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The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends
on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated
for different populations and are related to the reproductive fitness and the competition for limited resources,
respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give
rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters
of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction
or persistence of the population by employing either the momentum-space spectral theory or the real-space
Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time
to extinction of the population. Our analytical results agree well with numerical simulations.
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I. INTRODUCTION

Quantitative models of population dynamics have attracted
an enormous amount of interest from biology to mathe-
matics and physics [1–3]. In the deterministic limit, these
models coincide with macroscopic rate equations based on
phenomenological laws. The simplest one corresponds to
the Malthus law, where the per capita rate of change in the
number of individuals is constant, resulting in a linear growth
rate for the population dn/dt = rn. The population grows
exponentially n(t) = n0 exp(rt), where r is the intrinsic growth
rate and n0 is the initial population. Unlimited exponential
growth is patently unrealistic and factors that regulate growth
must be taken into account. The most famous extension of the
exponential growth model is the Verhulst model, also known
as the logistic model, where the per capita rate of change
decreases linearly with the population size. The population’s
growth rate dn/dt = rn(1 − n/K) is now a quadratic function
of the population size, where K is known as the carrying
capacity. This equation was derived initially by Verhulst in
1845 [4,5] and was rediscovered later by Pearl in 1920
[6]. Other models, such as the Gompertz growth dn/dt =
αn ln(K/n), exhibit many of the same properties, but the
logistic equation is arguably the best-known and most widely
applied rate equation for population growth and population
invasion [1,7].

These models are deterministic and ignore fluctuations.
Real populations evolve in a stochastic manner, experienc-
ing intrinsic noise (or internal fluctuations) caused by the
discreteness of individuals and the stochastic nature of their
interactions (see, e.g., [8–13]). When the typical size of the
population is large, fluctuations in the observed number of
individuals are typically small in the absence of external or
environmental noise. The dynamics of the population then
can be described by a deterministic mean-field rate equation.
In the case of the logistic equation, the population evolves
from an initial condition to a stable stationary state, where
the population size equals the carrying capacity and persists
forever. However, if the typical population size is not large,

internal fluctuations can lead to the extinction of the population
[14]. The effects of internal fluctuations have been studied
in predator-prey models [15,16], epidemic models [17–23],
cell biology [24], and ecological systems [13]. In particular,
extinction of a stochastic population [11,25,26], which is a
crucial concern for population biology [27] and epidemiology
[28,29], has also attracted scrutiny in cell biochemistry [30]
and in physics [31,32].

To describe the intrinsic noise of populations, we adopt
individual-based models, also called stochastic single patch
models [33,34]. An individual-based formulation provides
several advantages. It is often easier to define an ecological
system in terms of the events that govern the dynamics
of the system at the level of individuals. Population-level
models, such as the Verhulst equation, can then be derived
analytically as the mean-field approximation, instead of simply
be postulated phenomenologically. In this way, individual-
based models provide a microscopic basis for the usual
ecological rate equations and the range validity of the latter
can be established by comparing its predictions with those
of the former. Individual-based models capture the fact that
populations consist of discrete individuals undergoing random
events corresponding to birth (reproduction of the population),
competition (between individuals for limited resources), and
death (natural decay of individuals). It is well known that
different types of individual-based schemes are described by
the same Verhulst equation in the deterministic limit. Since
extinction is ultimately caused by the stochastic nature of
the interactions between individuals, it is critical to analyze
how the details of the individual processes affect the ultimate
fate of the population or the time to extinction. We explore
a variety of stochastic interactions between individuals, all of
which give rise to the logistic equation in the mean-field limit.
We find different dynamical behaviors, such as persistence or
extinction, of a population that experiences birth, death, and
competition processes. Extinction is due to rare fluctuations
and the mean extinction time (MET) of the population strongly
depends on the microscopic details of the processes, such as the
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number of newborn individuals or the number of individuals
removed due to exclusive competition. We obtain analytical
solutions for the probability distribution function (PDF) of
individuals, if the population persists, and for the MET, if
the population becomes extinct. Our analytical results are
compared with numerical simulations, performed using the
first reaction method [35]. We consider the birth-and-death
and birth-competition-death cases separately, making use of
the momentum space spectral theory [36,37] and the real-space
WKB theory [26], respectively.

II. MASTER AND MEAN-FIELD EQUATIONS FOR
GENERAL BIRTH-COMPETITION-DEATH PROCESSES

We investigate individual-based models of populations in
which the following birth, competition, and death processes
occur:

bX
λ−→ (a + b)X, (2.1a)

cX
μ−→ (c − d)X, (2.1b)

X
γ−→ ∅, (2.1c)

where a, b, c, and d are positive integers and d � c. Such
processes occur also in chemically reacting systems and it is
convenient to adopt the language of chemical kinetics to make
a connection with the literature of stochastic chemical models.
Therefore, we will often refer to the processes of (2.1) as
reactions. If d = c, the last two reactions are death reactions,
due to competition between c individuals (cX

μ→ ∅) or due

to natural decay (X
γ→ ∅). We make the standard assumption

that the reaction scheme (2.1) defines a Markovian birth-and-
death process (see, e.g., [15,32,38,39]) and employ the master
equation, also known as the forward Kolmogorov equation, to
describe the temporal evolution of P (n,t), the probability of
having n individuals at time t ,

∂P (n,t)

∂t
=

∑
r

[W (n − r,r)P (n − r,t) − W (n,r)P (n,t)].

(2.2)

Here W (n,r) are the transition rates between the states with
n and n + r individuals and r = {r1,r2,r3} = {a,−d,−1} are
the transition increments. Equation (2.2) can generally only
be solved in the stationary limit ∂P (n,t)/∂t = 0 and only for
the special case that a = d = 1, i.e., only single-step processes
occur in the population. Then the condition of detailed balance
holds, which significantly simplifies the theoretical analysis,
and exact analytical expressions can in principle be obtained
for the stationary PDF or the MET. (For recent reviews, see,
for example [11,40,41].) We emphasize that we study the
general generic case of arbitrary a and d to elucidate how
the microscopic details affect the PDF or the MET. Calculating
the stationary PDF or the MET is highly nontrivial for
multistep reactions and this case has only recently begun to be
addressed.

