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We ask what happens when two nonequilibrium systems in steady state are kept in contact and allowed
to exchange a quantity, say mass, which is conserved in the combined system. Will the systems eventually
evolve to a new stationary state where a certain intensive thermodynamic variable, like equilibrium chemical
potential, equalizes following the zeroth law of thermodynamics and, if so, under what conditions is it possible?
We argue that an equilibriumlike thermodynamic structure can be extended to nonequilibrium steady states
having short-ranged spatial correlations, provided that the systems interact weakly to exchange mass with rates
satisfying a balance condition—reminiscent of a detailed balance condition in equilibrium. The short-ranged
correlations would lead to subsystem factorization on a coarse-grained level and the balance condition ensures
both equalization of an intensive thermodynamic variable as well as ensemble equivalence, which are crucial for
construction of a well-defined nonequilibrium thermodynamics. This proposition is proved and demonstrated in
various conserved-mass transport processes having nonzero spatial correlations.
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I. INTRODUCTION

Zeroth law is the cornerstone of equilibrium thermodynam-
ics. It states that if two systems are separately in equilibrium
with a third one, they are also in equilibrium with each
other [1]. An immediate consequence of the zeroth law is the
existence of state functions—a set of intensive thermodynamic
variables (ITV) which equalize for two systems in contact. For
example, if two systems are allowed to exchange a conserved
quantity, say mass, they eventually achieve equilibrium where
chemical potential becomes uniform throughout the combined
systems. The striking feature of this thermodynamic structure
is that all equilibrium systems form equivalence classes where
each class is specified by a particular ITV. Then a system, an
element of a particular class, is related to any other system in
the class by a property that they have the same value of the ITV.

We ask whether a similar thermodynamic characterization
is possible in general for systems having a nonequilibrium
steady state (NESS). Can equalization of an ITV, governing
“equilibration” between two steady-state systems in contact,
be used to construct such equivalence classes? The answer is
nontrivial; in fact, it is not even clear if such a formulation
is at all possible [2–12]. In this paper, we find an affirmative
answer to this question, which can lead to a remarkable
thermodynamic structure where a vast class of systems having
a NESS form equivalence classes, equilibrium systems of
course included.

There have been extensive studies in the past to find a
suitable statistical mechanical framework for systems having a
NESS [2,3,5,9–16]. Though the studies have not yet converged
to a universal picture, it has been realized that suitably
chosen mass exchange rates at the contact could possibly
lead to proper formulation of a nonequilibrium thermody-
namics [10,11,16–19]. An appropriate contact dynamics is
crucial because, without it, properties of mass fluctuations
in a system would be different, depending on whether the
system is in contact (grandcanonical) or not in contact
(canonical) with another system; in other words, without an
appropriate contact dynamics, canonical and grandcanonical

ensembles would not be equivalent [19,20]. The situation
is analogous to that in equilibrium where equivalence of
ensembles, a basic tenet of equilibrium thermodynamics, is
ensured by the mass exchange rates which satisfy detailed
balance with respect to the Boltzmann distribution. However
in nonequilibrium, in the absence of a priori knowledge of
microscopic steady-state structure, the intriguing questions,
(a) whether there indeed exists a class of exchange rates which
could lead to the construction of a well-defined nonequilibrium
thermodynamics and (b) how the rates could be determined,
are still unsettled.

Previous studies addressed some of these issues. However,
the exact studies [16,17] were mostly confined to a special
class of models, called zero range processes. These models
have a product measure or factorized steady state and therefore
do not have any spatial correlations. In other studies, a class
of lattice gas models with nonzero spatial correlations were
considered [10,12,18,21,22] and, for some particular choice
of mass exchange rates, zeroth law was found to be obeyed.
However, the mass exchange rates, even in the limit of slow
exchange, alters the fluctuation properties of the individual
systems, leading to the breakdown of equivalence between
canonical and grandcanonical ensembles.

In this paper, we formulate a necessary and sufficient
condition for which equilibrium thermodynamics can be
consistently extended to weakly interacting nonequilibrium
steady-state systems having nonzero spatial correlations. Un-
der this condition, zeroth law is obeyed and “equilibration”
between two systems (labeled α = 1,2) in contact can be
characterized by equalization of an intensive thermodynamic
variable which is inherently associated with the respective
isolated system. To obtain such a thermodynamic structure,
we require the following condition: Mass exchange from one
system to the other should occur weakly across the contact
with the exchange rates satisfying

u12(ε)

u21(ε)
= e−�F , (1)
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reminiscent of the detailed balance condition in equilibrium.
Here uαα′ (ε) is the rate with which a mass of size ε is
transferred from system α to α′, and �F is the change
in a nonequilibrium canonical free energy of the contact
regions. In the limit of weak interaction between systems,
the mass exchange rates are not necessarily small, but only
that the mass exchange process does not affect the dynamics
in the individual systems and spatial correlations between the
systems vanishes. Note that Eq. (1) requires a free energy
function inherent to an individual isolated system to exist,
which, we argue, is the case in a system having short-ranged
spatial correlations. This free energy function can in principle
be obtained from a fluctuation-response relation, analogous to
fluctuation-dissipation theorems in equilibrium.

The notion of weak interaction is crucial to construct
a well-defined nonequilibrium thermodynamics. Also in
equilibrium, one implicitly assumes weak interaction where
interaction energy between systems is taken to be vanishingly
small so that bulk dynamics in an individual system remain
unaffected by the other system which may be put in contact
with the former. Likewise, weakly interacting nonequilibrium
systems imply that dynamics in the individual systems remain
unaffected even when two systems are kept in contact. The
weak interaction limit, which essentially demands vanishing
of correlations between two systems across the contact is,
however, not guaranteed by mere slow exchange of masses
and vice versa. We demonstrate how the weak interaction
limit can actually be achieved.

The organization of the paper is as follows. In Sec. II A,
we discuss why an additivity property as in Eq. (8) is required
for constructing a well-defined thermodynamic structure for
nonequilibrium systems. In Sec. II B, we show that the coarse-
grained balance condition [see Eq. (1)] on mass exchange rates
ensures the desired additivity property. In Sec. III, through var-
ious previously studied models and their variants, we illustrate
how the mass exchange rates can be explicitly constructed so
that the balance condition Eq. (1) is satisfied. In Sec. IV, we
discuss that generic mass exchange rates, even in the limit
of slow exchange, leads to the breakdown of equivalence
between canonical and grandcanonical ensembles. At the end,
we summarize with a few concluding remarks and open issues.

II. THEORY

A. General considerations

Let us consider two systems α = 1,2 of size Vα, having
mass variables mα ≡ {mi � 0} defined at the sites i ∈ Vα.

