r) = ε
2D

3ap

e−βU (r)[βkrzr̂ + (2 − βkr2)ẑ], (21)

has the form of a toroidal roll, centered on the axis r = 0 and
circulating around a circular core in the plane z = 0 at radius

r0 =
√

2

βk
, (22)

which coincides with the distribution’s width, r0 = σ . The
circulation rate is controlled by the strength ε of the driving
force and the rate at which the particle diffuses in the
harmonic potential energy well given its diffusion coefficient
D = μkBT .

This Brownian vortex undergoes no topological transitions
or flux reversals. Applying a quadratic perturbation to a
harmonic well therefore constitutes a model for a trivial
Brownian vortex.

2. Quartic perturbation in an anisotropic trap

More interesting behavior arises in a more highly structured
force field of the type actually observed in optical trapping

experiments [9,21,25]. Figure 1(e) shows that the computed
axial force is well approximated near the plane z = 0 by a
quartic polynomial,

Fz(r) = −ε
2 + η

3
k

r2

ap

(1 − p4r
2), (23)

with Fx(r) = Fy(r) = 0, where p4 characterizes the particle’s
interaction with the focused beam of light. Like ε and k, this
additional parameter also depends on the sphere’s radius, ap.
As for the quadratic case, Eq. (23) describes a purely solenoidal
perturbation. We will show that p4 governs topological
transitions and flux reversals in the resulting Brownian vortex
circulation. Incorporating a constant offset into Fz(r) would
move the equilibrium position along the optical axis as in the
quadratic case, but does not otherwise influence the system’s
behavior. We have omitted such an offset from Eq. (23) for
clarity. The weak-perturbation condition for this model is

ε <
3

2 + η

√
1

2
βka2

p. (24)

Accounting for the trap’s anisotropy η allows for com-
parison with optical trapping experiments. The force field
presented in Fig. 1, for example, is intended to model
the influence of a Gaussian beam brought to a diffraction-
limited focus and is characterized by η = 0.47. Results for
isotropic harmonic wells can be retrieved by setting η = 1. No
qualitative features of Brownian vortex circulation depend on
the value of η.

The projection factor, defined in Eq. (9), associated with
this force field

p(r) = 2 + η

3
ηk2 z

ap

(r2 − p4r
4), (25)

gives rise to a first-order correction to the effective potential
that also has the form of a quartic polynomial:

βφ1(r) = 2

3

z

ap

[
(1 − 2p̃4)(2 + r̃2) − 2 + η

4η
p̃4r̃

4

]
. (26a)

For conciseness we have introduced the dimensionless param-
eters

r̃2 = 1

2
ηβkr2 and (26b)

p̃4 = 8

(4 + η)βk
p4. (26c)

As in the quadratic case, the quartic perturbation displaces
probability along ẑ. The quartic term also tends to broaden
the probability distribution relative to ρ0(r) by introducing
a super-Gaussian tail at large r . This broadening may be
of interest for precision measurements of optical forces
because it can influence [21,24] calibration protocols based
on analysis of thermal fluctuations [26–28]. The availability
of an analytical form for φ1(r) will help to assess when
nonequilibrium redistribution of the probability density may
be ignored [24,29].

The first-order correction to the current density,

j1(r) = jr (r)r̂ + jz(r)ẑ, (27a)
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has the radial component

jr (r)

j0(r)
= ηβkzr

[
1 − p̃4

(
2 + 2 + η

2η
r̃2

)]
(27b)

that is conveniently measured in units of an overall scale

j0(r) = 2

3

D

ap

e−βU (r) (27c)

that again reflects diffusion in the potential energy well, as in
Eq. (21). The radial component of the current density changes
sign as it passes through the equatorial plane, z = 0. The axial
component,

jz(r)

j0(r)
= p̃4

2 + η

η2
r̃4 − 2

(
1

η
+ p̃4

)
r̃2 + 2(1 − 2p̃4), (27d)

varies nonmonotonically with distance r from the axis. The
net current, j(r) = εj1(r), is proportional to the strength of the
nonconservative driving force.