The transition rates corresponding to each reaction W (n,r)
are obtained from the reaction kinetics [32] and for (2.1) read

W (n,a) = λ

b!

n!

(n − b)!
, (2.3a)

W (n,−d) = μ

c!

n!

(n − c)!
, (2.3b)

W (n,−1) = γ n. (2.3c)

Substituting (2.3) into (2.2), we find

∂P (n,t)

∂t
= λ

b!

(n − a)!

(n − a − b)!
P (n − a,t)

+ μ

c!

(n + d)!

(n + d − c)!
P (n + d,t)

+ γ (n + 1)P (n + 1,t)

−
[

λ

b!

n!

(n− b)!
+ μ

c!

n!

(n− c)!
+ γ n

]
P (n,t), (2.4)

where it is understood that P (n < 0,t) = 0. The probability
generating function [32] is defined as

G(p,t) =
∞∑

n=0

pnP (n,t), (2.5)

where p is an auxiliary variable, which is conjugate to the
number of particles [42]. Once G(p,t) is known, the PDF is
given by the Taylor coefficients

P (n,t) = 1

n!

[
∂nG(p,t)

∂pn

]
p=0

. (2.6)

Normalization of P (n,t) implies that G(p = 1,t) = 1.
Multiplying (2.4) by pn, summing over n, and renaming the
index of summation, we find

∂G(p,t)

∂t
= λ

b!

∞∑
n=0

(pn+a − pn)
n!

(n − b)!
P (n,t)

+ μ

c!

∞∑
n=0

(pn−d − pn)
n!

(n − c)!
P (n,t)

+ γ

∞∑
n=0

(pn−1 − pn)nP (n,t). (2.7)

Taking into account the property

pk ∂kG(p,t)

∂pk
=

∞∑
n=0

n(n − 1) · · · (n − k + 1)pnP (n,t)

=
∞∑

n=0

n!

(n − k)!
pnP (n,t) (2.8)

in (2.7), we finally obtain the evolution equation for G(p,t),

∂G(p,t)

∂t
= λ

b!
pb(pa − 1)

∂bG

∂pb

+ μ

c!
pc−d (1 − pd )

∂cG

∂pc
+ γ (1 − p)

∂G

∂p
. (2.9)

Equation (2.9) is exact and equivalent to the master equation
(2.4). If only one individual reactant is present in all the
reactions, i.e., b = c = 1, then (2.9) is first order in p and
can be solved exactly using the method of characteristics.

Macroscopic equations, i.e., equations for the expected or
average values, can be obtained easily from (2.4). Multiplying
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(2.4) by nk , summing up over n, and renaming the index of
summation, we find

∂

∂t

∞∑
n=0

nkP (n,t) = λ

b!

∞∑
n=0

[(n + a)k − nk]
n!

(n − b)!
P (n,t)

+ μ

c!

∞∑
n=0

[(n − d)k − nk]
n!

(n − c)!
P (n,t)

+ γ

∞∑
n=0

[(n − 1)k − nk]nP (n,t). (2.10)

The kth moment is defined as 〈nk〉 = ∑∞
n=0 nkP (n,t) and

evolves according to the ordinary differential equation

d〈nk〉
dt

= λ

b!

〈
[(n + a)k − nk]

b−1∏
m=0

(n − m)

〉

+ μ

c!

〈
[(n − d)k − nk]

c−1∏
m=0

(n − m)

〉

+ γ 〈[(n − 1)k − nk]n〉. (2.11)

Equation (2.11) is not closed and one must deal with a
hierarchy of coupled differential equations for k = 1,2,3, . . . .
In order to truncate this set and to obtain closed equations, we
make use of the mean-field approximation 〈nk〉 � 〈n〉k , which
holds if the typical population size is large [31,32]. For k = 1,
the mean-field equation reads

dρ

dt
= λa

b!
ρb − μd

c!
ρc − γρ, (2.12)

where ρ = 〈n〉 is a macroscopic quantity, the average or
expected number of individuals in the population.

III. BIRTH AND DEATH-BY-COMPETITION PROCESSES

We consider the case of two reactions, i.e., γ = 0:

bX
λ−→ (b + a)X, (3.1a)

cX
μ−→ (c − d)X. (3.1b)

In the first reaction (birth), b individuals have to interact
with each other to produce a new individuals at a constant rate
λ. In the second reaction (death by competition), c individuals
interact with each other to remove d individuals at a constant
rate μ. The fact that b, in general, can be larger than 1 includes
scenarios where a single individual cannot generate by itself
new individuals, which represents a type of Allee effect [43].

Equation (2.12) reduces to the logistic equation if b = 1
and c = 2. From a kinetic point of view this means that
an individual does not need to interact to give rise to new

individuals; the birth reaction takes the form X
λ−→ (a + 1)X.

The fact c = 2 implies that a linear death rate, corresponding
to X → ∅, cannot occur for the scheme (3.1) in this case.
The possible death reactions, compatible with a mean-field
logistic equation, are 2X

μ−→ X (competition) or 2X
μ−→ ∅

(annihilation). Consequently, the birth-and-death processes
that lead to logistic macroscopic behavior are

X
λ−→ (a + 1)X, (3.2a)

2X
μ−→ X (3.2b)

and

X
λ−→ (a + 1)X, (3.3a)

2X
μ−→ ∅. (3.3b)

