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Optimization of finite-size errors in finite-temperature calculations of unordered phases
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It is common knowledge that the microcanonical, canonical, and grand-canonical ensembles are equivalent in
thermodynamically large systems. Here, we study finite-size effects in the latter two ensembles. We show that
contrary to naive expectations, finite-size errors are exponentially small in grand canonical ensemble calculations
of translationally invariant systems in unordered phases at finite temperature. Open boundary conditions and

canonical ensemble calculations suffer from finite-size errors that are only polynomially small in the system
size. We further show that finite-size effects are generally smallest in numerical linked cluster expansions. Our
conclusions are supported by analytical and numerical analyses of classical and quantum systems.

DOI: 10.1103/PhysRevE.91.062142

I. INTRODUCTION

The use of identically prepared systems, or ensembles,
has been essential to our understanding of equilibrium and
far-from-equilibrium properties of classical and quantum
systems. Traditionally, three types of ensembles are used: (a)
the microcanonical ensemble, which involves systems with
fixed energy and particle number; (b) the canonical ensemble
(CE), which involves systems with fixed particle number
in contact with a large reservoir (at temperature 7) with
which they can exchange energy; and (c) the grand canonical
ensemble (GE), which involves systems in contact with a
reservoir with which they can exchange energy and particles
(in equilibrium, the average particle number is determined
by the chemical potential ). Whereas these three ensembles
pose fundamentally different physical constraints, it can be
shown that they are equivalent in the thermodynamic limit
(provided, of course, that temperatures and chemical potentials
are selected appropriately). Being technically easier to deal
with, the canonical and grand canonical ensembles are the
most commonly used ensembles in the literature. Several texts
on statistical mechanics cover these topics in detail; see, e.g.,
Ref. [1].

In finite systems, differences appear between calculations
carried out using the three ensembles. These differences,
dubbed finite-size effects, have to do with the effect of energy
and particle number fluctuations, and with boundary effects.
For example, to describe an isolated system with mean energy
E, it is most appropriate to use the microcanonical ensemble
with that energy. However, one can also use a canonical
ensemble at a temperature 7' for which the mean energy is E.
Since the systems used to construct the canonical ensemble
have different energies from the ones used to construct
the microcanonical ensemble, one finds differences in the
predictions of each ensemble. Remarkably, one can show that
energy fluctuations in the canonical ensemble typically scale
as the square root of the volume of the system, whereas the
average energy scales as the volume of the system. Hence,
the ratio between the energy fluctuations and the average
energy scales as the inverse of the square root of the volume,
and vanishes in the thermodynamic limit. One then finds that
differences between the predictions of each ensemble decrease
polynomially with increasing volume (at fixed density). The
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same applies if one considers the grand canonical ensemble,
where particle number fluctuations typically scale with the
square root of the volume of the system. Indeed, explicit
calculations in one-dimensional (1D) lattices have shown that
the differences between the predictions of the canonical and
grand-canonical ensembles for various observables decrease
with the inverse of the number of particles (or lattice sites) in
the system [2,3].

Experiments usually deal with thermodynamically large
systems, whereas numerical analyses of many-body interact-
ing systems can generally be done for only (relatively) much
smaller system sizes. Hence, when trying to theoretically
predict or reproduce the outcome of an experimental mea-
surement, a question of much relevance is: Which ensemble
should one use to minimize finite-size effects and obtain the
“thermodynamic limit” or experimental result? From the
previous discussion about the differences between ensembles,
one might naively conclude that finite-size effects always scale
polynomially with system size and that, therefore, the best one
can do theoretically is to optimize exponents and prefactors.

In this article we show that this is not the case. There is a
preferred ensemble (the grand-canonical ensemble) and pre-
ferred boundary conditions (periodic boundary conditions, so
that the system is translationally invariant) for which finite-size
effects are exponentially small in the system size. This holds
if the system of interest is in an unordered (i.e., without long-
or quasilong-range order) phase at finite temperature. We also
consider a different approach to calculating finite-temperature
properties of many-particle systems, namely, numerical linked
cluster expansions (NLCEs) [4-6]. We show that NLCEs not
only exhibit exponential convergence with increasing system
size but generally outperform grand canonical ensemble
calculations in systems with periodic boundary conditions.