Each of the systems, while not in contact with each other
(we refer to the situation as canonical ensemble), has a
nonequilibrium steady-state distribution,

Pα(mα) = ωα(mα)

Wα(Mα,Vα)
δ

⎛
⎝Mα −

∑
i∈Vα

mi

⎞
⎠, (2)

where ωα(mα) is the steady-state weight of a microscopic
configuration mα and

Wα(Mα,Vα) =
∫

dmαωα(mα)δ

⎛
⎝Mα −

∑
i∈Vα

mi

⎞
⎠,

is the partition sum (
∫

dmα implies integral over all mass
variables mi with i ∈ Vα). The delta function ensures conser-
vation of mass Mα = ∑

i∈Vα
mi , or mass density ρα = Mα/Vα ,

of individual systems. The microscopic weight ωα(mα) is the
time-independent solution of the master equation governing
the time evolution of the system in the configuration space
of mα and in most cases is not known. On the other hand,
when systems 1 and 2 are in contact, mass exchange from one
system to the other at the contact region breaks conservation of
M1,2 whereas the total mass M = M1 + M2 of the combined
system remains conserved. We refer to this situation as a
grandcanonical ensemble.

To have a consistent thermodynamic structure, it is nec-
essary that individual systems themselves have well-defined
canonical free energy functions, F1,2 for systems α = 1 or 2.
Moreover, this free energy function should not change due
to the contact between the two systems. That is, free energy
of the combined system F = F1 + F2 is obtained by adding
the corresponding canonical free energies of the individual
systems and the macrostate, or the maximum probable state,
is obtained by minimizing the total free energy function. This
additivity property has the following immediate consequences:
(i) Equalization of an intensive thermodynamic variable, (ii) a
fluctuation-response relation, and (iii) zeroth law; all of them
follow from standard statistical mechanics [1].

First we discuss the macroscopic properties of systems in
canonical ensemble and how a free energy function can be
defined consistently for nonequilibrium systems. We consider
an individual system α divided into two subsystems, each of
which being much larger than spatial correlation length ξα

and total mass Mα being conserved. As subsystems much
larger than the correlation lengths would be statistically
independent in the thermodynamic limit, the steady-state
subsystem mass distribution can be written as the product
of some weight factors which depend only on mass of the
individual subsystem [3,16]. Thus, when ξ1,2 � v � V1,2,
we could view each individual system α composed of two
statistically independent (apart from the constraint of total
mass conservation provided by a delta function) macroscopi-
cally large subsystems—contact region (of size v and mass
Mc

α) and the rest, i.e., the bulk (of size Vα − v and mass
Mb

α = Mα − Mc
α)—whose steady-state weights are factorized,

i.e., product of two coarse-grained weights, as reflected in the
partition sum,

Wα(Mα,Vα) �
∫

dMc
αWα

(
Mα − Mc

α

)
Wα

(
Mc

α

)
, (3)

or, equivalently, the joint probability distribution of subsystem
masses will have a factorized form,

P
(
Mc

α,Mb
α) � Wα

(
Mc

α

)
Wα

(
Mb

α

)
Wα(Mα,Vα)

δ
(
Mα − Mc

α − Mb
α

)

= e−[Fα (Mc
α )+Fα(Mb

α )]

e−Fα (Mα )
δ
(
Mα − Mc

α − Mb
α

)
, (4)

which is maximized to obtain the macrostate of the systems
(i.e., the maximum probable state). These considerations
immediately lead to the existence of a canonical free energy
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FIG. 1. (Color online) Schematic representation of “equilibra-
tion” of two steady-state systems in contact. Intensive thermodynamic
variables μ1(t) and μ2(t), chemical potentials of systems 1 and
2 at time t , eventually equalize in the steady state, μ1(t = ∞) =
μ2(t = ∞). The size of the contact region v1/d , v the volume of the
contact region in the d dimension, is much larger than the individual
correlation length ξα .

Fα ≡ − ln Wα in the steady state. The total steady-state free
energy Fα(Mα,Vα) of the two subsystems is additive and is
obtained by minimizing the sum of free energy of the bulk (of
volume V − v) and that of the contact region (of volume v),

Fα(Mα,Vα) = infMc
α

[
Fα

(
Mc

α,v
) + Fα

(
Mα − Mc

α,Vα − v
)]

.

(5)

The additivity property in Eq. (4) and the above minimization
of total free energy implies existence of an intensive thermo-
dynamic variable, called chemical potential,

μα(ρα) = ∂Fα

∂Mα

= ∂fα

∂ρα

, (6)

which takes the same value for both subsystems (macro-
scopically large). In the above equation, we have defined a
nonequilibrium free energy density function fα(ρα) = Fα/Vα .

Note that the nonequilibrium free energy function is defined
in such a way that the principle of free energy minimization
automatically holds. Interestingly, for a steady-state system
having a conserved mass, this free energy function as well
as chemical potential can be calculated from subsystem
mass fluctuations (as illustrated later in various models) and
therefore has practical importance, e.g., describing phase
coexistence [22,23], etc.

We next consider grandcanonical ensemble—a situation
where mass exchange takes place between two systems
through contact regions (see Fig. 1) each with volume v (taken
the same for both systems for simplicity) which is much
larger than finite spatial correlation length ξα but otherwise
arbitrary. We demand that the canonical description where
M1 and M2 are individually conserved, must be equivalent
to the grandcanonical ensemble where only total mass M =
M1 + M2 is conserved. That is, the microscopic weight of
the combined system must be a product of the individual
canonical microscopic weights and therefore the probability
of a microscopic configuration of the combined system should

be given by

P(m1,m2) = ω1(m1)ω2(m2)

W (M)
δ(M − M1 − M2), (7)

with the partition sum of the combined system being

W (M,V ) =
∫

dM1W1(M1,V1)W2(M − M1,V2).

So the joint distribution of individual system masses is also
factorized and can be written as the product of the individual
canonical weights,

P (M1,M2) = W1(M1,V1)W2(M2,V2)

W (M,V )

× δ(M − M1 − M2), (8)

and thus additivity is ensured for the combined systems. That
is, total free energy F (M,V ) ≡ − ln W (M,V ) of the combined
system in the steady state is given by

F (M,V ) = inf
M1

[F1(M1,V1) + F2(M − M1,V2)],

which is the sum of individual canonical free energies. This
implies that the chemical potential equalizes upon contact, i.e.,
μ1(ρ1) = μ2(ρ2).