The logistic equation for these two reaction schemes reads

dρ

dt
= rρ

(
1 − ρ

N

)
, (3.4)

where

r ≡ aλ, N ≡ 2aλ/μd (3.5)

are the intrinsic growth rate and the carrying capacity,
respectively. These definitions are valuable because they allow
us to relate the macroscopic parameters r and N , which can be
measured for different kinds of populations, to the microscopic
parameters that characterize the stochastic processes involved
in the interaction between the individuals of the population.
From a macroscopic point of view, the logistic equation for
population growth is specified by two parameters. On the
other hand, the schemes (3.2) and (3.3) contain up to four
microscopic parameters, namely a, d, μ and λ. As a result, we
have two additional free microscopic parameters that can take
arbitrary positive values compatible with the same mean-field
logistic equation. The rate equation (3.4) has an unstable
steady state at ρs = 0 and a stable steady state at ρs = N for
d = 1 or d = 2. Below we deal separately with schemes (3.2)
and (3.3) and apply the momentum-space (p-space) spectral
theory to find the stationary PDF in the case of population
survival or the MET in the case of population extinction. An
important advantage of the p-space representation stems from
the fact that the evolution equation for the generating function
G(p,t) is exactly equivalent to the original master equation.
Therefore, the p-space approach is especially valuable for an
exact analysis.

A. The case X
λ−→ (a + 1)X and 2X

μ−→ X

In this case we expect the population to evolve to a nontrivial
steady state and not to become extinct. The equation for the
probability generating function (2.9) becomes

∂G(p,t)

∂t
= λp(pa − 1)

∂G

∂p
+ μ

2
(p − p2)

∂2G

∂p2
. (3.6)

If initially at t = 0 the system consists of n0 individuals, then
P (n,0) = δn,n0 , where δ is the Kronecker delta, and from (2.5)
we find G(p,t = 0) = pn0 . The boundary conditions (BCs)
are self-generated. Indeed, the equality G(p = 1,t) = 1 holds
at all times, due to the conservation of probability. Equation
(3.6) has a singular point at p = 0. Since G(p,t) must be
an analytic function at p = 0 for all times, we require that
G(p = 0,t) = 0. This condition stems from the fact that
G(p = 0,t) = P0(t) and since the population cannot go
extinct, the probability of extinction vanishes at all times. We
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FIG. 1. Stationary PDF for X
λ−→ 2X and 2X

μ−→ X with (a) N =
100, (b) N = 25, (c) N = 200, and (d) N = 50. Simulation results
(symbols) are based on 3000 realizations of the stochastic process up
to time 106.

are interested in the steady state. Then (3.6) turns into

μ

2
(1 − p)G′′

s + λ(pa − 1)G′
s = 0, (3.7)

which must be solved with the BCs Gs(1) = 1 and Gs(0) = 0.
The exact analytical solution reads

Gs(p) =

∫ p

0
exp[Nφ(s)/a]ds∫ 1

0
exp[Nφ(s)/a]ds

, (3.8)

where

φ(s) = − ln(1 − s) −
∫

sa

1 − s
ds =

a∑
n=1

sn

n
(3.9)

and N = 2aλ/μ. In the special case where a = 1, the exact
solution for the generating function can be easily obtained
from (3.8) and (3.9),

Gs(p) = exp(Np) − 1

exp(N ) − 1
. (3.10)

Expanding exp(Np) around p = 0, we find that for large N

the stationary PDF follows the Poisson distribution

Ps(n) = Nn exp(−N )

n!
, (3.11)

where we have approximated exp(N ) − 1 � exp(N ) in the
denominator. We have performed numerical simulations and
compared them with (3.11). Figure 1 shows that the agreement
becomes better as the typical number of individuals N is
increased.
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FIG. 2. Stationary PDF for X
λ−→ 3X and 2X

μ−→ X with (a)
N = 200, (b) N = 50, (c) N = 400, and (d) N = 100. Simulation
(symbols) results are based on 3000 realizations of the stochastic
process up to time 106.

If a = 2, the generating function is given by

Gs(p) = erfi(
√

N/2) − erfi(
√

N (1 + p)/2)

erfi(
√

N/2) − erfi(
√

N )
, (3.12)

where erfi(x) = 2√
π

∫ x

0 exp(t2)dt . The PDF can be obtained
by substituting (3.12) into (2.6). A comparison between the
analytical PDF and numerical simulations is shown in Fig. 2
and excellent agreement is observed.

Finally, we can also obtain the mean number of individuals
in the stationary state and its dependence on N = 2aλ/μ by
using the definition of G from (2.5). Differentiating (3.8) with
respect to p and using (3.9), we find

〈n〉 = G′(1) = exp[(N/a)φ(1)]∫ 1
0 exp[(N/a)φ(s)]ds

. (3.13)

Furthermore, the variance of n satisfies 〈n2〉 − 〈n〉2 = G′′(1) +
G′(1) − G′(1)2 and we find

〈n2〉 − 〈n〉2 = 〈n〉(1 + N ) − 〈n〉2. (3.14)

This allows us to determine the coefficient of variation cv ,
defined as the ratio of the standard deviation to the mean,
which measures the variability in relation to the mean of the
population

cv ≡
√

〈n2〉 − 〈n〉2

〈n〉 =
√

(1 + N )

〈n〉 − 1. (3.15)

In Fig. 3 we plot the coefficient of variation cv obtained
from numerical simulations (circles) and compare it with the
theoretical result given by (3.15).

It is straightforward to obtain asymptotic expressions for
the mean, the variance, and the coefficient of variation if N is
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2. The log-log plot in the inset shows that cv decays like N−1/2.
Simulation results are based on 3000 realizations of the stochastic
process up to time 106. We set μ = 2 and d = 1 and vary λ.

large. In that case, the integral in the denominator of (2.9) can
be evaluated by integration by parts for Laplace integrals and
we find∫ 1

0
exp

[
N

a
φ(s)

]
ds � 1

N

(
exp

[
N

a
φ(1)

]
− a

)
. (3.16)

As a result, the mean value reads

〈n〉 � N

(
1 + a exp

[
−N

a
φ(1)

]
+ · · ·

)
(3.17)

and the coefficient of variation is given by

cv = 1√
N

(
1 − a

2
N exp

[
−N

a
φ(1)

]
+ · · ·

)
. (3.18)

B. The case X
λ−→ (a + 1)X and 2X

μ−→ ∅
In this case, the initial number of individuals and the

parameter a play a crucial role in determining the ultimate
fate of the population. Since the death process involves two
individuals, population extinction is guaranteed, regardless of
the initial number of individuals, if the number of newborn
individuals a is odd, i.e., a + 1 is even. In contrast, if a is
even, i.e., a + 1 is odd, the population becomes extinct only if
n0 is even.