The paper is organized as follows. In Sec. Il we argue, based
on a high-temperature expansion of the partition function,
that grand-canonical ensemble calculations in translationally
invariant systems have exponentially small finite-size errors.
In Sec. III, we discuss analytically solvable examples, the
1D and 2D Ising models, that substantiate the arguments
in Sec. II. In Sec. IV, we present a proof that finite-size
errors are indeed exponentially small in the grand-canonical
ensemble for translationally invariant noninteracting systems
and that, within perturbation theory, the same scaling applies

©2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.91.062142

DEEPAK IYER, MARK SREDNICKI, AND MARCOS RIGOL

to interacting systems. We then study numerically, in Sec. V,
three examples where we systematically compare results from
canonical and grand-canonical ensemble calculations, each
for open boundary conditions (OBC) and periodic boundary
conditions (PBC), and NLCEs. We summarize our results and
conclude in Sec. VI.

II. GENERAL CONSIDERATIONS

In this section, we argue that the GE for a translationally
invariant system [we abbreviate the CE (GE) with open
and periodic boundary conditions as CE-O (GE-O) and CE-
P (GE-P), respectively] has exponentially small finite-size
corrections. For that, we make use of a 8 expansion of the
free energy, where 8 = (kgT)~! is the inverse temperature
and kp is the Boltzmann constant. This kind of expansion has
been used extensively in the literature to compute partition
functions for various models [7-9].

Consider the Taylor expansion of the grand partition
function Z = Tre PH (we set u =0 for brevity; all the
arguments below are valid for nonzero u, which will be
required for bosons to prevent Bose-Einstein condensation):

2
Z(B) =Tr(1) — B Tr(H) + FTr(zflz) +... (1)

We are interested in In Z, from which thermodynamic quanti-
ties can be obtained by taking suitable B or u derivatives,

0 Z(8) = InTe(1) — 00D
nZ(f) = InTr( )_ﬂTr(l)
B[ Tr(H? Tr(H)?
7[ Tr(1)  Tr(1)2 } T @
‘We note that
Tr(H™) _ Tr(H"e~0H) )

Tr(1) Tr(e=0H)

is an infinite temperature expectation value. At infinite tem-
perature all unconnected parts of the system, however close
to each other, are uncorrelated. Therefore, the expansion in
Eq. (2) reduces to a sum over only the connected graphs that
can be embedded in the finite system [1,7,10]. In the CE, the
particle number constraint, i.e., that the total particle number
is fixed, implicitly correlates unconnected pieces of a graph,
and therefore this simplification does not occur.

For a system that has no ordered phase at finite temperature,
the above expansion must converge beyond a certain order
(because the correlation length is finite). Since this must occur
for any inverse temperature 8 < oo, the convergence must
come from the coefficients of the 8 expansion, i.e., from the
traces in Eq. (2). In other words, for the expansion (In Z)/N =
ag + a1 B + aB* + - - -, the coefficient a, must fall faster than
e " for the series to converge for any B. The convergence
cannot come from cancellation of terms of opposite sign, since
any such cancellation can work only at some fine-tuned value
of 8.

For a system that has a phase transition between an
unordered high-temperature phase and an ordered low-
temperature phase at a finite critical inverse temperature f,,
the coefficients do not exhibit this behavior—at criticality the
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correlation length is infinite and all orders of this expansion
are relevant. The convergence of the series for 8 < B, instead
comes from the fact that 8/8. < 1. We verify these arguments
in the 1D and 2D Ising models.

From here on, we assume that we are in a phase where
the B expansion converges. We will now show that with PBC
(when the system is translationally invariant), all orders of the
expansion Eq. (2) up to the system size (to be properly defined
below) are identical to those in the thermodynamic limit. We
will further show that this is not the case with open boundary
conditions.

