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Efficiency at maximum power of a quantum heat engine based on two coupled oscillators
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We propose and theoretically investigate a system of two coupled harmonic oscillators as a heat engine. We
show how these two coupled oscillators within undamped regime can be controlled to realize an Otto cycle
that consists of two adiabatic and two isochoric processes. During the two isochores the harmonic system is
embedded in two heat reservoirs at constant temperatures Th and Tc(< Th), respectively, and it is tuned slowly
along a protocol to realize an adiabatic process. To illustrate the performance in finite time of the quantum heat
engine, we adopt the semigroup approach to model the thermal relaxation dynamics along the two isochoric
processes, and we find the upper bound of efficiency at maximum power (EMP) η∗ to be a function of the Carnot
efficiency ηC(=1 − Tc/Th): η∗ � η+ ≡ η2

C/[ηC − (1 − ηC) ln(1 − ηC)], identical to those previously derived
from ideal (noninteracting) microscopic, mesoscopic, and macroscopic systems.
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I. INTRODUCTION

The optimization on the performance of heat engines
that proceed in finite time is always carried out within
the context of finite-time thermodynamics [1–24], which
began with the so-called endoreversible model proposed
by Curzon and Ahlborn [1]. Based on a Carnot-like cycle
operating between a hot and a cold reservoir at constant
temperatures Th and Tc(<Th), Curzon and Ahlborn (CA)
found the efficiency at maximum power (EMP) to be of
the form ηCA = 1 − √

Tc/Th = 1 − √
1 − ηC , where ηC =

1 − Tc/Th is Carnot efficiency. The issue of the EMP has
triggered intensive studies ranging from classical to quantum
regime, with special emphasis on the bounds and possible
universality of the EMP [10,20,22,25–36]. It is found that,
at small relative temperature differences, the EMP η∗ can be
universally expressed in terms of the Carnot efficiency ηC ,
η∗ = ηC/2 + η2

C/8 + O(η3
C). This universality [20,27,30,32–

36] holds well both for ideal and interacting systems which
are ranging from microscopic to macroscopic scale, and it
is also independent of sources of irreversibility: heat transfer
between a finite temperature difference and internal dissipation
(e.g., decoherence and relaxation [11,20]). In a recent article,
Wu et al. [27] proposed a quantum Otto engine, in which
an ideal spin or harmonic system (obeying Fermi-Dirac or
Bose-Einstein statistics) as the working substance couples to
two heat reservoirs at constant temperatures Tc and Th, and
found the upper bound of EMP, η+, to be

η∗ � η+ ≡ η2
C

[ηC − (1 − ηC) ln(1 − ηC)]

= ηC

2
+ η2

C

8
+ 7η3

C

96
+ O

(
η4

C

)
, (1)

which can be excellently approximated by ηCA = ηC

2 + η2
C

8 +
6η3

C

96 + O(η4
C). This result, also found in microscopic [20],

mesoscopic [35], and macroscopic [32] systems, is particularly
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interesting, since it is independent of properties of these
systems (In contrast, the performance characteristics of the
classical Otto cycle depends sensitively on the working
substance.) Of greater physical relevance are interacting
systems instead of ideal systems, and some interacting systems
have gained much attention in the topic of performance in
finite time of quantum heat engines [19,21,23]. One generic
model for investigating various interacting physical systems,
including quantum dots [37], trapped atoms [38], and cavity
optomechanics [39,40], is a system of coupled harmonic
oscillators, which has also an attractive feature of being
currently available technology realizing [41,42].

In this paper, we propose a quantum heat engine, in which a
system of two coupled harmonic oscillators absorbs (releases)
heat from (to) its environment while in contact with two
reservoirs at different temperatures. We show how to realize
an ideal adiabatic process, with the system being isolated from
a heat reservoir, and an isochoric process, where the harmonic
oscillators exchange heat with a heat bath. From a semigroup
approach [43] we analyze the performance in finite time of the
Otto cycle, obtaining the explicit expressions for power output
and efficiency. We find that, as in the ideal quantum systems
without inclusion of interaction, the EMP for our engine model
is also bounded from above by η+ in Eq. (1).