B. Proof of the balance condition

Now we show how, in the weak interaction limit, the balance
condition in Eq. (1) ensures additivity property in Eq. (8)—the
main result of this paper. Let mass exchange occur at the
contact with rate uαα′ (ε) where a mass ε is transferred from
system α to α′. The rate may depend on both the mass values
at the two contact regions (the mass dependence not explicitly
shown in uαα′ ). Mass conservation in the individual systems is
then broken in this process (Mα → Mα − ε and Mα′ → Mα′ +
ε), generating a mass flow. To attain stationarity, average mass
current J12(ε) generated by all possible microscopic exchanges
corresponding to the rates u12, where the chipped-off mass ε

flows from system 1 to 2, must be balanced by the reverse
current J21(ε). Note that, although the net steady-state current
|Jαα′ (ε) − Jα′α(ε)| from one system to the other (across the
contact) is exactly zero, the individual systems can still be
far away from equilibrium and can have nonzero steady-state
mass currents in the bulk.

Since the total mass M = M1 + M2 of the combined system
is conserved, the current balance condition J12(ε) = J21(ε) can
be written, using only one of the mass variables, say M1, as

P (M1,M − M1)U12(M1,ε)

= P (M1 − ε,M − M1 + ε)U21(M − M1 + ε,ε). (9)

Here Uαα′ (x,y) is an effective rate with which mass y is
transferred from system α, having mass x, to α′. The current
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balance, along with Eq. (8), gives

U12(M1,ε)

U21(M − M1 + ε,ε)
= e−�F , (10)

where �F = ∑2
α=1(Fα|final − Fα|initial) difference in free en-

ergy of the combined system, or, equivalently, we write the
above ratio of effective exchange rates as

U12(M1,ε)

U21(M − M1 + ε,ε)
= e(μα−μα′ )ε, (11)

where μα = ∂Fα/∂Mα is a nonequilibrium chemical potential
[see Eq. (6)] which is inherently associated with the individual
system α.

Next we obtain a condition on the actual microscopic
exchange rate u12(ε). We first use the expression of current
Jαα′ (ε) = 〈uαα′ 〉 as the average mass transfer rate from system
α to α′ and write J12(ε) = ∫ ∫

dm1dm2P(m1,m2)u12(ε) as
given below

J12(ε) =
[

2∏
α=1

∫
dmα

]
P(m1,m2)u12(ε)δ

(
M −

2∑
α=1

Mα

)

= 1

W (M,V )

∫∫
dm1dm2ω1(m1)ω2(m2)u12(ε)δ

(
M1 −

∑
i∈V1

mi

)
δ

(
M2 −

∑
i∈V2

mi

)
δ

(
M −

2∑
α=1

Mα

)

� 1

W (M,V )

∫∫
dMc

1dMc
2u12W1

(
Mc

1

)
W2

(
Mc

2

)
W1

(
M1 − Mc

1 ,V1 − v
)
W2

(
M2 − Mc

2 ,V2 − v
)
. (12)

In the last step, we inserted an identity
∫

dMc
αδ(Mc

α − ∑
i∈v mi) = 1, where v being denoted here as the contact region in system

α, and then used the factorization property,∫
dmαwα(mα)δ

⎛
⎝Mα −

∑
i∈Vα

mi

⎞
⎠δ

(
Mc

α −
∑
i∈v

mi

)
� Wα

(
Mc

α,v
)
Wα

(
Mα − Mc

α,Vα − v
)
,

as in Eq. (3). As demonstrated later in various models in Sec. III, the above factorization property is expected to be valid when
the size of the contact region is much larger than the spatial correlation length ξα in system α, i.e., when v � (ξα)d in the d

dimension. Then, after some straightforward manipulations, we write U12(M1,ε) = J12(ε)/P (M1,M2) as

U12(M1,ε) =
∫

ε

∫
0
dMc

1dMc
2u12(ε)

2∏
α=1

Wα

(
Mc

α

)
eμαMc

α

Zα

, (13)

by using Eq. (8) and using the following equality:

Wα(Mc
α)

Wα

(
Mα − Mc

α,Vα − v
)

Wα(Mα,Vα)
= Wα(Mc

α)eμαMc
α

Zα

,

where Zα = ∫
dMc

αWα(Mc
α)eμαMc

α . Similarly, the effective reverse exchange rate, corresponding to the transition {Mc
1 − ε,Mc

2 +
ε} → {Mc

1 ,M
c
2}, can be written as

U21(M − M1 + ε,ε) = e(μ2−μ1)ε
∫

ε

∫
0
dMc

1dMc
2u21(ε)

W1
(
Mc

1 − ε
)
eμ1M

c
1

Z1

W2
(
Mc

2 + ε
)
eμ2M

c
2

Z2
. (14)

Now, substituting Eqs. (13) and (14) in Eq. (11) and then by
equating the integrals which is valid for any functional form
of weight factor Wα(m), we get the desired balance condition
as in Eq. (1),

u12

u21
= W1

(
Mc

1 − ε
)

W1(Mc
1 )

W2
(
Mc

2 + ε
)

W2(Mc
2 )

= e−�Fc = e−�F . (15)

In the last step, we used the free energy of the contact region
Fc

α (Mc
α) = − ln Wα(Mc

α) and equate the change in free energy
at the contact �Fc = ∑2

α=1 �Fc
α to the change in total free

energy of the combined system �F . This is so since the total
free energy F = ∑2

α=1(Fc
α + Fb

α ) can be written as a sum
of bulk free energy Fb

α and contact free energy Fc
α where

�Fb
α = 0 (i.e., changes occur only at the contact regions). Note

that the balance condition holds only at the contact regions for
mass transfer from one system to the other. However, there

is no detailed balancing in the bulk, except when both the
systems are in equilibrium.

The balance condition in Eq. (15) is necessary and sufficient
to ensure that the steady state has the required product form
as in Eq. (7). This is because any contact dynamics which
is constrained by the balance condition in Eq. (15) indeed
satisfies the master equation in the steady state as the mass-
current balance condition J12(ε) = J21(ε), used for deriving
the balance condition Eq. (1), is nothing but the balancing of
the configuration-space current occurring due to the exchange
of masses. This completes the proof.

Note that Eq. (15) does not uniquely specify the contact
dynamics (CD); two simple choices which we discuss in this
paper are given below,

CDI : uαα′ = u0p(ε)
Wc

α

(
Mc

α − ε
)

Wc
α

(
Mc

α

) , (16)
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CDII : uαα′ = u0p(ε)Min{1,e−�F }, (17)

where u0 is an arbitrary constant (not necessarily small) and
p(ε) is a probability that mass ε is chosen for exchange.
Note that the limit u0 → 0 implies slow exchange of masses.
The case with u0 = 0 implies no exchange of masses, i.e., the
systems are kept isolated. The resemblance between the rate
in Eq. (17) and the familiar Metropolis rate is indeed striking.
In equilibrium, Eq. (15) reduces to the condition of detailed
balance, albeit on a coarse-grained level. A similar notion
of coarse-grained detailed balance was previously envisaged
in [17], although in the context of zero range processes which
do not have any spatial correlations.

