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We study numerically the coarsening dynamics of the Ising model on a regular lattice with random bonds and
on deterministic fractal substrates. We propose a unifying interpretation of the phase-ordering processes based
on two classes of dynamical behaviors characterized by different growth laws of the ordered domain size, namely
logarithmic or power law, respectively. It is conjectured that the interplay between these dynamical classes is
regulated by the same topological feature that governs the presence or the absence of a finite-temperature phase
transition.
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I. INTRODUCTION

When a ferromagnetic system is quenched to below the
critical temperature, a slow nonequilibrium phase-ordering
process takes place with domains of the ordered phases
increasing their size L(t) in time [1,2]. Typical examples
are ferromagnets, binary liquids, or alloys. When time is
large, due to the presence of the dominant length scale L(t),
dynamical scaling sets in [3–5]. The main features of this
structure, which is quite well understood in nondisordered
homogeneous systems, are expected to be valid also in the
presence of quenched disordered or when homogeneity is
spoiled. Recently, this has promoted a considerable effort to
understand coarsening phenomena in disordered and nonho-
mogeneous systems [6–23]. Particular attention was devoted
to the asymptotic growth law since, although a logarithmic
behavior was generally expected, a power law was also
sometimes reported [9–11].

In a recent paper [6], some of us studied a system—the site-
diluted Ising model (SDIM)—in which the interplay between
logarithmic and power-law growth can be fully understood,
and the occurrence of the two types of behavior can be
tuned by means of the amount of dilution. In the site-diluted
model, Ising spins are located on a substrate that is obtained
from a regular lattice by removing randomly a fraction D of
sites. In the pure case with D = 0, the usual temperature-
independent power law L(t) ∼ t1/z is obeyed, where z = 2
for a dynamics without conservation of the order parameter,
as it will be considered here. Upon increasing D, a region
with an asymptotic logarithmic behavior of L(t) is entered.
However, the situation changes when the critical value D = Dc

is reached, such that the fraction Pc = 1 − Dc of spins is at the
percolation threshold. In this case, a temperature-dependent

power law L(t) ∼ t1/ζ (T ) is observed. This is interpreted as
being due to the different topology of the substrate, for D < Dc

and for D = Dc, since in the former case it is compact on large
scales, while in the latter it is a percolation fractal. Notice that
the critical temperature Tc of the model, which is finite for
D < Dc, vanishes at the percolation threshold D = Dc.

The role of the substrate topology was also explored,
in a different context, in [12] where the coarsening of the
Ising model defined on deterministic fractal networks was
considered. There it was shown that, again, two types of
growth, namely logarithmic versus temperature dependent
power law, could be observed depending on the substrate
considered. In particular, it was argued that logarithmic
behavior is found on networks with a finite Ising critical
temperature, while temperature-dependent power laws are
observed on structures with Tc = 0.

The above findings suggest that the substrate topology,
which is responsible for the existence of the equilibrium
phase transition, might also be important in determining the
nonequilibrium growth law, leading to the conjecture that
temperature-dependent power laws are to be expected on
inhomogeneous or disordered systems with Tc = 0—such as
the SDIM at the percolation threshold—while logarithmic
behavior occurs when Tc > 0, as in the same model with
D < Dc.

In the above-mentioned cases, the Ising model is con-
structed on a substrate with topological properties obtained
by diluting the lattice either randomly or according to a
deterministic rule. Other thoroughly studied systems such
as the Ising model with random bonds or random fields are
defined on homogeneous lattices. In these cases, disorder pins
the interfaces whose evolution becomes site-dependent, and
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the growth law is observed to be much slower than in the
corresponding pure systems [14–17].

In this article, by studying an asymmetric version of
the random-bond Ising model, we argue that this is the
case. We explicitly exhibit the parameters controlling the
speed of growth and set them in order to produce either
a faster or a slower asymptotic growth law, which is well
compatible with algebraic or logarithmic behavior. These
parameters have a clear geometrical interpretation in terms of
topological properties of the bond network, and, accordingly,
one finds logarithmic or temperature-dependent power-law
growths. Our results suggest that there is a relation between
topology and growth law that could be a general feature of
inhomogeneous and/or disordered phase-ordering systems.

The paper is organized as follows. The random bond model
is defined in Sec. II. Numerical simulations are discussed in
Sec. III. To better understand the role of topology, a pair of
systems with Ising spins on deterministic fractal substrates are
introduced in Sec. IV. The study of these models allows us
to gain useful qualitative insights into the more complicated
random bond system. Finally, some open issues are briefly
discussed in the concluding Sec. V.