1. The case when a is even and n0 is odd

We begin by considering the case that a is even. Then
the birth process preserves the even-odd parity of the number
of particles. As a result, the population becomes eventually
extinct if the initial number of individuals n0 is even. If n0 is
odd, the case considered in this section, the population evolves
to a nontrivial stationary state. The equation for the probability
generating function (2.9) is given by

∂G(p,t)

∂t
= λp(pa − 1)

∂G

∂p
+ μ

2
(1 − p2)

∂2G

∂p2
. (3.19)

The boundary condition G(p = 1,t) = 1 still applies, but the
singular point of (3.19) occurs at p = −1 and not at p = 0

as in (3.6). Since G(p,t) must be analytic at p = −1 for all
times, we require that G(p = −1,t) = (−1)n0 . This boundary
condition stems from the fact that G(p = −1,t) is the sum of
all even probabilities minus the sum of all odd probabilities
[36]. The steady state has to be solved by integrating the
equation

μ

2
(1 − p2)G′′

s + λp(pa − 1)G′
s = 0, (3.20)

with the boundary conditions Gs(1) = 1 and Gs(−1) =
(−1)n0 . The exact solution reads

Gs(p) = C1

∫ p

exp[Nϕ(s)/a]ds + C2, (3.21)

where

ϕ(s) = − ln(1 − s2) − 2
∫

sa+1

1 − s2
ds (3.22)

and N = aλ/μ. For n0 odd, we obtain from the boundary
conditions

C1 = 2∫ 1
−1 exp[Nϕ(s)/a]ds

(3.23)

and

C2 = 1 − 2∫ 1
−1 exp[Nϕ(s)/a]ds

. (3.24)

As expected, the system reaches a nontrivial stationary state
with

Gs(p) = 1 + 2

∫ p

1 exp[Nϕ(s)/a]ds∫ 1
−1 exp[Nϕ(s)/a]ds

. (3.25)

To be specific, we focus on the case a = 2, that is, X
λ−→ 3X

and 2X
μ−→ ∅. From (3.22) we obtain ϕ(s) = s2 and from (3.25)

Gs(p) = erfi(
√

2Np/2)

erfi(
√

2N/2)
. (3.26)

The PDF is obtained by substituting (3.26) into (2.6). In Fig. 4
we plot the PDF Ps(n) for different values of N .

In Fig. 5 we plot the coefficient of variation cv for the cases
of a = 2 and a = 4. The mean number of individuals in the
steady state 〈n〉 = G′(1) can be determined from (3.26),

〈n〉 =
√

2N exp(N/2)√
πerfi(

√
2N/2)

, (3.27)

and the coefficient of variation is given by (3.15) with 〈n〉
given by (3.27). The solid curve corresponds to the analytical
results and the symbols correspond to numerical simulations.
The inset again shows that cv scales like N−1/2.

2. The case when a and n0 are even

If n0 is even, the boundary conditions lead to

C1

∫ 1

exp[Nϕ(s)/a]ds + C2 = 1 (3.28)

and

C1

∫ −1

exp[Nϕ(s)/a]ds + C2 = 1, (3.29)
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FIG. 4. Stationary PDF for X
λ−→ 3X and 2X

μ−→ ∅ with (a)
N = 200, (b) N = 40, (c) N = 400, and (d) N = 100. Simulation
(symbols) results are based on 3000 realizations of the stochastic
process up to time 106.

so that C1 = 0 and C2 = 1. Therefore, Gs(p) = 1, which
describes an empty population state, i.e., extinction, as t → ∞.
To calculate the MET, we employ the momentum-space
spectral method developed recently [36,37,42,44]. After a
short relaxation time tr , which corresponds to the deterministic
relaxation time of the system to the stable stationary state, the
population typically settles into a long-lived metastable state,
which is encoded by the lowest excited eigenmode ψ(p) of
the probability generating function G(p,t) [44]. Indeed, for
t � tr , we can write

G(p,t) = Gs(p) − ψ(p) exp(−μE1t). (3.30)

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

150 300 450 600 750 900

c v

N

a = 2

a = 4

1.2

1.6

2

2.4

2.8

3.2

3 4 5 6 7

−
ln
(c

v
)

ln(N)

a = 2

a = 4

FIG. 5. Coefficient of variation versus N for a = 2 and a = 4.
The inset demonstrates that cv decays like N−1/2. Simulation results
are based on 3000 realizations of the stochastic process up to time
106. We set μ = d = 2 and vary λ.

Here E1 is the lowest nonzero eigenvalue, τ = (μE1)−1 is the
mean time to extinction, and Gs(p) = 1. Substituting (3.30)
into (3.6), we obtain

(1 − p2)ψ ′′(p) + 2
p(pa − 1)ψ ′(p) = −2E1ψ(p), (3.31)

where 
 ≡ λ/μ. Since a is even, the function ψ(p) is also an
even function. It is therefore sufficient to consider the interval
0 � p < 1. Since 〈n〉 ∼ 
, we assume that 
 � 1 to find the
eigenvalue E1, which we expect to be exponentially small in

. We will proceed by matching the asymptotic expansion
for the function ψ(p) in the bulk region 0 � p < 1, namely,
ψb, with ψl , the solution in the boundary layer 1 − p 
 1. We
will show that the function ψ(p) is almost constant everywhere
within the interval p ∈ [0,1), except in a narrow layer close to
p = 1. In the bulk we can treat E1 as a perturbative parameter.
To zeroth order we set E1 = 0 and the even solution of (3.31)
is 1. To account for corrections, we write ψ(p) = 1 + δψ ,
where δψ 
 1 satisfies the differential equation