II. A MODEL OF QUANTUM OTTO ENGINE CYCLE

The system of two coupled harmonic oscillators, with
frequencies ωa and ωb and with masses ma and mb, is sketched
in Fig. 1. When these two oscillators are undamped, the system
Hamiltonian is the sum of free and interacting parts [44],

H = p2
a

2ma

+ p2
b

2mb

+ 1

2
maω

2
ax

2
a

+ 1

2
mbω

2
bx

2
b + λxaxb

√
maωambωb, (2)

where we have introduced the parameter λ to describe the cou-
pling strength between the two harmonic oscillators a and b. It
follows, using the standard transformation: ĉa = (maωax̂a +
ip̂a)/

√
2ma�ωa , ĉb = (mbωbx̂b + ip̂b)/

√
2mb�ωb, that the
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FIG. 1. (Color online) Sketch of the two coupled harmonic
oscillators.

Hamiltonian of the system is given by Ĥ = �ωa(ĉ†aĉa + 1
2 ) +

�ωb(ĉ†bĉb + 1
2 ) + 2�λ(ĉa + ĉ

†
a)(ĉb + ĉ

†
b), where ĉa(ĉ†a) and

ĉb(ĉ†b) are the annihilation (creation) operators in terms of bare
modes. Here the first term describes two linearly harmonic
oscillators, and the second one denotes the coupling of
one oscillator to the other. For the reminder of the paper,
we will set � = 1 for simplicity. Using the normal-mode
amplitudes, which are related to the individual coordinates via
transformation xA = (xa + xb)/

√
2 and xB = (xa − xb)/

√
2,

the Hamiltonian can be expressed in the diagonal form:

Ĥ = ωA

(
Â†Â + 1

2

) + ωB

(
B̂†B + 1

2

)
, (3)

where the new operators Â and B̂ are the boson annihilation
operators for the normal-mode excitations of the system, with
frequencies

ωA = 1√
2

√
ω2

a + ω2
b −

√(
ω2

a − ω2
b

)2 + 4λ2ωaωb, (4)

ωB = 1√
2

√
ω2

a + ω2
b +

√(
ω2

a − ω2
b

)2 + 4λ2ωaωb. (5)

Analogous to the dressed atom picture [45], these two
eigenfrequencies ωA and ωB are associated with dressed states
for the two coupled harmonic oscillators with frequencies ωa

and ωb.

A. Adiabatic transition for the coupled harmonic system

Let us assume for simplicity that the parameters of the
system composed of two-coupled harmonic oscillators can be
fine tuned in order for the relation ωb = rωωa with ωa = const
to be satisfied. We plot in Fig. 2 the two eigenvalues ωA

and ωB , as a function of the ratio ωb/ωa for fixed coupling
strength λ = 0.3ωa (solid lines), comparing the frequencies
of bare modes ωa and ωb (dashed lines). When coupling
is nonvanishing, the two curves corresponding to the two
eigenfrequencies no longer intersect. As shown in Fig. 2, there
is a characteristic anticrossing region that can be described by a
frequency splitting of δ = ωB − ωA. At this avoided crossing,

the two eigenfrequencies become ωA,B = ωa

√
1 ± λ

ωa
. In the

weak coupling limit, the frequency splitting δ is proportional

FIG. 2. (Color online) Eigenvalues of the coupled harmonic sys-
tem, as a function of the ratio of the bare modes ωb/ωa for coupling
strength λ = 0.3ωa (solid lines) and λ = 0 (dashed lines). The
frequency splitting δ = ωB − ωA is proportional to the dimensionless
coupling strength g = λ/ωa .

to the dimensionless coupling strength g: δ ∝ g, where we
define g ≡ λ/ωa .

If we initially have ωb � ωa , we can fine tune slowly the
coupled system such that it oscillates at lower eigenfrequency
ωA in Fig. 2 until ωb � ωa , indicating the possibility of
transferring the energy from one oscillator to the other. The
same procedure proceeds if the system initially starts out in
the upper eigenfrequency ωB . That is, when adiabatically
tune the system through the coupling region at a very low
speed, the system will oscillate at the same eigenfrequency ωα

(α = A,B), and its energy will thus remain in the branch in
which it was initiated. This scenario that we describe here, to
which our analysis will be restricted, is referred to an adiabatic
transition [41,46].