II. THE ASYMMETRIC RANDOM-BOND ISING MODEL

We consider an Ising model, hereafter referred to as the
asymmetric random-bond Ising model (ARBIM), which is
described by the following Hamiltonian:

H = −
∑

〈ij〉
Jijσiσj . (1)

Here σi = ±1 are spins on a two-dimensional (2D) square
lattice, 〈ij 〉 are nearest neighbors, and Jij = J0 + ξij are
positive coupling constants. The ξij are uncorrelated random
variables that can take two values ±ε, with ε � J0 to ensure
the positivity of Jij . The probability of occurrence P (ξij ) of
the two possible values ξij = ±ε is assumed to be generally
asymmetric with P (ξij = −ε) = d. To be concrete, let us
make the example of a case that will be important in the
following, with ε = J0. This situation corresponds to a model
with random coupling constants bimodally distributed on the
two possible values Jij = 0 and Jij = 2J0 occurring with
probability d and 1 − d, respectively. Therefore, this case
corresponds to the Ising model with Jij = 2J0 and bond
dilution, namely with a fraction d of the bonds removed.

A. Space of parameters

In the limit of low temperatures that we will always consider
in this paper, the model depends only on d and ε. In the
parameter space, sketched in Fig. 1, only the region with
0 � d � 1, 0 � ε/J0 � 1 is allowed since d is a probability
and because we limit our analysis to non-negative coupling
constants in order to avoid the different problem where
frustration occurs (notice that we use ε/J0 on the diagram
axis instead of ε).

In Fig. 1, the axes with d = 0, d = 1, and ε = 0 correspond
to the pure Ising model (i.e., there is no disorder in the
couplings). This is pictorially represented by drawing them
in blue.
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FIG. 1. (Color online) Parameter space of the model. The blue
lines on the left, right, and bottom of the figure correspond to a
pure system. Red and green heavy dots are the strong-disorder (S)
and percolative (W ) fixed points with ε = J0. Dot-dashed red and
continuous green heavy lines are the line of fixed points originating
from S and W upon changing ε (see Secs. III B and III C).

The point d = 1/2, ε/J0 = 1, hereafter referred to as W ,
will be particularly relevant in the following since, recalling
the discussion above, it can be regarded as a system with
uniform couplings Jij ≡ 2J0 but where a fraction d = dc =
1/2 of the bonds has been randomly removed. Since pc =
1 − dc = 1/2 is the bond percolation threshold, the system
is at the percolation point of the substrate. Let us recall here
that the Ising model defined on this percolative network is
characterized by Tc = 0. This is due to the presence of the
so called cutting bonds [24], namely isolated bonds whose
removal would cause the disconnection of arbitrarily large
parts of the structure. In this sense, the network is weak and
we denote this point with the letter W . Notice that the region
with ε/J0 = 1, d > dc, represented in brown in Fig. 1, is not
interesting since in that sector the substrate is disconnected
and asymptotic phase ordering cannot occur.

B. Time evolution

We implement nonconserved dynamics [1,2] by evolving
the spins with a single-spin-flip transition rates of the Glauber
form

w(σi → −σi) = 1
2

[
1 − σi tanh

(
HW

i /T
)]

. (2)

Here, HW
i is the local Weiss field obtained by the sum

HW
i =

∑

j∈Li

Jij σj (3)

over the set of nearest neighbors Li of i.
Before presenting numerical simulations, in the next section

we briefly overview the behavior of the closely related site-
diluted model.

1. The segment ε = J0 and the relation with the site-diluted model

It is useful to stress the close relation between the segment
ε/J0 = 1, 0 � d � dc of the present model and the SDIM
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studied in [6]. The latter has a fixed coupling constant, but
a fraction of spins is randomly removed with a probability
D (we use upper-case D to distinguish it from the ARBIM
disorder parameter d). ARBIM with ε/J0 = 1 differs from
SDIM because of bond dilution in place of site dilution.
Since we expect similar properties for the two systems, it
is useful to overview first the behavior of the SDIM. In this
model, the dilution parameter can be varied between D = 0,
corresponding to the pure Ising model, up to Dc = 1 − Pc,
where Pc � 0.5928 is the site percolation threshold. For D >

Dc, the substrate is disconnected and asymptotic coarsening
cannot occur, not differently from the ARBIM for d above dc.

In Ref. [6] it was shown that the SDIM kinetic properties
display a scaling structure that is most effectively described in
terms of three competing fixed points on the D axis, making
free use of renormalization-group terminology. The first is
the trivial one of the pure system, located at D = 0, and it
is associated with the usual power-law growth L(t) ∼ t1/2.
The second one is the percolative fixed point located at Dc,
and it is characterized by a temperature-dependent power-law
growth L(t) ∼ t1/ζ (T ). These fixed points are repulsive in the
sense that as soon as D > 0 or D < Dc, the asymptotic
dynamics is governed by a different fixed point, located at
D = D∗ � 0.225, to which a logarithmic increase of L(t) is
associated. Due to this fixed point structure, if the system is
prepared with an intermediate dilution between D = 0 and D∗
(or equivalently between D∗ and Dc), a crossover is observed
at a certain time tcross(T ,D) from an initial transient regime
governed by the nearest unstable fixed point (D = 0 or Dc,
respectively), with a power-law increase of the domain size,
to a late regime controlled by the attractive point at D∗,
characterized by a logarithmic L(t). As a result, the slowest
possible growth, namely the one where tcross(T ,D) is smallest,
is obtained at D = D∗, and comparing L(t) for different values
of D, one finds a nonmonotonous behavior: The growth slows
down in going from D = 0 to D = D∗ and then speeds up
again when D is further increased from D = D∗ up to D = Dc.
This can be used as a practical way to identify D∗.