δψ ′′ + 2
p
pa − 1

1 − p2
δψ ′ = − 2E1

1 − p2
, (3.32)

whose solution, using Eq. (3.22), takes the form

δψ ′(p) = C0 exp[
ϕ(p)] − 2E1 exp[
ϕ(p)]

×
∫ p exp[−
ϕ(s)]

1 − s2
ds. (3.33)

To solve for ψ(p), we need to specify two boundary conditions.
Setting p = 0 in (3.31), we obtain ψ ′′(0) = −2E1ψ(0) or
equivalently δψ ′′(0) = −2E1 − 2E1δψ(0). On the other hand,
from (3.32) and setting p = 0, we find the first bound-
ary condition δψ ′′(0) = −2E1. This condition together with
δψ ′′(0) = −2E1 − 2E1δψ(0) leads to the second boundary
condition δψ(0) = 0. The first boundary condition implies
that (3.33) reduces to

δψ ′(p) = −2E1 exp[
ϕ(p)]
∫ p

0

exp[−
ϕ(s)]

1 − s2
ds, (3.34)

which can be integrated together with the second boundary
condition to yield

δψ(p) = −2E1

∫ p

0
exp[
ϕ(s)]ds

∫ s

0

exp[−
ϕ(u)]

1 − u2
du.

(3.35)

Since this solution holds in the bulk region 1 − p � 
−1, with

 � 1, we can approximate the inner integral in (3.35) as∫ s

0

exp[−
ϕ(u)]

1 − u2
du �

∫ s

0
exp[−
ϕ(u)]du

�
∫ ∞

0
exp[−
ϕ(u)]du. (3.36)

Therefore,

ψb(p) � 1 − 2E1

∫ p

0
exp[
ϕ(s)]ds

∫ ∞

0
exp[−
ϕ(u)]du.

(3.37)

In the boundary layer 1 − p 
 1 we disregard the exponen-
tially small term E1ψ in (3.31) and integrate the resulting
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equation (1 − p2)ψ ′′(p) + 2
p(pa − 1)ψ ′(p) = 0 to obtain

ψl(p) = C

∫ p

1
exp[
ϕ(s)]ds, (3.38)

where we have made use of the boundary condition at
the boundary layer, i.e., ψl(1) = 0. Equation (3.38) can be
rewritten as

ψl(p) = C

(∫ p

0
exp[
ϕ(s)]ds −

∫ 1

0
exp[
ϕ(s)]ds

)

= C1

(
1 −

∫ p

0 exp[
ϕ(s)]ds∫ 1
0 exp[
ϕ(s)]ds

)
. (3.39)

Matching the solutions (3.37) and (3.39), we find C1 = 1 and
the MET

τ = 2

μ

∫ 1

0
exp[
ϕ(s)]ds

∫ ∞

0
exp[−
ϕ(u)]du. (3.40)

Since 
 � 1, we can further approximate (3.40). The function
ϕ(s), given by (3.22), can be expressed as

ϕ(s) =
a/2∑
j=1

s2j

j
(3.41)

for even a and

ϕ(s) = −2 ln(1 + s) + 2
(a−1)/2∑

j=0

s2j+1

2j + 1
(3.42)

for odd a. Since in this section we consider the case of even
a, ϕ(s) is a polynomial of order a with positive coefficients.
Therefore, the main contribution of the first integral in (3.40)
comes from the region around s = 1. Employing the Taylor
expansion, we find∫ 1

0
exp[
ϕ(s)]ds �

∫ 1

0
exp{
[ϕ(1) + ϕ′(1)(s − 1)]}ds

� exp[
ϕ(1)]


ϕ′(1)
. (3.43)

For the second integral in (3.40), the main contribution comes
from the region around u = 0. To leading order, ϕ(u) � u2

and∫ ∞

0
exp[−
ϕ(u)]du �

∫ ∞

0
exp[−
u2]du =

√
π

2
√



. (3.44)

Substituting these results into (3.40), we obtain a general result
for the MET for 
 � 1 and any even a,

τ =
√

π exp
(



∑a/2
j=1 (1/j )

)
μa
3/2

. (3.45)

As an example, for a = 2 we find

τ =
√

π exp(
)

2μ
3/2
, (3.46)

which coincides with the result in [36]. We have verified the
result (3.45) by numerical simulations. In Fig. 6(b) we plot τ

versus N for a = 2 and a = 4 and in Fig. 6(a) we plot τ versus
a for different values of 
. In all these comparisons we obtain
excellent agreement between theory and simulations.
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FIG. 6. Mean time to extinction τ vs (a) N and (b) a for the

reactions X
λ−→ (a + 1)X and 2X

μ−→ ∅. Solid curves are obtained
from (3.45), while symbols correspond to numerical simulations.
We set μ = 2 and vary λ. Simulations have been performed up to
time 108.

3. The case when a is odd

If a is odd, (3.19) has no other singularity and we have only
one boundary condition Gs(1) = 1. As a result, Gs(p) = 1
and the population becomes extinct, regardless of the value
of n0. To obtain the MET in this case, we start again with
(3.19). Since ψ(p) is no longer even, the bulk region now
corresponds to p ∈ [−1,1) and the boundary layer is located
at 1 − p 
 1. In the bulk region we impose the boundary
condition δψ(0) = 0, as in the case of even a. However, setting
p = −1 in (3.31), we find now the second boundary condition
to be ψ ′(−1) = 0, where we have neglected the term E1ψ(−1),
which is exponentially small. The final solution for the function
ψ in the bulk region is very similar to the even a case and we
find

ψb(p) = 1 − 2E1

∫ p

0
exp[
ϕ(s)]ds

∫ s

−1

exp[−
ϕ(u)]

1 − u2
du.

(3.47)

In the boundary layer we obtain exactly the same result as
(3.38). By matching both solutions in the common region we
obtain

τ = 2

μ

∫ 1

0
exp[
ϕ(s)]ds

∫ ∞

−1

exp[−
ϕ(u)]

1 − u2
du. (3.48)

062133-7
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We set μ = 2 and vary λ. Simulations have been performed up to
time 108.