What still remains to be done is to explicitly spec-
ify the exchange rates satisfying Eq. (15). This requires
calculation of the subsystem weight factor Wα(m,v) in a
particular system of interest, which can be done follow-
ing Ref. [24]. Note that the Laplace transform W̃α(s,v) =∫ ∞

0 Wα(Mc
α) exp(−sMc

α)dMc
α of the subsystem weight factor

can be written in terms of the Laplace transform W̃α(s,Vα) =∫ ∞
0 Wα(Mα,Vα) exp(−sMα)dMα of the individual canonical

partition sum Wα(Mα,Vα) as

W̃α(s,v) = [W̃α(s,Vα)]v/Vα , (18)

in the limit Vα � v � ξd
α (in d dimensions). The partition sum

Wα(Mα,Vα) can be calculated, as follows, from a canonical
fluctuation-response relation. The subsystem mass fluctuation,
when calculated in canonical ensemble with u0 = 0, is related
to the change in density ρα in response to the change in
chemical potential μα [as in Eq. (6)] as given below,

dρα

dμα

= ψα(ρα), (19)

where, for subsystem volume v � ξd
α , the function ψα(ρα) =

σ 2
v /v with a variance of subsystem mass σ 2

v = 〈(Mc
α)2〉 −

v2ρ2
α . The variance of subsystem mass in system α can be

calculated from the knowledge of the correlation function
cα(r) as σ 2

v � v
∑r=∞

r=−∞ cα(r) where cα(r) = 〈mimi+r〉 − ρ2
α

is the two-point correlation between masses at sites i and
i + r [24]. We assumed here that the correlation function
cα(r) is short ranged or a sufficiently rapidly decaying
function so that it is integrable, which is usually the case
when there are no long-ranged correlations in the systems.
Therefore, once the functional dependence of ψα(ρα) on
the respective density is known, the partition sum for the
individual system Wα(Mα,Vα) = exp[−Vαfα(ρα)], fα(ρα) be-
ing nonequilibrium free energy density, can be obtained by
first integrating the fluctuation-response relation Eq. (19)
with respect to density ρα and then integrating the chemical
potential as given in Eq. (6). Then the subsystem weight factor
Wα(m) can be obtained, via inverse Laplace transform, from
Eq. (18).

We emphasize here that, even when the detailed micro-
scopic weight ωα(mα) is not known, the subsystem weight
factor Wα(m,v) can still be obtained, either analytically
or numerically, from the subsystem mass fluctuations or
equivalently from the two-point spatial correlation functions;
this makes our formulation work both in theory and in practice.

III. MODELS AND ILLUSTRATIONS

In this section, we illustrate our analytical results in
nonequilibrium models studied extensively in the past as
well as in their variants. For each of these models, we
analytically obtain chemical potential μ(ρα) and the weight
factor Wα(m) when the system is isolated (i.e., u0 = 0), and
then we explicitly construct the mass exchange rates uαα′

so that they satisfy the balance condition Eq. (15). Using
these rates, we perform simulations (we use both the contact
dynamics I and II). Our simulations demonstrate that, when
two systems are kept in contact with unequal initial individual
chemical potentials, they indeed “equilibrate” where the
chemical potentials associated with the respective isolated
systems equalize in the final steady state of the combined
system.

A. Zero range processes

For completeness, we first consider zero range processes
(ZRP) [25] which have a factorized steady state (FSS).
For ZRP, a well-defined thermodynamic structure has been
previously constructed [17]. Consider two systems α = 1,2
where their steady-state weights,

ωα(mα) =
∏
i∈Vα

hα(mi),

are simply a product of factors hα(mi), a function of only
the single-site mass variable. The individual systems exactly
satisfy Eq. (3) with weights of the contact region (volume v)
and the rest of the system (volume Vα − v) being Wc

α = (fα)v

and Wb
α = (fα)Vα−v , respectively. When mass exchange occurs

either with rate CD I [Eq. (16)] or with rate CD II [Eq. (17)], it
is easy to check that the joint distribution, which satisfies the
master equation, is given by

P(m1,m2) ∝
∏
α

∏
i∈Vα

exp[−fα(mi)],

i.e., a product of individual weight factors ωα(mα) with
fα(mi) = − ln hα(mi). Note that, for FSS, Eq. (15) indeed
reduces to detailed balancing at the contact, as found in [17].

B. Finite range processes

Now we consider a general situation—keeping in contact
systems having nonzero spatial correlations. To this end, we
introduce a broad class of analytically tractable models, for
simplicity in one dimension, where a particle (or mass of size
ε) is transferred stochastically from a site to one of its nearest
neighbors with rates depending on the discrete occupation
numbers (or continuous mass variables) of R neighboring sites.
These models are a direct generalization of the zero range
processes [24,26] and are called here finite range processes,
with range R. These finite range mass transport processes have
a clusterwise factorized steady state (CFSS) where each weight
factor depends on the occupation numbers (or mass variables)
mi (i ∈ R) of a cluster of size R. We consider two systems α =
1,2, for simplicity on two one-dimensional periodic lattices of
individual size Lα , where each system having a CFSS of the
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form,

ωα(mα) =
Lα∏
i=1

gα(mi,mi+1, . . . ,mi+R),

where gα a function of R + 1 mass or occupation variables at
consecutive R + 1 sites. Clearly, R = 0 corresponds to the
factorized steady state (FSS) as in ZRP. The CFSS could
arise in a variety of mass transport processes where the mass
chipping rate in the bulk satisfies certain conditions, details of
which will be provided elsewhere [26]. Below, we consider
only the continuous mass CFSS.