Streamlines of j(r) plotted in Figs. 2(d)–2(f) reveal circu-
latory flows that agree well with the simulated results for the
same system under the same conditions. Specifically, the first-
order result for the strongly confined system in Fig. 2(d) shows
a single roll consistent in position, extent, and speed with
the simulation result in Fig. 2(a). The double-roll structure in
Fig. 2(e) similarly is consistent with that in Fig. 2(b), although
quantitative details of the circulation differ, particularly near
the optical axis. The single-roll structure in Fig. 2(f) again
qualitatively resembles that in Fig. 2(c), although the centers of
circulation appear at different radial positions. The first-order
perturbation theory developed in Eq. (13) thus captures the
essential features of general Brownian vortex circulation in this
model system, albeit with quantitative discrepancies. Trends
in the analytical results therefore offer useful insights into the
nature of the phenomenon.

C. Topological transition and flux reversal

The probability current, j(r), vanishes at the cores of
toroidal vortexes. Solutions of j1(r) = 0 take the form of
circles in the plane z = 0 centered on the axis at r = 0. Two
vortex cores exist if p4 is sufficiently small, at radii r+ and r−
that satisfy

r2
± = r2

0 (1 ± �2), where (28a)

r2
0 = 1

βk

2

2 + η

(
1

p̃4
+ η

)
and (28b)

�2 =
√

(8 + 4η + η2)p̃2
4 − 4p̃4 + 1

1 + ηp̃4
. (28c)

According to Eq. (28), the vortex at r+ is present for all
temperatures greater than zero and moves outward as the
temperature increases. The other vortex at r− moves inward,
and ceases to exist when it reaches r− = 0, which occurs when
p̃4 = 1

2 . This condition corresponds to a threshold temperature

kBTc = 4 + η

16

k

p4
(29)

below which the probability current consists of two counter-
rotating toroidal vortexes and above which only a single roll

remains. The threshold temperature is proportional to the
light’s intensity through the trap stiffness, k, and depends
on details of the particle-light interaction through p4. In-
terestingly, it does not depend on the strength, ε, of the
nonconservative force. In most optical trapping experiments,
the temperature remains constant while k is varied. Equation
(29) for the threshold temperature then may be recast into an
equivalent condition for the trap stiffness.

The system’s behavior for T < Tc corresponds to strong
confinement by the harmonic well. The outer toroidal roll
therefore may not be perceptible in an experiment of finite
duration because the particle spends comparatively little time
exploring the outermost reaches of the force landscape. The
apparent transition from one vortex in Fig. 2(a) to two in
Fig. 2(b) in fact results from increasing the occupation of the
outer roll and does not constitute a topological transition. The
appearance of a second concentric vortex in previous optical
trapping studies [9,12] almost certainly corresponds to the
same statistical sampling considerations.

Increasing the temperature beyond Tc, or equivalently
reducing the stiffness of the trapping potential, causes an actual
topological transition by eliminating the inner roll at r−. In
this case, the single remaining roll circulates upstream along
the optical axis. The behavior in Fig. 2(f) therefore reflects
a flux reversal relative to Fig. 2(d) as well as a topological
transition. This more dramatic change also has been observed
in experimental studies [9].

D. Size-dependent crossovers

The nature of the Brownian vortex behavior in an optically
trapped colloidal sphere depends qualitatively on the form
of the nonconservative force, Fz(r). Neither the concentric
roll structure nor the high-temperature topological transition
appear if this force is quadratic rather than quartic. What
dynamic patterns emerge therefore depends sensitively on the
size and composition of the sphere and the structure of the light.

The data in Fig. 3 show how the controlling parameters ε

and p4 vary with sphere radius ap for a colloidal silica sphere
trapped in water by an optical tweezer of vacuum wavelength
532 nm brought to a focus by a lens of numerical aperture 1.4.
Figures 3(b)–3(d) show plots of Fz(r) for the representative
radii indicated by vertical dashed lines in Fig. 3(a). As in
Fig. 1, these results were obtained numerically using Eq. (B6).