To proceed, we employ the approximations (3.36) and∫ s

−1

exp[−
ϕ(u)]

1 − u2
du �

∫ s

−1
exp[−
ϕ(u)]du

�
∫ ∞

−1
exp[−
ϕ(u)]du

�
∫ ∞

−1
exp[−
u2]du =

√
π√



. (3.49)

As a result, similar to the even a case, we obtain from (3.42)
the general result for any odd a,

τ = 2
√

π

μa
3/2
exp

(
− 2
 ln 2 + 2


(a−1)/2∑
j=0

1

2j + 1

)
. (3.50)

For a = 1, (3.50) yields

τ = 2
√

π exp[2
(1 − ln 2)]

μ
3/2
, (3.51)

which coincides with the result in [37].
In Fig. 7 we verify the result (3.50) for the MET. In Fig. 7(a)

we plot τ versus N for a = 1 and a = 3. The mean time to
extinction increases as the number of individuals increases, as
expected. In Fig. 7(b) we plot τ versus a for relatively low
values of 
 and the agreement between theory and numerical
simulations is still fair.

IV. BIRTH-COMPETITION-DEATH PROCESSES

We add the death reaction X
γ−→ ∅ to the system of birth-

competition processes (3.1). To obtain a logistic equation in
the mean-field limit, we consider b = 1 and c = 2, leading to
the reaction scheme

X
λ−→ (a + 1)X, (4.1a)

2X
μ−→ (2 − d)X, (4.1b)

X
γ−→ ∅. (4.1c)

Here a � 1 and d = 1 for a birth-competition-death sys-
tem and d = 2 for a birth-annihilation-death system. It is
straightforward to show that this system always goes extinct.
We are interested in calculating the MET for the general
case. Although this can also be done via the generating
function (p-space theory), we will use the real-space WKB
approximation [26,45–48]. According to (2.3), the transition
rates are given by

W (n,a) = λn, (4.2a)

W (n,− d) = μ

2

n!

(n − 2)!
= μ

2
n(n − 1), (4.2b)

W (n,−1) = γ n. (4.2c)

Replacing t by t/γ and introducing the rescaled population
number density q = n/N , where N = λ/μ � 1, the transition
rates can be rewritten as

W (n,r) ≡ W (Nq,r) = Nwr (q) + ur (q) + O(N−1), (4.3)

where

wa(q) = R0q, (4.4a)

w−d (q) = 1

2
R0q

2, (4.4b)

w−1(q) = q. (4.4c)

Here q, wr (q), and ur (q) are O(1) and

ua(q) = u−1(q) = 0, (4.5a)

u−d (q) = − 1
2R0q. (4.5b)

Further, R0 = λ/γ is the basic reproductive number. Since
n = q = 0 is an absorbing state (extinction), we have
wr (0) = ur (0) = 0 for any r = {a,−d,−1}. For N � 1,
the WKB theory developed in [26,45–48] can be used for
the rescaled master equation. Accordingly, we look for the
probability P (n,t) = P (Nq,t) in the form of the WKB ansatz

P (q,t) = exp[−NS(q)], (4.6)

where S(q) is a deterministic state function known as the
action. Intuitively, this approximation expresses the assump-
tion that the probability of occurrence of extreme events,
such as extinction, lies in the tail of the PDF, which falls
away steeply from the steady state. Substituting (4.6) into the
rescaled master equation (2.4), which contains terms of the
form wr (q − r/N ), and Taylor-expanding terms such as S(q −
r/N ) around q, we obtain to leading order a Hamilton-Jacobi
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equation H (p,q) = 0 [45], with the Hamiltonian

H (p,q) =
∑

r

wr (q)[exp(rp) − 1] = R0q[exp(ap) − 1]

+ R0

2
q2[exp(−dp) − 1] + q[exp(−p) − 1].

(4.7)

Here q is the coordinate and p = S ′(q) is the conjugate
momentum. The mean-field dynamics can be found by writing
the Hamilton equation q̇ = ∂pH along the path p = 0. This
yields the logistic equation as the mean-field description of the
system (4.1),

dq

dt
=

(
∂H

∂p

)
p=0

=
∑

r

rwr (q) = q

(
aR0 − 1 − dR0

2
q

)
.

(4.8)

where q = 〈n〉/N . Equation (4.8) has an nontrivial attracting
steady state at

q∗ = 2

d
(a − 1/R0) (4.9)

if

aR0 > 1. (4.10)

Note that a bifurcation occurs at R0 = 1/a. This implies that
the population can maintain a long-lived metastable state for
a > 1, even if R0 < 1. Returning to the (mean) number of
individuals n, the logistic mean-field rate equation (4.8) reads

dn

dt
= rn

(
1 − n

K

)
, (4.11)

where

r ≡ aR0 − 1 = aλ − γ

μ
(4.12)

and

K ≡ Nq∗ = 2(aλ − γ )

dμ
(4.13)

are the intrinsic growth rate and the carrying capacity,
respectively. The mean-field logistic equation is completely
specified by the two parameters r and K . On the other hand, the
stochastic dynamics is characterized by up to five parameters,
namely, a, d, λ, μ, and γ . Relations (4.12) and (4.13) provide
a constraint for two of them and the other three are free to take
different values while keeping exactly the same mean-field
logistic equation.