A. Periodic boundary conditions

Consider a system with N sites and periodic boundary
conditions (a system that is translationally invariant). The 8
expansion of In Z is shown in Eq. (2), in which each term can
be represented by a graph embedded on the finite system. We
will call these graphs clusters [1]. First note that each cluster
has N equivalent positions on the lattice since the system is
translationally invariant. That gives a factor of N that we move
to the left-hand side in Eq. (2) to get (In Z)/ N, i.e., an intensive
quantity. Let us now consider a cluster with c sites. First,
since we have a cumulant expansion, as discussed above, only
connected clusters enter (see, e.g., Refs. [1,7,9] for details).
If the extent of our cluster in each direction is less than the
system size in that direction (say L), then the cluster has open
boundary conditions. Furthermore, even if the system size is
increased in any direction, this cluster is present. Hence, this
cluster is present in the thermodynamic limit. In general, every
cluster with c sites that, in the finite lattice with N sites, does
not wrap around any boundary appears in the infinite system,
and vice versa. Therefore, the contribution of this cluster in
a finite system is exactly the same as its contribution in the
thermodynamic limit. On the other hand, a cluster with L sites
in any given direction wraps around a boundary, i.e., it does not
appear in the thermodynamic limit. As a result, clusters that
wrap around boundaries give contributions that are not present
in the thermodynamic limit [2]. Hence, the difference between
results in the thermodynamic limit and in finite-size periodic
systems is O(BX~7), p being determined by the Hamiltonian.
We note that p is O(1) for local Hamiltonians, which are the
ones of interest here. Further, based on the earlier argument,
we must have that the coefficient at this order falls faster
than e~“~P) or that the expansion parameter (8/8.) is smaller
than one. Therefore, finite-size errors in a GE calculation of
a translationally invariant system at any temperature in the
unordered phase are smaller than O(e~t), for systems with
linear dimension L.

B. Open boundary conditions

For a system with OBC, one immediately realizes that
clusters do not have N equivalent positions on the lattice. As a
result, even if a given cluster in the finite system appears in the
thermodynamic limit, its contribution in the finite system will
differ from the thermodynamic limit. For example, for a lattice
model in which the Hamiltonian is a sum of terms involving
only nearest-neighbor sites, the term linear in 8 in Eq. (2) for
a system with OBC has a correction O(A/2N) relative to the
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result for PBC, where A is the number of sites in the boundary.
This correction vanishes as 1/L with increasing system size.
Complicated geometric and combinatorial factors appear at
higher orders, all of which approach the thermodynamic
limit result with increasing system size. Hence, none of the
coefficients of a B expansion for a finite system with OBC
match the result in the thermodynamic limit, and finite size
errors in (In Z)/N are O(1/L).

C. Numerical-linked cluster expansions

Rather than making calculations of finite systems with
periodic or open boundary conditions, and then extrapolating
the results to the thermodynamic limit, another way to
calculate finite-temperature properties of lattice systems in
the thermodynamic limit is to use NLCEs [4—6,11]. The idea
in this case is to directly use the linked cluster expansion of
the infinite (translationally invariant) system, for which any
extensive quantity O per site can be computed as the sum

@
~ = 2 M(© x Wo(e), )

over all connected clusters ¢ that can be embedded in the
infinite lattice. In Eq. (4), M(c) is the multiplicity of cluster
¢, namely, the number of ways per site in which cluster ¢
can be embedded on the lattice, and Wy (c) is the weight of the
cluster ¢ for observable O. W (c) is calculated by an inclusion-
exclusion principle, one systematically subtracts contributions
from the connected subclusters of ¢ [10],

Wo(e) = Oe) = ) Wols). (5)

sCc

O(c) is the value of the observable evaluated on the cluster c.
In NLCEs, O(c) is obtained using a full exact diagonalization
of the Hamiltonian for cluster c.

Due to computational limitations, only a finite number of
clusters can ultimately be calculated in Eq. (4). Nevertheless,
as shown in Refs. [4-6], NLCEs can converge at lower tem-
peratures than high-temperature expansions, and sometimes all
the way to the ground state for systems with unordered ground
states. Also, NLCEs can provide very accurate results for
temperatures at which exact diagonalization results for systems
with periodic boundary conditions suffer from very large
finite-size effects. A pedagogical introduction to implementing
NLCEs can be found in Ref. [11].