Unlike ZRP, the joint distribution of masses is not factorized
on the single-site level as gα(mi,mi+1, . . . ,mi+R) is function
of masses at R + 1 sites and therefore generates finite spatial
correlations. In this paper, mainly due to analytical tractability,
we consider a special form of gα(mi,mi+1, . . . ,mi+R) which
is a homogeneous function,

gα(�mi,�mi+1, . . . ,�mi+R) = �δgα(mi,mi+1, . . . ,mi+R),

(20)

with δ real. For this particular form, the two-point correlation
function cα(r) can be exactly calculated. By rescaling of the
mass variable mk = ραm′

k in the individual isolated system
with density ρα , correlation of masses 〈mimi+r〉 at sites i and
i + r can be written, as 〈mimi+r〉 = Aα(r)ρ2

α where

Aα(r) =
∏

k

[∫ ∞
0 dm′

kg
(k)
α ({m′

k}R
)
]
m′

im
′
i+r δ

(∑
k m′

k − Lα

)
∏

k[
∫ ∞

0 dm′
kg

(k)
α ({m′

k}R
)]δ

(∑
k m′

k − Lα

) ,

(21)

g(k)
α ({m′

k}R
) ≡ ρ−δ

α gα(mk,mk+1 . . . ,mk+R) [24]. The function
Aα(r) depends on relative distance r , but is independent of
density ρα , and can be calculated exactly using a transfer
matrix method [26]. Then, in an individual system α, we
obtain variance in a subsystem of size v as σ 2

v = vρ2
α/ηα

with η−1
α = ∑∞

r=−∞[Aα(r) − 1]. Now the subsystem weight
factor Wα(m) can be exactly calculated, using the method
outlined in the end of Sec. II B, to get a functional form of
Wα(m) = mvηα−1.

In the case of nonzero spatial correlations, by considering
a system in a coarse-grained level, one can have physical
insights into the role of the balance condition Eq. (1). Let
us divide a system α into the να = Vα/v number of almost
statistically independent subsystems of equal volume v with
subsystem masses labeled by Mα ≡ {Mα,j }, provided that
the spatial correlation length ξα is much smaller than v1/d (in
d dimensions). Then the joint probability distribution of the
subsystem masses of systems α are factorized:

P({M1,M2}) ∝
∏
α

∏
j∈Vα

exp[−F (α)({Mα,j })],

where free energy Fα = −∑
j ln Wα(Mα,j ) of system α is

additive over the subsystems. Now let two such systems 1
and 2 be kept in contact such that mass from one specific
subsystem of 1 participates in a microscopic mass-exchange
dynamics with its adjacent subsystem of 2 with rates satisfying
Eq. (15). In a coarse-grained level, as the subsystems could be
considered as sites, the systems effectively become a set of

sites with an “FSS,” where mass exchange occurs between
two adjacent sites (here subsystems) with rates satisfying
the balance condition Eq. (15), and therefore the additivity
property in Eq. (8) holds exactly in the limit of large subsystem
volume v � ξ1,2.

Next, we discuss in detail a special case of the clusterwise
factorized steady state with R = 1.

C. Pair factorized steady state

To demonstrate that our results are valid even in the
presence of nonzero spatial correlations, we first consider two
one-dimensional periodic lattices of Lα sites with continuous
mass variable mi � 0 at sites i = 1,2, . . . ,Lα. The following
mass conserving dynamics in the bulk leads to a CFSS with
R = 1, usually called pair factorized steady state (PFSS) [27],
where mass ε chosen from a distribution pb(ε) is chipped off
from a site i and transferred to its right neighbor with the rate,

ub
α(ε) = pb(ε)

gα(mi−1,mi − ε)

gα(mi−1,mi)

gα(mi − ε,mi+1)

gα(mi,mi+1)
, (22)

which depends on the masses at the departure site and its
nearest neighbors, and on the chipped-off mass ε. Since, in this
case, mass transfer happens in only one direction in the bulk,
there are nonzero bulk currents present in the individual sys-
tems. We consider homogeneous gα(x,y) = �−δgα(�x,�y),
for which one can exactly calculate ψα(ρα) = ρ2

α/ηα and
values of ηα for various microscopic parameters [26]. Then
following the method outlined in Sec. II B, we analytically
obtain Wα(m) = mvηα−1 and chemical potential μα = −ηα/ρα

where ηα depends on δ. When two such systems are kept
in contact, mass conservation in the individual system is
broken and both density ρα(t) and corresponding chemical
potential μα(t) evolve until a stationarity is reached where
the net mass current from one system to another vanishes and
densities are adjusted so that chemical potentials equalize.
We simulate using gα(x,y) = (xδ + yδ + cxγ yδ−γ ) and allow
the two PFSS with η1 = 2 (δ = 1, c = 0) and η2 = 3 (δ = 2,
c = 1, γ = 3/2) to exchange mass following CD I (and CD
II in different simulations) with u0 = 0.1, p(ε) = pb(ε) =
exp(−ε), and L1 = L2 = 1000. The contact volume v = 10
is taken much larger than ξα which is here only about a
couple of lattice spacings. Simulations in Figs. 2(a) and 2(b)
demonstrate that, starting from arbitrary initial densities, the
combined system reaches a stationary state where μ1 = μ2.

The equalization of an ITV, i.e., the above mentioned
chemical potential, indeed implies zeroth law which we verify
next for three steady states having a PFSS: PFSS1 (δ = 1,
c = 0; η1 = 2), PFSS2 (δ = 3, c = 0; η2 = 4), and PFSS3
(δ = 2, c = 1.0, γ = 3/2; η3 = 3) with CD I. First, PFSS1
with density ρ1 � 3.60 and PFSS2 with density ρ2 � 7.25
are separately equilibrated with a third system PFSS3 with
density ρ3 � 5.37. Then, PFSS1 with density ρ1 and PFSS2
with density ρ2 are brought into contact. The two result-
ing densities after equilibration remain almost unchanged,
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FIG. 2. (Color online) “Equilibration” of steady states in contact. In (a)–(e), chemical potentials μ1(t) and μ2(t) of systems 1 (red solid
lines) and 2 (blue dotted lines) vs rescaled time u0t . μ1 and μ2, initially chosen to be different, eventually equalize. Densities (ρ1, ρ2) in the
final steady states are, respectively, (3.60, 5.40) in (a), (3.57, 5.43) in (b), (5.31, 2.69) in (c), (5.32,2.68) in (d), and (3.32, 6.68) in (e). In all
cases, p(ε) = pb(ε) = exp(−ε), u0 = 0.1, and v = 10 [except in (c) and (d) where v = 1].

confirming zeroth law. The zeroth law can be similarly verified
for CD II.