In order to find the MET, we need to find the optimal path to
extinction, which is defined as the nontrivial heteroclinic orbit
that solves the equation H (q,p) = 0 in the phase space (q,p)
and connects the state (q∗,p = 0) to the extinction state (q =
0,p = pf ). Here pf is the solution to the equation qa(pf ) = 0,
namely, the value of the momentum along the optimal path to

extinction at the point where q vanishes. For the system (4.1)
we find the optimal path to extinction (activation trajectory)

qa(p) = 2
R0[exp(ap) − 1] − 1 + exp(−p)

R0[1 − exp(−dp)]
(4.14)

and pf is the solution of the transcendental equation

R0[exp(apf ) − 1] − 1 + exp(−pf ) = 0. (4.15)

According to [26], the MET is given by

τ = A1

√
2π

γ q∗

√
q ′

a(p = 0)

N
exp(N�S) exp(�φ), (4.16)

where, taking into account (4.14),

1

q∗

√
q ′

a(p = 0)

N
=

√
dR0

2(aR0 − 1)

√
R0a(a + d) + 1 − d

N
.

(4.17)

The quantities �S and �φ can be calculated as follows: �S

is the action increment along the extinction path, which gives
us the logarithm of the mean time to extinction [26]. Since
p = dS/dq,

�S = S(0) − S(q∗) =
∫ 0

q∗
pa(q)dq =

∫ 0

pf

qa(p)dp. (4.18)

Making use of (4.14), we obtain from (4.18)

�S = S(0) − S(q∗)

= 2
∫ 1

e
pf

za+d − (
1 + R−1

0

)
zd + R−1

0 zd−1

z(zd − 1)
dz. (4.19)

For d = 1, this equation yields

�S = S(0) − S(q∗) = 2pf

R0
+ 2

a∑
j=1

1

j
− 2

a∑
j=1

exp(jpf )

j
.

(4.20)

For d = 2, (4.19) yields, for even a,

�S = S(0) − S(q∗) = 2

(
1 + 1

R0

)
ln

(
1 + exp(pf )

2

)

+ 2
a/2∑
j=1

1 − exp(2jpf )

2j
(4.21)

and for odd a,

�S = S(0) − S(q∗) = 2

(
1 + 1

R0

)
ln

(
1 + exp(pf )

2

)

+ 2
(a+1)/2∑

j=1

1 − exp[(2j − 1)pf ]

2j − 1
. (4.22)

In order to go beyond leading-order calculations, we determine �φ = φ(q = 0) − φ(q = q∗), using its definition given
in [26],

�φ =
∫ pf

0
q ′

a(p)

[
Hpq(qa,p) + (1/2)[q ′

a(p)]−1Hpp(qa,p) + (R0/2)qa(p)[exp(−dp) − 1]

Hp(qa,p)
− 1

qa(p)

]
dp, (4.23)
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where q ′
a(p) = dqa/dp and the subscripts on H indicate partial derivatives. Making use of (4.7) and (4.14), we obtain from

(4.23), for d = 1,

�φ = −pf

2
− 1

2
ln

(
1 + a

2

)
+ 1

2
ln

[
a exp[(a + 1)pf ] − (1 + a) exp(apf ) + 1

a[exp(pf ) − 1]2

]
(4.24)

and for d = 2,

�φ = −pf

2
+ 1

2
ln

[
4
aR0 exp[pf (a + 3)] − R0(a + 2) exp[pf (a + 1)] − exp(2pf ) + 2(R0 + 1) exp(pf ) − 1

(a2R0 + 2aR0 − 1)[exp(2pf ) − 1]2

]
. (4.25)

The formula for the coefficient A1 is given by [see Eq. (39)
of [26]]

A1 = (−1)a
∏a

j=1 lj

(l1 − 1)
∏a

j=2(l1 − lj )
, (4.26)

where li are the roots of the equation

w′
a(0)la+1 − [1 + w′

a(0)]l + 1 = 0. (4.27)

Here we have used Eq. (31) of [26]. It can be shown that one
root of this equation is always l = 1. We denote this root by l0.
Using the fact that w′

a(0) = R0 and dividing by l − 1, we need
to solve the equation lR0(1 + l + · · · + la−1) − 1 = 0, i.e.,

l + · · · + la = 1

R0
. (4.28)

For a = 1, (4.28) has a single root and therefore (4.26)
simplifies to A

(a=1)
1 = 1/(R0 − 1). For a = 2, (4.28) has two

roots and we find

A
(a=2)
1 = 2

3
√

R2
0 + 4R0 − R0 − 4

. (4.29)

For a = 3, the polynomial of (4.28) is of third order and its
solution yields

A
(a=3)
1 = (c + 2)(4 − c)(c2 − 2c + 4)(c2 + 4c + 16)

3(c2 − 8c − 8)(c4 − 8c2 + 64)
,

(4.30)
where

c =
⎡
⎣4

3
√

3
√

3R2
0 + 14R0 + 27 + 7R0 + 27

R0

⎤
⎦

1/3

. (4.31)

Note that the value of A
(a)
1 does not depend on d. The origin

of this behavior lies in the fact that reactions without a
linear term in n, such as (4.1b), do not play a role in the
recursive solution of the master equation for small values of
n [26].

Exact analytic expressions for the MET can be obtained
for some specific cases. For example, if a = d = 1 (the birth-
competition-death process), the reactions are given by

X
λ−→ 2X, (4.32a)

2X
μ−→ X, (4.32b)

X
γ−→ ∅. (4.32c)

Equation (4.16) yields for the MET

τ = 1

γ

√
π

N

R
3/2
0

(R0 − 1)2
exp

[
2N

(
1 − 1 + ln R0

R0

)]
, (4.33)

recovering the result given by Eq. (70) in [26].
For a = 2 and d = 1, the reactions are again of birth-

competition-death type,

X
λ−→ 3X, (4.34a)

2X
μ−→ X, (4.34b)

X
γ−→ ∅. (4.34c)

In this case, (4.16) yields for the MET

τ = 1

γ

√
π

N

R0[3
√

R0(R0+4)+R0+4]
√

R0+4+√
R0(R0+4)

2(2R0 − 1)2(R0+4)

× exp(2N�S), (4.35)

where

�S = 1

R0
ln

(
2

R0 + √
R0(R0 + 4)

)

+ (3R0 − 2)
√

R0(R0 + 4) + 3R2
0 + 4R0 − 2

[R0 + √
R0(R0 + 4)]2

. (4.36)

The difference between results (4.33) and (4.35) is due the
value of a. Figure 8 shows that increasing a by one unit
increases the MET by several orders of magnitude. One can
show that τ (a = 2)/τ (a = 1) ∼ exp(N ) as R0 tends to infinity.