In what follows, we compare NLCE results with those ob-
tained in calculations in finite systems with different boundary
conditions. Our goal is to find how each of them converges
to the thermodynamic limit result and which converges the
fastest. For NLCEs, the accuracy of the results is determined
by the size of the largest clusters considered in the sum in
Eq. (4) and the model under consideration.

II1. VERIFICATION IN ISING MODELS

In this section, we verify the arguments given in Sec. II
in the 1D and 2D Ising models, both of which can be solved
analytically.
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A. 1D Ising model

In the thermodynamic limit, the log of the partition
function per site, €2, can be obtained using the transfer matrix
method [1], and is given by (we set J = 1)

Q(B) = In(e? + 7). (6)
The expansion in powers of g of this result is

_ g2 B P
Py =2+ =+

1788
2520

31 10
14175

)

The result for finite systems with periodic boundary
conditions is given by

QL(8) = % Inf(e? + eP)E + (¢f — eP)E]

= Q)+

tanh’ B

.t ®)
Since 0 < tanh B < 1 for 0 < B < oo, the finite-size error
is indeed faster than exponential. Quantities like the energy,
which are derivatives of the free energy, converge exponen-
tially fast with L.

Expanding Eq. (8) in powers of g for different values of L,
we get

QB)=m2+p>+...,

Qs(ﬂ)=ln2+ﬂ;~l—ﬁ;+...,
Q4(ﬁ):ln2+%2+%4+..., ©)
Qs(ﬁ)=1n2+%2—%+%s+...,
S%(,B)zan—i—%z—'f—;—f- Zgé

As one can see, the results are exact to O(BL~!). Naturally,
as one goes to lower temperatures, the correlation length
increases and larger systems are required to capture the
relevant powers of B. It is easy to verify that, with open
boundary conditions, the corrections are always O(1/L).

As discussed in Sec. II, although the coefficients in Eq. (9)
are exact up to O(B-~"), the convergence for all temperatures
comes from the fact that they fall off rapidly (faster than
exponential) with increasing expansion order. Figure 1 shows
a plot of the coefficients of expansion in Eq. (7) along with
a fit to ab~% /L that demonstrates the faster-than-exponential
behavior.

To conclude our discussion of the 1D Ising model, we
evaluate the first few orders of the NLCE for this model
(instead of numerical exact diagonalization of the clusters,
we obtain these results analytically). First, we evaluate the
partition function [In Z(8)] on finite clusters with OBC

InZ;(B) =12,
In Z5(8) = In2 + In(e? + e7P), (10)
In Z3(B) = In2 + In(e* + 7% +2),
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FIG. 1. (Color online) Coefficients (absolute value) of the S
expansion of the free energy vs. the expansion order /. We show
the coefficients in Eq. (7) for the 1D Ising model, and a fit to the
function ab~'/1 with @ = 2.0000 and b = 1.5708 (the difference
between the exact result and 2(;r/2)~' /1 vanishes exponentially fast
with /), and from Eq. (15) for the 2D Ising model. The coefficients
in the latter case do not fall off exponentially fast. Because of this,
the B expansion only converges for 8 < .. It is only in this regime
that finite-size errors in grand-canonical ensemble calculations of
translationally invariant systems are exponentially small in system
size. Inset: Shows the rational part of the coefficients in Eq. (15).
They decrease at first but increase after O(5**). See text for further
discussion.

and then carry out the subtractions. The weights are given by
[see Eq. (5)]

Wy =InZ(B) =1In2,
Ws =1nZ»(B) — 2W, = In(e? + ¢ #) — In2, (11)
VV3 =In Z3(,8) - 2W2 - 3W] =0.
Hence, the result for 2 obtained in calculations including up
to n sites, (2),, is given by [see Eq. (4)]
Q1 =W, =In2, (Q)=W;+W,=In(’ +eF),
()3 = Wi + W+ W3 =1In(e + 7). (12)
It can be verified that the last result is valid at all higher
orders in the “NLCE.” The thermodynamic limit result is
therefore obtained by just considering clusters with one and
two sites. This is an infinite improvement over the use of the
grand-canonical ensemble with periodic boundary conditions.
Whereas this infinite gain is specific to the 1D Ising model—
the model can, after all, be solved using a 2D transfer matrix—

we show in what follows that the fact that NLCEs outperform
exact calculations in finite systems appears to be generic.