D. Mass exchange models

There are numerous examples [28–32], where nonequi-
librium processes with a conserved mass show short-ranged
spatial correlations, but the exact steady-state structures are not
known. How does one find a contact dynamics which ensures
Eq. (8) in these cases? We address the question in a class
of widely studied nonequilibrium mass transport processes
[33–36], as another demonstration of how our formulation
can be implemented in practice. In these models, we call
them mass exchange models (MEM), in one dimension the
continuous masses mi � 0 and mi+1 � 0 at randomly chosen
nearest neighbors i and i + 1, respectively, are updated from
time t to t + dt as

mi(t + dt) = λαmi(t) + r(1 − λα)msum(t),

mi+1(t + dt) = λαmi+1(t) + (1 − r)(1 − λα)msum(t),

where msum = mi + mi+1 is the sum of nearest neighbor
masses, r is a random number uniformly distributed in
[0,1], and 0 < λα < 1 a model-dependent parameter. As the
spatial correlations are nonzero but very small, the subsystem
weight factor in the steady states of individual systems can
be obtained, to a very good approximation, as Wα(m) =
mvηα−1 with ηα = (1 + 2λα)/(1 − λα) [24]. In Figs. 2(c)
and 2(d), we observe equalization of chemical potentials
μ1(t) = −η1/ρ1(t) and μ2(t) = −η2/ρ2(t) (respective ITV in
this case) of systems 1 and 2, respectively, for both contact
dynamics I and II and for u0 = 0.1, v = 1, L1 = L2 = 100,
and p(ε) = pb(ε) = exp(−ε). The zeroth law can be readily
verified for MEM as done in the case of PFSS.

There is no particular difficulty when systems having a
different kind of bulk dynamics are in contact; equilibration
occurs as long as there is a common conserved quantity which
is exchanged following Eq. (15). We demonstrate this in
Fig. 2(e), taking two systems, PFSS and MEM, in contact
where mass exchange dynamics at the contact is governed
by CD I. In this case, chemical potentials μ1(t) and μ2(t)
eventually equalize and zeroth law follows.

IV. EQUIVALENCE OF ENSEMBLES

In the previous section, we have demonstrated that, when
two nonequilibrium systems with short-ranged correlation
are allowed to exchange a conserved quantity following
a contact dynamics conditioned by Eq. (1), they indeed
evolve to a stationary state where an intensive thermodynamic
variable (ITV), which is inherently associated with the re-
spective isolated system, equalizes. In this thermodynamic
construction, zeroth law is obeyed and, at the same time,
equivalence of ensembles is also maintained. However, note
that mere equalization of an intensive thermodynamic variable,
or validity of zeroth law, does not guarantee the balance
condition Eq. (1) and is not enough to construct a consistent
nonequilibrium thermodynamics. This is because the ITV
which equalizes for systems in grandcanonical ensemble is not
necessarily the ITV defined [using additivity property Eq. (4)]
for individual isolated systems in canonical ensemble. To
construct a well-defined thermodynamic structure, one must
ensure that these two ITVs are indeed the same. That is, one
requires that the combined system (grandcanonical ensemble)
is statistically equivalent to the individual isolated systems
(canonical ensemble).

The requirement of ensemble equivalence, which essen-
tially demands that the contact dynamics must not alter the
fluctuation properties in the individual systems, is nothing
special in the nonequilibrium scenario; it has been an essential
ingredient in constructing equilibrium thermodynamics. The
proposed balance condition Eq. (1) precisely ensures these two
aspects—in one hand, it ensures equalization of an intensive
thermodynamic variable and, on the other hand, it guarantees
ensemble equivalence.

Note that, unlike in equilibrium, when two nonequilibrium
systems are brought into contact, the final steady state of the
combined system depends, in general, on the absolute values
of mass exchange rates, even if the ratio between forward
and reverse exchange rates remains unchanged. In these cases,
too, in the limit of slow mass exchange (u0 → 0) and weak
interaction, there could exist an ITV which equalizes upon
contact. However, in spite of the equalization of an ITV, as
we illustrate in the following subsections, the mass exchange
rates which do not satisfy the balance condition Eq. (1) lead
to the breakdown of ensemble equivalence. That is, mass
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fluctuation in the isolated systems can be different from that
in the combined system and, in that case, an equilibriumlike
thermodynamic structure cannot be formulated.

In the examples given below, we consider weakly interact-
ing lattice gases (driven and nondriven both) which exchange
masses infinitesimally slowly, i.e., u0 → 0. The limit of slow
exchange is useful in exactly calculating the mass fluctuations
as the inhomogeneities which could occur in the contact
regions of the individual systems is avoided and the weak
interaction limit is also achieved.

A. Lattice gases

We start with d-dimensional lattice gases with interacting
particles, obeying hardcore exclusion (at most one particle at
a site). We consider periodic boundaries, though the following
analysis can be straightforwardly extended to other boundary
conditions (e.g., reflecting boundary, discussed in the case of
nearest-neighbor-exclusion lattice gases in Sec. IV B). Internal
dynamics: Particles hop, from one site to its nearest neighbor,
inside the individual systems according to some specified rates,
e.g., rates satisfying local detailed balance [37] with respect
to the Boltzmann distribution ∼ exp(−βE) where β inverse
temperature, Eα energy function of system α, and E = E1 +
E2 total energy. Mass exchange or contact dynamics: The rate
with which a particle at the contact region (which could be
localized, even a point or single-site contact or global contact)
jumps from system α to α′, provided the contact site in α is
occupied and the contact site in α′ is unoccupied, is simply
a constant u0pα . There is no additional constraint on these
rates except that u0 → 0 so that particle exchange occurs very
slowly.

Since the transition rates overall do not satisfy detailed
balance, the probability of a microscopic configuration of the
combined system is not given by the Boltzmann distribution
∼exp(−βE). Note that the particle hopping rates inside the
individual systems remain the same irrespective of two systems
being in contact or not, which is necessary in realizing the
weak interaction limit (which, for a finite u0, is, however, not
sufficient).

The joint probability distribution P (M1,M2) of particle
numbers M1 and M2 of individual systems, i.e., the large devi-
ation function governing mass or particle-number fluctuations,
can be exactly calculated using the general recursion relation
Eq. (9), with setting ε = 1 (i.e., one- particle transfer at a time),
as

P (M1,M2) = P (0,M)
∏
M1

U21(M2 + 1,1)

U12(M1,1)
δ

(
M −

2∑
α=1

Mα

)

= P (0,M)
[
e
∑M1

M1=0(ln U21−ln U12)
]
δ

(
M −

2∑
α=1

Mα

)
.