Finally, we consider the case a = 1 and d = 2,

X
λ−→ 2X, (4.37a)

2X
μ−→ ∅, (4.37b)

X
γ−→ ∅. (4.37c)

In this case the reactions are of birth, annihilation, and death
type. From (4.16) we find

τ = 2

γ

√
π

N

R
3/2
0

(R0 − 1)2(R0 + 1)1/2

× exp

{
2N

[(
1 + 1

R0

)
ln

(
1 + R0

2R0

)
+ 1 − 1

R0

]}
,

(4.38)

recovering the result already obtained in [26]. In Fig. 8 we plot
the case a = d = 1 and the case a = 1 and d = 2. The fact that
for d = 2 we have annihilation, rather than competition as for
d = 1, reduces the MET as one would expect. If we take R0 to
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FIG. 8. Mean time to extinction for birth-and-death reactions.
In both cases we set μ = 0.1, λ = 10, d = 1, and N = 100 and
modify γ to vary R0. We compare different values for the MET for
(a) different d and the same a and (b) different a and the same b.
Simulations (symbols) have been performed up to time 109 and mean
values are obtained by averaging over 4 × 104 realizations. Solid
curves correspond to exact analytic results given by (4.33), (4.35),
and (4.38).

infinity and compare the cases of d = 2 and d = 1, both with
a = 1, we find τ (d = 2)/τ (d = 1) ∼ exp(−2N ln 2). For both
Figs. 8(a) and 8(b) we observe that the MET increases very
fast with the basic reproductive number R0. The comparison
between simulations and analytic results is in general good,
except when R0 tends to the critical value given in (4.10).
Indeed, the WKB theory breaks down if the barrier �S tends
to zero. This happens if pf tends to 0. Considering (4.15), the
limit pf → 0 implies R0 → 1/a.

V. CONCLUSION

We have adopted an individual-based formulation to
describe the random dynamics of finite-sized populations.
Specifically, we have analyzed in detail various possible
microscopic scenarios that all give rise to the same macro-
scopic population-level model, namely, the Verhulst or logistic
population growth equation. We have shown that for birth

and competition interactions between individuals X
λ−→ (a +

1)X and 2X
μ−→ X, the population does not become extinct,

regardless of the value of the parameters.

If competition leads to annihilation of the competitors X
λ−→

(a + 1)X and 2X
μ−→ ∅, the ultimate fate of the population

depends on whether the kinetics is parity conserving or not.
The parity of the total number of particles is preserved in
the even-offspring case. This implies that the population
persists if a is even and n0 is odd, because the absorbing
state is inaccessible. On the other hand, if a and n0 are
both even or if a is odd, the absorbing state is accessible
and the population becomes extinct. It is worth noting that
these kinetic rules can be implemented as dynamical lattice
models or interacting particle systems, for example, as a
contact process or a branching-annihilating random walk
(BARW) [49–55], and that parity conservation, or the lack
thereof, also plays a crucial role in the dynamics of these
spatially extended systems. They can display a nonequilibrium
transition from a nontrivial fluctuating steady state to an
absorbing state with no fluctuations [53]. This transition
belongs to different universality classes for parity-conserving
and nonparity-conserving models [56]. The most prominent
member of the first class is the BARW with an even number
of offsprings. The dynamics of BARWs with even and odd
numbers of offsprings have been analyzed in detail in [57].

For those cases where the population persists, we have
obtained analytic expressions for the generating function
and the PDF in the stationary state. In particular, we have
determined the mean of the PDF and its coefficient of variation.
For those cases where the population becomes extinct, we
have calculated the MET and have explored its dependence
on the microscopic parameters. All our analytical results have
been compared with numerical simulations, showing good
agreement.

Our results provide further evidence for the advantages of
individual-based models. They demonstrate that the micro-
scopic details of random events at the level of the individuals
lead to differences in the behavior of the system at the
population level. In the case that the population persists, the
characteristics of the stationary PDF depend on the features of
the microscopic model. To illustrate this fact, we have focused
on the coefficient of variation. Our results show (see Figs. 3
and 5) that an increase in a, the number of offsprings, and
d, the number of individuals removed due to competition,
leads to an increase in the variability of the population for the
same value of the macroscopic parameter, the carrying capacity
N . Measuring the coefficient of variation of a population for
a given value of N provides therefore a means of drawing
inferences about the microscopic details of the birth and
competition processes.

Similarly, in the case that the population becomes extinct,
the MET depends sensitively on the microscopic details of the
model, as illustrated by Figs. 6–8. For example, for the model

X
λ−→ (a + 1)X and 2X

μ−→ ∅, we find that the MET becomes
significantly smaller for the same carrying capacity N as a

increases, see Figs. 6 and 7. Extinction is always the ultimate

fate for the birth-competition-death model X
λ−→ (a + 1)X,

2X
μ−→ (2 − d)X, and X

γ−→ ∅. Figure 8 demonstrates strik-
ingly the sensitive dependence of the MET on the microscopic
details of the system. Measuring the MET for laboratory
populations with a given basic reproductive number provides
therefore a means of drawing inferences about the microscopic
details of the birth, death, and competition processes. Our
results also imply that assessing the extinction risks and
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survival times of natural populations requires an understanding
of the microscopic details of the processes that occur in the
system and should not be based solely on phenomenological
models.

There are many other possibilities that lead to the logistic
equation, for example, if we consider two different birth

reactions simultaneously, such as X
λ−→ 2X and X

λ−→ 3X.
Another possibility consists in considering schemes with four
or even more reactions. All these situations can be analyzed in
the same manner and with the same techniques as used here.

A further intriguing possibility that deserves study is reactions
schemes where the number of offsprings a and the number
of individuals eliminated by exclusive competition d fluctuate
randomly between several values.
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