B. 2D Ising model
For the 2D Ising model, €2 is given by [1,12]

Q(B) = In[2 cosh(28)]

. 1+\/
+/0 271

4sin? ¢

coshz(Zﬁ) coth? 2p) ( 13)
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The B expansion of this result is given by

584 3288 42588
In2+ p*+ 6 + 15 752
One can see that the coefficients become larger than 1 for
higher orders. The correct expansion parameter for models
with a finite-temperature transition is 8/f.. For the classical
2D Ising model on a square lattice, B, = In(1 + +/2)/2. This
gives (with 11 = B/B.),

a2n2 5“4774 a6n6 425(18”8
Q(B) =1In2 ..
(B)=In2+ 1 + 9% + ) + 64512 +...

Q(B) = +... (14

15)

where a = In(1 + \/5) < 1. The coefficients of the n expan-
sion are plotted versus the order of the expansion in Fig. 1. They
do not fall off faster than exponential, or exponentially. We note
that the rational part of the coefficients of the first few orders
of the n expansion reported in Eq. (15) is deceiving. They
decrease with increasing order of expansion. This, together
with the fact that a < 1, suggests that the coefficients of the n
expansion should fall off faster than exponentially. However, as
shown in the inset in Fig. 1, the aforementioned rational part
increases with increasing order of expansion after O(n**).
Because of this, convergence in the 1 expansion is only
expected for n < 1 and does not come from the coefficients.

We also calculate In Z;«; for small systems with N =
L x L sites in the GE for both periodic and open boundary
conditions. With PBCs

InZ2 P =2,
InZ27P =12 +In(e* + e +2), (16)
InZ325F = In2 + In(e "3 4 9¢71%F 4 2475
+99¢2F 4+ 726*F + 516%),
whereas, with OBCs,

InZP7° =12

InZ3%,°% =2 +1Ine* + e +2) (17)
In Z%E@ O =1n2+Inte ' + 48 4+ 167

+23e %P 4 48¢7 % + 48e%F 4 236
+16e% + 46% + 2P + 72).

For the B expansion of the 3 x 3 systems, up to the first
term that differs from Eq. (14), we obtain

2D-0 2p2
Q35 =In2+ 3 +.
(18)
Q2-P _ | 2 2133

33 n2+p +T+....

We see that whereas for OBC the coefficient of the second-

order term is incorrect, for PBC it is correct, i.e., once again

GE-P gives results that are correct to O(8-~!), with L = 3in
this case.

For the NLCE calculation with clusters with up to four sites,
we obtain

(2)s = 201In(e™? + €#) + 541In(e #e* + 1)
—38In(e % + * +2) + In(e ¥ + * +6). (19)

062142-4



OPTIMIZATION OF FINITE-SIZE ERRORS IN FINITE- ...

Expanding in powers of §, and reporting terms up to the first
one that differs from Eq. (14), we get
584 58p6

Qu=m2+p>+— -

()4 =In2+ 8"+ 6 15
The above result is correct to O(B°). We must stress that
Eq. (20) was obtained in an expansion in which the largest
cluster has N = 4, while Eq. (18) are for systems with N = 9.
The gain is evident.

+.... (20)

IV. FINITE-TEMPERATURE PERTURBATION THEORY
TO ALL ORDERS

In the case of bosons or fermions on a lattice that can
be treated by finite-temperature perturbation theory (with a
noninteracting theory as the unperturbed starting point), a
proof that finite-size errors are exponentially small to all
orders in perturbation theory can be made based on the
momentum-space representation of the Hamiltonian. The
proof is essentially identical for bosons and fermions, so we
focus on the former.