(23)

Now writing the effective mass exchange rates U12 =
u0p1ρ1(1 − ρ2) and U21 = u0p2ρ2(1 − ρ1) and integrating
over densities, the joint mass distribution can be exactly written
in the form as given below,

P (M1,M2) ∝ e−[V1f1+V2f2]δ(M − V1ρ1 − V2ρ2), (24)

where free energy densities f1 = ∫ ρ1

0 μ1dρ1 and f2 =∫ ρ2

M/V1
μ2dρ2 with chemical potential given by

μα(ρα) = ln pα + ln
ρα

1 − ρα

. (25)

It is somewhat surprising that the joint mass distribution, as
in Eq. (23) or (24), is actually independent of the internal
dynamics in each system. Moreover, the above free energy and
chemical potential are nothing but those of a noninteracting
hardcore lattice gas. The macrostate, or the maximum probable
state, of the combined system with final steady-state densities
in the individual systems can be obtained by minimizing the
total free energy F = V1f1 + V2f2, with the constraint V1ρ1 +
V2ρ2 = constant. In other words, there exists an intensive
thermodynamic variable, we call chemical potential, which
indeed equalizes upon contact, i.e., μ1(ρ1) = μ2(ρ2). The
equalization of the chemical potential essentially signifies
the steady-state current balance between two systems across
the contact as encoded in Eq. (9) and moreover this immedi-
ately leads to zeroth law under this particular contact dynamics.

However, in the above construction, clearly there is break-
down of equivalence between canonical and grandcanonical
ensembles and, therefore thermodynamically, the construction
is not well defined. Note that, in this case, the free energy
and chemical potential are not the same as those defined in
canonical ensemble [see Eq. (4)] when u0 = 0. In fact, in the
canonical ensemble, subsystem particle-number fluctuation
in individual systems can have nontrivial properties due
to the presence of interparticle interactions. But, with the
above contact dynamics, the particle-number fluctuation in the
grandcanonical ensemble is governed by a chemical potential
of a noninteracting hardcore lattice gas [see Eq. (25)], which
is so in spite of the presence of interparticle interaction
in the individual systems. The origin of the discrepancy in
fluctuations in the two cases with u0 = 0 and u0 → 0 lies in
the fact that mass exchange rates do not satisfy the balance
condition Eq. (1), which drastically changes the fluctuation
properties of the systems in grandcanonical ensembles. That
is, unless the balance condition Eq. (1) is satisfied by the mass
exchange rates, the cases with u0 = 0 and u0 → 0 are always
different.

For example, inequivalence of ensembles arises in the
previous studies [10,18,22] where two driven lattice gases
are allowed to exchange particles with some exchange rates,
which were chosen on an ad hoc basis. To be specific, let
us consider the systems studied in [22], where two lattice
gases—a nondriven lattice gas 1 and a driven lattice gas
2 (Katz-Lebowitz-Spohn model [37]), are kept in contact.
Particle hopping rates in the bulk as well as the particle
exchange rates across the contact both satisfy a local detailed
balance [37]. In the limit of slow mass exchange, the ratio of the
effective transition rates was found, to a good approximation,
to be [22]

U12

U21
= eμ1(ρ1)

eμ2(ρ2)
,

where μ1(ρ1) and μ2(ρ2) are functions of respective density.
By substituting this ratio in Eq. (23) and then integrating over
densities, one readily obtains the joint distribution P (M1,M2)
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of particle numbers M1 and M2, which has exactly the same
form as given in Eq. (24). Then, minimizing total free energy
function, one can identify μ1(ρ1) and μ2(ρ2) as chemical
potentials which equalize in the final steady state after the
systems are brought into contact; the equalization of this
chemical potential was indeed verified through simulations
in [22]. However, the microscopic exchange rates uαα′ have
not been derived from the canonical fluctuation-response
relation Eq. (19) and therefore are not constrained by the
balance condition Eq. (1). Consequently, as in the previous
example, these exchange rates lead to the breakdown of
ensemble equivalence. That is, free energy function and
chemical potential for systems in the grandcanonical ensemble
are not the same as those for isolated systems in the canonical
ensemble.

B. Lattice gases with nearest neighbor exclusion

Next we consider previously studied athermal hardcore lat-
tice gases, in two dimensions, with nearest neighbor exclusion
(NNE) [12,21]. We study the simplest case where particles
can be exchanged through a single-site or pointwise contact
(v = 1) in each system, which can be readily generalized
to other cases, e.g, when particles are exchanged globally
(v = V ) or in higher dimensions. The transition rates for
particles hopping inside the individual systems (irrespective
of that they are isolated or in contact with each other) can be
chosen to be some specific nearest neighbor or next-nearest
neighbor (or mixture of both) hopping rates in the presence of
a driving field D; details of these rates, which can be found
in [12,21], are omitted here as they are not explicitly required
in the following analysis as long as the systems exchange
particles very slowly.

Let us keep two such lattice gases, systems α = 1 and 2, in
contact with each other [12,21] where particles are exchanged
as follows. A site is called open if the site as well as all its
nearest neighbours are unoccupied. Provided the contact site,
say in system 1, is occupied and the contact site in system 2
is open, the particle from system 1 is transferred to system 2
with rate u0 → 0. The joint distribution P (M1,M2) of masses
M1 and M2 in the individual systems can be straightforwardly
calculated by substituting Uαα′ (Mα,ε) = ρc

αρ
c,op
α′ (with ε = 1)

in Eq. (23) where ρc
α and ρ

c,op
α′ are probabilities that the contact

site is occupied in system α and open in system α′, respectively.
Note that the probabilities ρc

α(xc,ρα) and ρ
c,op
α (xc,ρα) are, in

principle, functions of the location xc of the contact site as
well as of the global density ρα in system α.

Then the joint distribution has the same form as given in
Eq. (24) where free energy densities can be written as f1(ρ1) =∫ ρ1

0 μ1dρ1 and f2(ρ2) = ∫ ρ2

M/V1
μ2dρ2 with chemical potentials

given by

μα(ρα) = ln

(
ρc

α

ρ
c,op
α

)
. (26)

The macrostate is obtained by minimizing total free energy
function F = V1f1(ρ1) + V2f2(ρ2) with the constraint V1ρ1 +
V2ρ2 = constant, leading to the existence of an intensive
thermodynamic variable, i.e., chemical potential, which in-
deed equalizes upon contact, μ1(ρ1) = μ2(ρ2). However, the
functional form of the chemical potentials do depend on the

boundary conditions. Because a particular boundary condition
can make the density profile nonuniform and, consequently,
the quantities ρc

α(xc,ρα) and ρ
c,op
α (xc,ρα) not only depend on

density ρα but also on the location xc of the contact site.
For example, in the case of periodic boundary condition

and uniform bulk hopping rates where the system remains
homogeneous, chemical potential is given by

μα = ln

(
ρα

ρ
op
α

)
, (27)

where the density ρc
α(xc,ρα) = ρα at the contact site xc and the

probability ρ
c,op
α (xc,ρα) = ρ

c,op
α (ρα) of the contact site being

open depends only on the bulk density ρα , i.e., both ρc
α and

ρ
c,op
α do not depend on the location xc of the contact. This is

exactly the chemical potential which was found in [12], using
the concept of virtual exchange, for the pointwise (single-site
contact with v = 1) as well as for global exchanges (v = Vα =
Vα′ ).