In the Rayleigh limit, for ap � λ, the nonconservative
force is peaked at the optical axis and falls off very nearly
quadratically in r . For such particles, ε > 0. Figure 3(b) is rep-
resentative of this range of conditions. The quartic contribution
being weak, Rayleigh particles enter into single-roll Brownian
vortexes circulating down the optical axis in the direction of
the light’s propagation. This is the mode of operation that first
was identified in Ref. [21]. The corresponding set of conditions
is shaded red in Fig. 3(a).

Particles that are much larger than the wavelength of light,
ap � λ, have force profiles Fz(r) that are peaked far enough
from the optical axis that they also appear to be quadratic over
the accessible range, but with ε < 0. Such particles circulate
in a single toroidal vortex, but in the sense opposite to that
adopted by Rayleigh particles. The retrograde circulation of
larger spheres was pointed out in a ray-optics analysis of
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FIG. 3. (Color online) (a) Dependence on the particle radius of
the quadratic and quartic coefficients ε and p4 characterizing the
nonconservative optical force Fz(r). These coefficients are obtained
by polynomial fits to the force field computed with generalized
Lorenz-Mie theory for a silica sphere in a Gaussian optical tweezer.
Results are shown for a silica sphere in water and an optical tweezer
created with a vacuum wavelength of 532 nm in a beam with a
convergence angle of 60◦. (b) Fz(r) for a sphere with ap = 0.13 μm,
together with a quartic fit. (c) ap = 0.45 μm. (d) ap = 0.5 μm.

optically trapped colloidal spheres [30] and subsequently was
observed experimentally [9].

Retrograde circulation in a single roll also can arise for
particles that are intermediate in size between the Rayleigh
range and the ray-optics regime. The example force field
depicted in Fig. 3(c) has this property, and is characterized
by ε < 0. Even though the quartic term is sizable under these
conditions, the curvature of Fz(r) has the same sign over the
entire accessible range of radii, and only a single toroidal roll
can be populated. The domain of such behavior is shaded blue
in Fig. 3(a).

Topological transition and flux reversals are only possible
if ∂rFz(r) changes sign in an accessible part of the force
landscape. That occurs for conditions such as those in Fig. 3(d),
and corresponds to the green-shaded regions in Fig. 3(a). In
such cases, the inner roll circulates in the same sense as the
single roll in the Rayleigh regime, and the outer roll rotates
in the opposite sense. Interestingly, there appears to be no
set of conditions that favor a retrograde double roll or the
corresponding topological transition to a retrograde single roll.

Different patterns of size-dependent crossovers arise for
spheres of different materials, or in beams of different
wavelengths or focusing properties. Figure 3 makes clear that
small variations in properties can have a large influence on
Brownian vortex circulation, not simply changing the rate of
circulation, but rather reversing the direction of circulation.
The present work has focused on the circulating currents’
topology. Its results also could be used to address questions
about drift rate and circulation frequency that have been raised
in previous studies [9,21].

IV. CONCLUSION

Brownian vortexes should be generic features of all
probability-conserving stochastic systems subject to time-
independent driving by nonconservative forces. Equation (13)
constitutes the leading-order description of a weakly driven

Brownian vortex. This level of approximation already captures
the topological transitions and flux reversals that have been re-
ported for archetypal Brownian vortex circulation in optically
trapped colloids. Analytical results for topological transitions
in the current density go beyond reproducing experimental
results by clarifying their nature and providing a unified
explanation for the system’s behavior. The idealized model
of an optical tweezer as a harmonic well subject to a steady
nonconservative force is likely to serve as a useful model for
other systems as well.

It is noteworthy that the steady-state probability distribution
in a Brownian vortex,

ρ(r) = e−βφ(r), (30)

depends on characteristics of the force field F(r), but not on
the particle’s mobility μ. The particle’s transport properties
therefore do not dictate how the probability redistributes as
the system is driven out of equilibrium. In this sense, the
general relationship between F(r) and the effective potential
φ(r) described in Appendix A constitute an analog for the
Boltzmann relation for this class of nonequilibrium systems.

The generic nature of the model discussed in Sec. III
suggests that this might be a common factor for steady-state
circulation in a broad range of nonequilibrium systems. The
formalism developed here also should apply in other contexts
such as circulatory and oscillatory flows in social networks,
financial systems, and chemical networks. It also would be
interesting to extend this formalism to more general systems
such as systems with multiple fixed points, and systems of
multiple interacting particles.

ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion through Grant No. DMR-135875.

APPENDIX A: PERTURBATION THEORY

The effective potential, φ(r), that determines the steady-
state probability distribution, ρ(r), differs from the imposed
potential, U (r), by an amount

ψ(r) = φ(r) − U (r) (A1)

that vanishes if ∇ × A(r) = 0. We assume therefore that
ψ(r) is characterized by the same small parameter, ε, that
characterizes ∇ × A(r). Imposing conservation of probability
through Eq. (8) yields a differential equation for ψ(r),

[∇2ψ(r) − β∇ψ(r) · ∇U (r)]

−[β|∇ψ(r)|2 + β∇ψ(r) · ∇ × A(r)] = βp(r), (A2)

that depends on the temperature and characteristics of the force
field, but not on the diffusing particle’s mobility. To first order
in ε, this reduces to

∇2ψ(r) − β∇ψ(r) · ∇U (r) = βp(r). (A3)

The associated field [31]

χ (r) = e−(1/2)βU (r)ψ(r) (A4)
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then may be obtained as an expansion in eigenfunctions χn(r)
of the Hermitian operator

Ĥ ′
U = ∇2 + [

1
2β∇2U (r) − 1

4β2|∇U (r)|2]. (A5)

Specifically, solutions of

Ĥ ′
Uχn(r) = λnχn(r) (A6)

form a complete set of basis functions labeled by index n with
eigenvalues λn. When appropriately normalized they satisfy
the orthogonality condition∫

χm(r)χn(r)d3r = δmn. (A7)

Equation (13d) follows from Eq. (A7).
Imposing conservation of probability at each order of the

perturbation expansion ensures that solutions reflect steady-
state behavior. Higher-order corrections obtained by incorpo-
rating the second-order terms in Eq. (A2) will redistribute
the probability distribution, but are not likely to eliminate
qualitative features of the steady-state circulation that arise
at first order.

APPENDIX B: GENERALIZED LORENZ-MIE THEORY

An optical tweezer can be modeled as a strongly focused
Gaussian beam, and its field can be expanded as a series in
vector spherical harmonics,

Ei(r) = E0

∞∑
n=1

n∑
m=−n

[
amnM(1)

mn(kr) + bmnN(1)
mn(kr)

]
. (B1)

The coefficients amn and bmn have been previously reported
for a converging Gaussian beam [32–34]. and depend on the
numerical aperture of the lens that brings the beam to a focus.

The incident beam illuminates a particle located at rp,
which gives rise to a scattered wave Es(r − rp) that propagates
to position r. The corresponding expansion for the scattered

field,

Es(r) = E0

∞∑
n=1

n∑
m=−n

[
rmnM(3)

mn(kr) + smnN(3)
mn(kr)

]
, (B2)

has expansion coefficients,

rmn = −bnamn and

smn = −anbmn,
(B3)

that are related to the incident beam’s coefficients by the parti-
cle’s Lorenz-Mie scattering coefficients, an and bn [32,33]. For
the particular case of scattering by a sphere, the Lorenz-Mie
coefficients depend on the sphere’s radius and refractive index
relative to the medium.

The combined incident and scattered fields,

E(r) = Ei(r) + Es(r − rp), (B4)

can be used to calculate the Maxwell stress tensor, T(r), with
components

Tij (r) = εmEi(r)Ej (r) − 1
2εmE2(r) δij , (B5)

where εm is the dielectric constant of the medium. The optically
induced force is then obtained by integrating the Maxwell
stress tensor over a surface S that encloses the sphere,

F(r) =
∮

S

n̂ · T(r′)dr′, (B6)

where n̂ is the unit vector normal to S. Techniques to perform
this integration have been previously reported [35–38].

Figure 1 shows the computed force field acting on a
0.5 − μm-radius silica sphere in water in an optical tweezer
with vacuum wavelength λ = 532 nm projected by a lens with
numerical aperture 1.4 (convergence angle 60◦). We define the
particle’s point of mechanical equilibrium to be the origin of
the coordinate system in Fig. 1.
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