B. Dynamics during the interaction interval
of the system with a heat bath

If a system is in contact with external fields or heat
baths, quantum dynamics is generated and can be used to
describe the properties of the system evolution. To find the
equation of motion that describes the evolution of a physical
quantity along the thermal branch, we resort to the semigroup
approach [15,16,43] in which Markovity [15,16] will be
imposed on the evolution. Following this approach, an operator
Ô (associated with an observable) in the Heisenberg picture is
described by the quantum master equation [15,16,18,27]:

dÔ

dt
= i[Ĥ ,Ô] + ∂Ô

∂t
+ LD(Ô), (6)

whereLD(Ô) = ∑
υ kυ(V̂ †

υ [Ô,V̂υ] + [V̂ †
υ ,Ôυ]V̂υ) denotes the

Liouville dissipative generator, and Ĥ is the system Hamil-
tonian operator. Here V̂ †

υ and V̂υ , Hermitian conjugates, are
operators in the Hilbert space for the system, and kυ are phe-
nomenological positive coefficients. A quantum version of the
first law of thermodynamics can be recovered from substitution
of Ô ≡ Ĥ into Eq. (6): dE

dt
= d̄W

dt
+ d̄Q

dt
= 〈 ∂Ĥ

∂t
〉 + 〈LD(Ĥ )〉,
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with identifying P = d̄W
dt

= 〈 ∂Ĥ
∂t

〉 and d̄Q

dt
= 〈LD(Ĥ )〉 as

power and heat flux, respectively.
For a system consisting of a harmonic oscillator, the

operators V̂ † and V̂ in Eq. (6) can be chosen as the Bosonic
creation operator α̂† and annihilation operator α̂ with α =
A,B. Under the assumption [16] that transitions occur only
between adjacent energy levels, we find that the dissipa-
tion LD(Ô) can be expressed as LD(Ô) = k↑(α̂[Ô,α̂†] +
[α̂,Ô]α̂†) + k↓(α̂†[Ô,α̂] + [α̂†,Ô]α̂), where k↑ and k↓ denote
the transition rates from the upper to the lower level (for the
two adjacent levels) and vice versa. As a result, the motion of
the system Hamiltonian becomes

d〈Ĥ 〉
dt

= −γ (〈Ĥ 〉 − 〈Ĥ 〉eq), (7)

where we define γ = k↓ − k↑. We assume that the transition
rates obey the detailed balance [47]: ñk↓ = (ñ + 1)k↑, with
ñ = 1/(eβω(t) − 1) being the population. From a physical
point of view, when a harmonic system couples to a heat
reservoir, a single oscillator will jump for one energy state to
a lower (upper) one, emitting (absorbing) a photon during the
interaction interval. The heat is then exchanged between the
system and the reservoir because of the emission and absorp-
tion of thermal photons. The relation of the detailed balance,
associated with the dynamical information, gives the way the
system couples to the heat reservoir, and it must be satisfied
such that the system evolves in a specific protocol to achieve
thermal equilibrium [27]. Here 〈H 〉eq as the asymptotic value
of 〈H 〉 can be expressed as a function of transition rates k↑
and k↓, 〈H 〉eq = ωneq = ω( k↑

k↓−k↑
+ 1

2 ), and it can be achieved

at thermal equilibrium with n = (ñ + 1/2) = 1
2 coth(βω/2),

where β = 1/(kBT ) with the Boltzmann constant kB and
temperature T . In the following we refer to n as the mean
population for convenience.

C. Power and efficiency for the quantum Otto cycle

When nonadiabatic transitions between the upper and lower
eigenfrequency branches (cf. Fig. 2) are avoided, each band
as a protocol can be associated with a different quantum Otto
cycle. This Otto cycle along the branch α, with α = A and B,
is sketched in the plane of the eigenfrequency ωα and thermal
mean population nα = 〈α†α〉, as shown in Fig. 3. In addition
to proceeding two adiabatic processes, the harmonic system
undergoes two isochoric processes, with constant frequencies
ωα,h and ωα,c (<ωα,h), where the system is coupled to a hot and
a cold heat reservoir whose inverse temperatures are βh and
βc (>βh), respectively. Switching to a quantitative analysis,
the four consecutive steps of the cycle have to be described in
detail from a dynamical view.