On the other hand, for the hard-wall or reflecting boundary
condition (e.g., periodic boundary in the x direction and two
hard walls placed along x = 1 and x = L), the density profile
becomes nonuniform and the chemical potential then depends
on where the contact site is located. For example, if the contact
site is located in the bulk, the chemical potential has to be
calculated with respect to the density and probability of the
open site in the bulk. That is, even in these cases of nonuniform
systems, the existence of the above mentioned chemical
potential would then apparently restore an equilibriumlike
thermodynamic structure, as formulated in [12,21] where an
ITV equalizes upon contact and zeroth law is obeyed.

In short, in all the above cases of weakly interacting NNE
lattice gases with uniform or nonuniform density profiles, there
indeed exists, in the limit of slow exchange, an ITV which
equalizes upon contact and zeroth law is also obeyed. However,
in each of these cases, depending on the boundary conditions
and the location of the contact site, the functional form of
free energy and chemical potential of the individual systems
in the grandcanonical ensembles are different. Of course, they
are not the same as those defined for the individual isolated
systems in the canonical ensemble.

V. SUMMARY AND DISCUSSION

In this paper, we demonstrate that weakly interacting
nonequilibrium systems, with short-ranged spatial correla-
tions and having a common conserved quantity, e.g., mass
which is exchanged upon contact between two systems, have
an equilibriumlike thermodynamic structure in steady state,
provided the rates of mass exchange between two systems
satisfy a balance condition as given in Eq. (1). The size of
the contact regions, otherwise arbitrary, should be much larger
than correlation lengths, therefore making the contact regions
effectively independent of the rest of the systems. The balance
condition, reminiscent of equilibrium detailed balance on a
coarse-grained level, leads to zeroth law of thermodynamics
and fluctuation—response relations analogous to the equilib-
rium fluctuation—dissipation theorems. In other words, for
mass exchange rates satisfying the balance condition, one can
construct equivalence classes consisting of systems having
a nonequilibrium steady state. The systems in each class
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are specified by the value of an intensive thermodynamic
variable, inherently associated with the respective isolated
systems, which does not change when any two systems
in the class are allowed to exchange mass according to
Eq. (1).

Following are the two most important aspects in the present
study. First, we constructed a well-defined thermodynamic
structure, encompassing all (driven or nondriven) steady-
state systems having nonzero, though short-ranged, spatial
correlations. Second, we have identified the notion of weak
interaction in constructing such a thermodynamic structure.
Note the distinction between the limit of weak interaction and
the limit of mere slow mass exchange; the former essentially
implies vanishing of spatial correlations between two systems
while in contact (ensuring that there is no inhomogeneities
at the contact regions) and, moreover, leads to the additivity
property as formulated in Eq. (8), provided that the balance
condition Eq. (1) is satisfied.

In equilibrium, weak interaction directly translates into
vanishingly small interaction energy between two systems in
contact, i.e., the sum of the internal energies of the individual
systems equals to total internal energy of the combined system.
However, in nonequilibrium, the microscopic weights are
not determined by energy function and therefore even zero
interaction energy could lead to nonzero spatial correlations
between two systems while in contact, e.g., when mass
exchange rates are finite or nonuniform. In principle, the
weak-interaction limit can be achieved by keeping the bulk
transition rates (i.e., the internal dynamics in the individual
systems) unchanged, irrespective of whether the systems are in
contact with each other or they are isolated. Weak interaction,
which usually requires slow exchange of masses, is possible
even when mass exchange rates are finite, e.g., when the
balance condition Eq. (1) holds.

This thermodynamic construction, which is based on
additivity property, may not be valid for the systems having
a slow decaying long-ranged spatial correlation, e.g., two-
point correlation function decaying as 1/rd (or slower) in
d dimensions, which has been observed in a large class of
driven systems [38,39]. In that case, the correlation function
is not integrable and therefore the additivity property in
Eq. (3) presumably breaks down, implying that the fluctuation-
response relation in Eq. (19) may not exist. Nevertheless, as
we demonstrated in this paper, the results will be applicable to
a still wide class of driven systems which have short-ranged
correlations. Moreover, even in the presence of long-ranged
correlations when the strength of the correlations is weak,
the additivity property, to a good approximation, could hold.
This possibly explains why driven lattice gases, such as KLS
models studied in Refs. [9,10,12,18], admit an approximate
free energy and chemical potential, thus providing a quite

good description of various steady-state properties, including
description of phase transitions [22], albeit only in the limit of
weak interaction.

It is important to note that slow exchange of masses does
not necessarily imply weak interaction. For example, the
nonuniformly driven athermal lattice gas studied in [21] is
one where the system is not actually weakly interacting, even
when mass exchange rates are vanishingly small or slow. In
a realistic scenario, finite interaction may be present between
two systems while in contact. As an open issue, it remains to
be seen whether, in the case of finite interaction, there exists an
intensive thermodynamic variable which would equalize upon
contact. Also, it would be interesting to explore the validity
of the additivity property in systems having boundary layers
or hard walls, as their presence could alter the fluctuations in
the bulk of a system which is otherwise isolated. A related
important open question [10] is whether the thermodynamic
structure based on additivity could be used to connect various
physical observables, such as mechanical pressure on a
wall [40,41] or statistical forces on a probe [42], to an intensive
thermodynamic variable such as chemical potential. Although
addressing the issue in full generality remains a formidable
challenge, it would be worthwhile to identify a particular
class of driven systems, if any, where the connection between
mechanics and nonequilibrium thermodynamics could be
established on firmer ground.

We end the discussion with a concluding remark. The
problem of constructing a well-defined thermodynamic struc-
ture in nonequilibrium, even when spatial correlations are
short ranged, is more subtle than that in equilibrium as, in
nonequilibrium, zeroth law alone cannot ensure an equivalence
class. Even when zeroth law holds, nonequilibrium ensembles
(canonical and grandcanonical) may not be equivalent as
the fluctuation properties of systems in the grandcanonical
ensemble depend on the details of contact dynamics as
well as the boundary conditions, which gives insights into
the conceptual difficulties in constructing a nonequilibrium
thermodynamics, e.g., as attempted in [10,12,18,19,21]. In
this scenario, our study provides a general prescription for
dynamically generating different equivalent nonequilibrium
ensembles and could thus help in formulating a well-defined
nonequilibrium thermodynamics for driven systems in general.
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