We consider a generic massive scalar field theory in a 1D
lattice, with unit lattice spacing, L sites, and PBC:

A = (A7 4+ @1 — @) +m*@7], (D)

L
=1

| =

J
where [@;, 7] =id;; and @41 = @;, Aj4r =7A;. This
Hamiltonian is diagonalized via

L-1
¢4 _ l Zwl/z[lerLinf& + efzﬂLi”i&T]
J n n nl’
V2L =

(22)
;! . _
A . 71/2 ainj ~ 7M AT
Ty = — [0) e L aq, —e L qll,
J /—ZL Z(; n [ n n]
so that
L—1
H = an&);&n + constant, (23)
n=0

where [4,,4!,] = 8> 0y = w(ky), ky = 27n/L, n € [0,L —
1], and

w(k) = \/2(1 —cosk) +m? = \/4 Sinz(k/Z) +m2  (24)

We now want to compute the grand canonical partition
function

Z(B,p) = Tre A1 (25)
where N = Zn &J;&n is the total number operator. We take the

trace in the Fock basis of eigenstates of each &lan,

L-1 oo L-1

zZiw =] Y e =] % (26)

n=0 N,=0 n=0

Equivalently,

1 1 L—-1
QLB.p) = I InZ,(B,n) = I Z F(kn), (27
n=0
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where we have defined
F(k) = —1In[1 — e P@®=m, (28)

In the thermodynamic limit, the sum over n becomes an
integral,

1 2w
$(B,u) = lim Q(B,p) = Efo dk F (k). (29)

We now wish to show that |2, (8,1) — Q(8,u)| is expo-
nentially small in L.

We first note that F(k) is periodic in k with period 2.
Therefore, its Fourier expansion takes the form

+00
Flky= Y Fje'*, (30)
j==00
where the Fourier coefficients are given by

1 2

=— dk e T*F (k). (31)
2 0

F;
Using Eqgs. (29) and (31), we get
QB.w) = Fo. (32)

Using Eqgs. (27) and (30), we get

L-1 L-1 +oo
! ! [ 2mwijn/L
QrB.p) = T ZF(Znn/L) =7 Z Z F; ¥/
n=0 n=0 j=—o0
+00 1 L—1
7 2rijn/L
- 3 afp xeen]
Jj=—00 n=0
+oo +0o0
= Z Fi8jmodL,0 = Z Fip. (33)
Jj==00 jl=—00

Subtracting Eq. (32) from Eq. (33), we get

OL(B.1) — QB =) Fjr. (34)
Jj#0

Examining Eqgs. (24) and (28), we see that if m > 0 and
u < m (necessary to avoid Bose condensation), then F(k)
is continuous and infinitely differentiable for all real k. It then
follows from a general theorem of Fourier series [13] that F L
goes to zero faster than any power of |j|L as L — oo. The
sum over j in Eq. (34) will then be dominated by the j = +1
terms. We conclude that | O (8, t) — (B8, 1)] is exponentially
small in L if m > 0 and u < m.

We can verify this explicitly. Again examining Eqgs. (24)
and (28), we see that F(k) is changing most rapidly
near k = 0. For m > 0 and small enough k, F(k) can be
approximated
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via
F(k) ~ —In[1 — e POn=m)g=Fk/2m], (35)

Assuming u < m, we have

o0
1
HGEDY ;e—"ﬁm—ﬂ)e—"ﬂ“ﬂm. (36)

n=1

In this approximation, we get

00
I m 1 272

F;~ | — e Bln—p) ,—j L7m/2Bn 37
JjL Znﬂ ; n3/2 ( )

The sum over n can be approximated by steepest descent. For
FEL? > 1/m(@m — w), we find

1 ;
Fjp = —— exp[~[2m(m — w]'?|jIL].  (38)
lJIL
This is exponentially small in L, as expected from the general
theorem. The sum over j in Eq. (34) is then dominated by
Jj = %1, and we have

2
120(B.10) — B, = - exp{—[2m(m — WI1'2L}, (39)

which is the behavior observed for the 1D Ising model in Fig. 1.
This proof extends straightforwardly to higher dimensions,
assuming periodic boundary conditions in each dimension.
Now consider adding an interaction term to Hy, such as
gy j go;‘. We can compute 27(8,u) order by order in finite-
temperature perturbation theory. Each term is represented by
a connected Feynman diagram [14]. The expression for a
diagram with p propagators and v vertices takes the form

L—-1 L—-1

1 1
T2 D & Fk k) (40)

n1=0 npvp1=0

For m > 0 and u < m, F is infinitely differentiable in each
kn,. Hence, one can once again apply the general theorem that
says that the difference between Eq. (40) and the L — oo limit
must be exponentially small in L.