(1) Adiabatic compression. This process in which the
system is isolated from a heat reservoir is realized by
modulating the frequencies, such that the eigenfrequencies
from the initial value ωα,c to its final value ωα,h over a time
τch. Here and hereafter we use qα,i , with i = 1, . . . ,4, and
α = A,B, to denote the values of physical quantity q at the
special nodes i of the cycle α. As we discussed in detail in
Sec. II A, slowly tuning the coupled harmonic system leads to

τhτc

1

4

2

3

FIG. 3. (Color online) Schematic diagram of a quantum Otto
cycle along α branch in the (ωα,nα) plane, with α = A,B. The nodes
of the cycle i (with i = 1,2,3,4) connecting two adiabats 1 → 2
and 3 → 4 and two isochores 2 → 3 and 4 → 1 are indicated by
circles. neqh

α and neqc
α are thermal mean populations of the system

approaching thermal equilibrium with the hot and cold reservoirs at
inverse temperatures βh and βc, respectively.

adiabatical evolution while decoupling from the heat baths.
We use Wα,ch to represent the total work input along the
compression.

(2) Hot isochore. At this point system is predominantly
coupled to the hot reserver at temperature βh, and it is allowed
to thermalize over a time τh, with constant frequency ωα =
ωα,h. We note from Eqs. (4) and (5) that, for the system with
fixed coupling strength λ, such an isochoric process can be
realized by keeping the frequencies of bare modes (ωa and ωb)
constant. Assuming that the irreversible entropy production is
caused exclusively by the temperature differences between the
system and the heat reservoir [11,20], we find from Eq. (7)
that the instantaneous heat flow is given by

d̄Qα,h

dt
= ωα,h

dnα(t)

dt
= γα,h

[
neqh

α − nα(t)
]
ωα,h, (8)

where γα,h denotes the heat conductivity between the system
and the hot reservoir, and n

eqh
α , the mean population at thermal

equilibrium with the hot bath, can be achieved when and
only when the duration time is infinitely long. We note the
relation nα(0) = n(ωα,h,βc) and nα(∞) = n

eq
α (ωα,h,βh) and

use Eq. (8), and as a result we have nα(t) = n
eqh
α + [nα,2 −

n
eqh
α )e−γα,ht or

nα,3 = neqh
α + [

nα,2 − neqh
α

]
e−γα,hτh . (9)

The heat injection from the hot bath during the isochoric
process with no work done is calculated according to

Qα,h = Eα,3 − Eα,2 = (nα,3 − nα,2)ωα,h. (10)

(3) Adiabatic expansion. The eigenfrequency ω changes
from ωα,h to its initial value ωα,c after time τhc, while the mean
population nα keeps unchanged. The work done on the system
during this process is denoted by Wα,hc.

(4) Cold isochore. The system, with its constant frequency
ωα,c, is now coupled to a cold reservoir at inverse temperature
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βc (>βh) in a time interval τc. In the approach similar to that
for the hot isochore, the heat current is obtained,

d̄Qα,c

dt
= ωα,c

dnα,c(t)

dt
= γα,c

[
neqc

α − nα(t)
]
ωα,c, (11)

yielding the following relation:

nα,1 = neqc
α + [

nα,4 − neqc
α

]
e−γα,cτc . (12)

Here γα,c is the heat conductivity between the working sub-
stance and the cold reservoir and nα(t) should be restricted by
the boundary constraints: nα(0) = nα(ωα,c,βh) and nα(∞) =
n

eqc
α (ωα,c,βc). As in the hot isochore, the irreversibility we

consider is only due to the finite temperature difference
between the system and the cold reservoir, and the heat
absorbed by the system from the cold reservoir can be directly
calculated as

Qα,c = Eα,1 − Eα,4 = (nα,1 − nα,4)ωα,c. (13)

After a quantum Otto cycle consisting of the above
consequence of consecutive steps, the total energy of the
system which is a state function remains unchanged, namely,
�Eα = Qα,h + Qα,c + Wα,hc + Wα,ch = 0. Considering the
mean thermal populations nα,1 = nα,2 and nα,3 = nα,4, the
total work done by the system for a single cycle of the normal
mode A or B can be obtained,