Other models of bosons and/or fermions can be analyzed in
exactly the same way, with only the form of F(k) changing. As
long as F(k) is infinitely differentiable, the argument holds.

V. NUMERICAL TESTS

In this section, we discuss numerical results that support
the generality of the conclusions reached so far. The results
are obtained using full exact diagonalization calculations
for fermionic systems in one dimension. We study spinless
fermions with nearest-neighbor hoppings that are either
noninteracting or that have nearest and next-nearest-neighbor
interactions. They are described by the following generic
Hamiltonian

. . 1 1
H = Z [ —1(¢]é;,; +He) + V(ﬁi — 5) (ﬁm — 5)

i

1 1
#v(i-g) (e 3)] b
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where 71; = 62L ¢; is the number operator. We present results for

different values of the parameters V and V', and using both
the canonical and grand canonical ensembles with open and
periodic boundary conditions. We also report NLCE results.

In all cases, we calculate the energy per site E;. For
noninteracting fermions, we also compute the occupation
of the momentum k = 0 mode, ”i:o = Zid-(éj@j). For the
interacting models, we compute the the nearest-neighbor
single-particle correlation function K; = ), (6} ¢4 +Hel).
For the results reported, by / we mean the number of sites of
the finite system or the number of sites of the largest cluster
in the NLCE. We plot the finite size errors § Ej, 5”2:0’ and
8K;, with §0; = (0; — 0)/ 0O where O (E, ny—g, K) is either
the exact analytic result in the thermodynamic limit, when
known, or the highest-order result from a numerical-linked
cluster expansion.

Figure 2 reports results for § £; and 8n§<=0 for noninteracting
fermions [Eq. (41) with ¢t = 1 and V = V’ = 0]. Figures 2(a)
and 2(b) show the finite-size errors of the energy at two
temperatures, and Fig. 2(c) shows the finite-size errors of
the zero-mode occupation (the sum of all one-particle cor-
relations). The results for the grand-canonical energy in finite

-5 - _
510
107 .
9| — -
10 (C). T |I'0 L1 ! !
6 8 10 20 30 40

1

FIG. 2. (Color online) Comparison of results of canonical and
grand-canonical ensembles with open and periodic boundary con-
ditions, and NLCE:s, for noninteracting fermions hopping on a one-
dimensional lattice [corresponds to Eq. (41) withr = 1,V = V' =0].
The energy difference §E; (see text) is plotted for two different
temperatures in panels (a) and (b). Panel (c) shows the occupation
of the kK = 0 mode, or, equivalently, the correlation L! ZU (cfc_,-).
dny—g is zero for the grand-canonical ensemble with PBCs; see text.
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systems can be obtained analytically,

-1 € e*ﬂen
n
Ei=) T it (42)
n=0
where €, are the single-particle eigenenergies. The momentum
distribution function with periodic boundary conditions is
given by the Fermi-Dirac distribution

1

= T 43)

N
We note that n; for finite systems (for the values of k
allowed) is exactly the same as in the thermodynamic limit.
Hence, 8n}_, = 0 for the grand-canonical ensemble with PBC.
Therefore, no error is reported for the GE-P in Fig. 2(c). The
results in the canonical ensemble are obtained as described in
Ref. [3].

For the two temperatures and two quantities reported in
Fig. 2, one can see that the errors of the GE-O, CE-P,
and CE-O results decrease as 1/1. This is expected and is
made apparent in the plots by comparing those results to
the 1/1 plots (dashed lines) depicted for reference. On the
other hand, the GE-P (for the energy) and NLCE errors can
be seen to decrease exponentially with increasing . For the
energy, the NLCE errors are much smaller than the GE-P
ones, showing once again that NLCEs generally (n; for
noninteracting fermions being a counterexample) outperform
grand-canonical calculations in finite translationally invariant
systems.