Wα,cycle = −(Wα,hc + Wα,ch) = (nα,3 − nα,2)(ωα,h − ωα,c),
(14)

and the efficiency, the ratio of the total work to the input heat,
is written as

ηα = Wα,cycle

Qα,h

= 1 − ωα,c

ωα,h

. (15)

Using Eqs. (9) and (12), we derive the relation as nα,3 − nα,2 =
(neqh

α − n
eqc
α ) (eγα,cτc −1)(eγα,hτh −1)

eγα,cτc+γα,hτh −1
, where n

eq
c = 1

2 coth(βcωα,c/2)

and n
eqh
α = 1

2 coth(βhωα,h/2) are minimum and maximum
values of nα,2 and nα,3, respectively. The mean thermal
populations n

eq
c and n

eqh
α will be achieved by equilibrating the

system with heat baths during the two quasistatic isochores.
Substituting this relation into Eq. (14) and using the cycle
time tcycle = τadi + τc + τh with τadi ≡ τhc + τch, we obtain
the power output for a normal-mode cycle as

Pα = (ωα,h − ωα,c)(neqh
α − neqc

α )

× (eγα,cτc − 1)(eγα,hτh − 1)

(eγα,cτc+γα,hτh − 1)(τadi + τh + τc)
. (16)

Since ωα,h − ωα,c > 0 and n
eqh
α − n

eqc
α > 0, the power output

for any thermal cycle along either branch A (nB = 〈B†B〉 =
0) or branch B (nA = 〈A†A〉 = 0) is always positive. As a
consequence, heat is absorbed during both cycles A and B from
the hot reservoir, some of which is converted into work, while
the rest of which is released to the cold reservoir, indicating
that the coupled harmonic system operates as a heat engine.

III. EFFICIENCY AT MAXIMUM POWER

Before turning to an optimal analysis, we note
that the power output is a product of two func-
tions, g(βc,ωα,c,βh,ωα,h) ≡ (ωα,h − ωα,c)(neqh

α − n
eqc
α ), which

merely depends on the external parameters β and ω, and
f (τc,τh,τadi) ≡ (eγα,cτc −1)(eγα,hτh −1)

(eγα,cτc+γα,hτh−1)(τadi+τh+τc)
, a function of the time

durations for the isochoric and adiabatic processes. Provided
that the external constraints of the heat engine are given, op-
timizing the objective function Pα is equivalent to optimizing
the time-dependent function f (τc,τh,τadi) [27].

For all practical purposes we focus on optimizing an engine
cycle by varying the external constrains of the heat engine, ωa

and ωb, under the assumption that the time required for com-
pleting the two adiabats, τadi , is independent of the frequen-
cies. In such a case, optimizing the power output Pα becomes
equivalent to optimizing the function g(βc,ωα,c,βh,ωα,h),
where g can be expressed as a function of the frequencies
of the bare modes, g = g(ωa,c,ωa,h,ωb,c,ωb,h; βc,βh). For two
given heat reservoirs with constant temperatures βc and βh,
practically we vary the two frequencies ωa and ωb of oscillators
a and b to obtain the maximum power output. Mathematically,
when we use the extremal condition, ∂Pα

∂wa,c
= ∂Pα

∂wα,c

∂wα,c

∂wa,c
= 0

and ∂Pα

∂wb,c
= ∂Pα

∂wα,c

∂wα,c

∂wb,c
= 0, where ∂wα,c

∂wa,c
�= 0 and ∂wα,c

∂wb,c
�= 0

[as readily proved from Eqs. (4) and (5)], we then have
∂Pα/∂ωα,c = 0(=∂Pα/∂ωa,c = ∂Pα/∂ωb,c), leading to

βcxα,c(ωα,h − ωα,c)

1 − xα,c

= xα,h − xα,c

1 − xα,h

, (17)

where we have used xα,c ≡ e−βcωα,c and xα,h ≡ e−βhωα,h . Sim-
ilarly, we set ∂Pα/∂ωα,h = 0 to determine the optimal upper
bounds of ωa,h and ωb,h, and we arrive at

βhxα,h(ωα,h − ωα,c)

1 − xα,h

= xα,h − xα,c

1 − xα,c

. (18)

This set of of two nonlinear equations [(17) and (18)],
derived previously in heat engines based on various kinds
of noninteracting quantum systems [20,27], can be used to
determine the optimal values ωα,c and ωα,h at maximum power.
Based on the same approach as the one in Ref. [27], it is not
very difficult to verify using Eqs. (17) and (18) that the EMP
η∗

α takes the form

η∗
α = η+ = η2

C

[ηC − (1 − ηC) ln(1 − ηC)]
� 1 −

√
1 − ηC,

(19)
thereby leading to an excellent approximation:

ωα,c

ωα,h

�
√

βh

βc

. (20)

In the high-temperature limit when βω � 1 as well as n �
1/(βω), we find from Eq. (8) and (11) that the heat transport
is identified as Newton’s heat-transfer law adopted in Ref. [1],
implying that the heat current described by Eqs. (8) or (11)
would be close to the Newton’s heat transfer law at finite
temperatures. Furthermore, the irreversibility for our model is
assumed to be exclusively caused by temperature differences
between the working subsystem and the heat reservoir, as
done in the CA (endoreversible) model [1]. These may help to
explain why the difference between η+ and ηCA is extremely
small [see Eq. (1)].

Whether the Otto cycle proceeds along either branch A

or branch B, the expression of EMP [Eq. (20)] is universal
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and independent of the coupling strength. In our model,
the coupling harmonic system is adiabatically oscillating
at a given normal-mode branch α while proceeding an
adiabatic process. When slowly tuning the system through the
coupling region during an adiabatic process, it is convenient to
consider the system parameters within the bare mode picture
rather than in dressed normal modes. For the optimal cycle,
using Eqs. (4), (5), and (20), it follows that there exists a

relation wa,c

wa,h
=

√
1+r2

ω,h−
√

4g2rω,h+(rω,h−12)2

1+r2
ω,c−

√
4g2rω,c+(rω,c−12)2

√
βh

βc
for branch A or

wa,c

wa,h
=

√
1+r2

ω,h+
√

4g2rω,h+(rω,h−12)2

1+r2
ω,c+

√
4g2rω,c+(rω,c−12)2

√
βh

βc
for branch B, where the

definitions of rω,c ≡ ωb,c/ωa,c and rω,h ≡ ωb,h/ωa,h have been

used, thereby indicating that wa,c

wa,h
=

√
βh

βc
for any branch α

when rω,c = rω,h.
Before ending this section, we would like to point out

that our analysis above was restricted to the ideal adiabatic
phase where the system varies at a very low speed and thus
satisfies the adiabatic condition. At a high tuning speed, in
which the change of the frequency difference between the two
bare modes in time reads ν = ∂(ωb−ωa )

∂t
, the diabatic transition

arises with its probability [41,46]: pdia = exp (−πδ2

2ν
), which

is situated between 0 � pdia � 1 and is the probability of
switching between two normal-mode branches when the sys-
tem passing through the anticrossing region. Accordingly, the
probability of an adiabatic transition is determined by padia =
1 − pdia . If the Otto cycle consists of diabatic transitions, we
use η∗

α,dia to represent its EMP. Since negative work output
is induced by the nonadiabatic dissipation [20,27,48], the
EMP η∗

α,dia must be smaller than its counterpart η∗
α = η+

[cf. Eq. (19)] for the cycle with no diabatic transitions,
namely, η∗

α,dia < η+. Without loss of generality, the EMP
can be given by η∗

α = η+padia + η∗
α,diapdia = η+(1 − pdia) +

η∗
α,diapdia , yielding η∗

α � η+. That is, the expression of η+ in
Eq. (1) is certainly the upper bound of the EMP for our engine
model.

IV. CONCLUSIONS

To summarize, we have proposed a quantum Otto engine
working with a system of two coupled harmonic oscillators
with frequencies ωa and ωb(>ωa). An adiabatic process is real-
ized by varying the frequency ωb while keeping the frequency
ωa constant, provided that the nonadiabatic transition between
two normal-mode branches is avoided. Based on the semigroup
approach, we modeled the thermal relaxation dynamics and
determined the heat transferred between the system and the
heat bath along an isochoric process. We considered the EMP
for the Otto cycle which undergoes along any normal-mode
branch by optimizing power with respect to the frequencies of
bare modes. Our result shows that the EMP is bounded from
above by the universal expression of η+ as given in Eq. (1),
whose validity has thus been extended from noninteracting
systems to interacting systems.
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