Figures 3 and 4 show the results for: (a) §E; and (b) §K;
for interacting fermions [Eq. (41)] with (¢,V,V’) = (1,1,0)
and (1,1,1), respectively. In all cases, it is apparent that only
the GE-P and NLCE errors decrease exponentially fast with
I, while the GE-O and CE errors decrease as 1/l. Once
again, these results (now for interacting systems) show that
the NLCE errors are significantly smaller than those of the

107
& L
10° | a—a CE-0
L v—v CE-P
107 F (2 T=1.0

¥ | e—o GE-O
10° F =—a GE-P
L NLCE
107 | (b) T=10 i
" 1 " 1 " 1 " 1 " 1 " 1 "
2 4 6 8 0 12 14 16

FIG. 3. (Color online) (a) §E;, and (b) &K; for interacting
fermions [Eq. (41)] with ¢t = 1 (unit of energy), V = 1.0, V' =0,
and T = 1.0.
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10"
10° |
&
10° | = CE-0
| v CE-P
107 | (@) T=1.0 E

° I =—a GE-P

NLCE

107 [ (b) T=1.0 .
N 1 N

TN R R R S
2 4 6 8 10 12 14 16

FIG. 4. (Color online) (a) §E; and (b) §K; for interacting
fermions [Eq. (41)] with # = 1 (unit of energy), V = 1.0, V' = 1.0,
and T = 1.0.

GE-P. Here, we have used the highest order of the NLCE
(I = 18) as the estimate for the thermodynamic limit [17].
All results for the interacting models were obtained using full
exact diagonalization of the Hamiltonian.

Finally, although we cannot make an analysis in 2D
equivalent to that presented for interacting models in 1D
(because of the exponential scaling of the computational cost
combined with the fast increase of N), we can still verify that
NLCE calculations have exponentially small errors. In Fig. 5,
we show results for § E; for the 2D Heisenberg model in four
different lattice geometries—square [11], honeycomb [15,16],
kagome, and triangular [5]. In all cases, the error is once again
seen to decrease exponentially fast with increasing the number
of sites in the clusters considered.

1 T T T T -

AN =& Square E

A0\ N — Honeycomb |

10 E Y &—4 Triangular 3

A &—o Kagome ]

107 3

L 1
« -

10°F E

107e E

s _

10°F 1=20

1

FIG. 5. (Color online) 8 E; in NLCE calculations of the Heisen-
berg model in four different two-dimensional lattices, as indicated.
The approach to the thermodynamic limit result is again exponentially
fast as one increases the order of the expansion. The results presented
here were taken from Refs. [5,11,15,16]. J = 1 is taken to be the unit
of energy.
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VI. CONCLUSIONS

We have shown that grand-canonical ensemble calculations
in translationally invariant systems that are in unordered phases
at finite temperatures have exponentially small finite-size
errors, whereas canonical ensemble calculations have errors
that are power law in system size. Hence, while full exact
diagonalization calculations in the canonical ensemble are
computationally less demanding than grand-canonical ones,
if one is interested in accurately computing quantities in an
unordered finite-temperature phase, using the grand-canonical
ensemble is preferable. The additional computational cost
incurred by diagonalizing all particle sectors (around a factor
two for spinless fermions at half filling) for the GE is far
less than the speed up gained by having to study smaller
systems (exponential). Furthermore, we have shown that
numerical linked cluster expansions generally have even
smaller errors than grand canonical ensemble calculations in
translationally invariant systems. The additional cost incurred

PHYSICAL REVIEW E 91, 062142 (2015)

in the diagonalization of many clusters with a given size is far
less than the speed up gained by having to study clusters that
are much smaller than finite systems with periodic boundary
conditions. The benefit of using NLCEs is most striking in
two-dimensional lattices.

The specific system sizes (cluster sizes) required to observe
exponential convergence in grand-canonical calculations of
systems with periodic boundary conditions (in numerical-
linked cluster expansions) depend on details such as the model
under consideration and the temperatures of interest, which set
the relevant correlation length. Otherwise, our conclusions are
completely general.
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