Since the only difference between the ARBIM with ε/J0 =
1 and the SDIM is bond dilution replacing site dilution, we
expect to observe the same pattern with an attractive fixed point
associated with logarithmic growth and located somewhere in
between d = 0 and d = dc. This is represented in Fig. 1 by the
heavy red dot marked with the letter S, corresponding to the
dilution d = d∗. For this value of d, the growth law is expected
to be the slowest possible one in the sense discussed above.
Evidence for the existence of this fixed point will be discussed
in Sec. III.

III. NUMERICAL SIMULATIONS

We have performed a series of simulations of the ARBIM
by considering a cooling procedure in which the system is
prepared initially in the infinite-temperature disordered state
and, at the time t = 0, it is suddenly quenched to a finite
temperature T . If not specified differently, we use T = ε.
This temperature is chosen as a compromise between the
aim of studying the low-temperature sector, where dynamical
properties can be better interpreted, and the severe limits posed
by the slowing down of the dynamics for T → 0.

To speed up simulations, we have used a modification of
the dynamics introduced in Sec. II B where flipping spins in
the bulk of domains, namely those aligned with all the nearest
neighbors, is prevented. This modified dynamics does not alter
the behavior of the quantities in which we are interested, as it
has been tested in a large number of cases [6,24–26]. We have
checked that this is true also in the present study.

In our simulations, we have used sufficiently large system
sizes in order not to have any detectable finite-size effect in
the range of time accessed in the runs. Specifically, we have
considered a two-dimensional square lattice of N = L2 sites
with L in the range [103–(2 × 103)] for quenches in different
sectors of the parameter space of Fig. 1. For every choice of the
parameters, we have performed a certain number (in the range
10–100) of independent runs with different initial conditions
and thermal histories in order to populate the nonequilibrium
ensemble needed to extract the average quantities that will be
introduced below.

The observable of interest in this paper is the typical
domains size L(t). In homogeneous systems, this quantity is
trivially related by

L(t) = e−1(t) (4)

to the excess energy density

e(t) = 1

V
[〈H (t)〉 − 〈H 〉f ], (5)

where 〈H 〉f is the average energy of the equilibrium state at
the final temperature of the quench. Equation (4) simply states
that the excess energy is stored on the interfaces whose density
scales as the inverse of the size of the growing domains [1].

In the model considered here, the substrate can have
disconnected parts. This happens, for instance, for ε = J0 and
sufficiently large values of d. In this case, phase ordering
occurs independently and with different characteristics on the
various parts of the system, and, correspondingly, different
definitions of the growing length can be given. Let us consider
the case ε = J0, d = 1/2, where the substrate if formed by
an infinite spanning cluster and many finite-size parts. Since
we are interested in the aging phenomenon related to the
existence of a divergent length, one would define L(t,d) as the
characteristic length of the ordered regions that are effectively
growing. Keeping in mind the example with ε = J0, one can
argue that the quantity (4) introduced before is suited to the
task. Indeed, at any given time there will be a number of
sufficiently small disconnected parts of the substrate that are
already ordered. These pieces of the system do not contribute
to the computation of L(t,d) in Eq. (4), because a finite cluster
is by definition surrounded by bonds with Jij = J0 = ε = 0,
and hence there is no excess energy associated with it when its
inner spins are aligned. For this reason, in this paper we use
the determination (4) of L(t). A discussion of the relation
between Eq. (4) and other possible definitions of L(t) in
nonhomogeneous systems can be found in Ref. [6].

In the following, we will describe the behavior of the
ARBIM in different regions of the parameter space.

A. ε = J0

We start by investigating the line ε/J0 = 1 by varying
d. This corresponds to scanning the segment represented in
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FIG. 2. (Color online) Panel (a) (left) L(t) is plotted against t in a double-log plot for a quench of the ARBIM to T = ε, with ε = J0 and
different values of d specified in the key. The black-dashed line is the pure-case power law L(t) ∝ t1/2 and the green-dashed line is the fit
L(t) ∼ t0.22 at d = dc. In the upper inset, some of the curves of the main picture are plotted against ln t on a double-log plot. The orange-dashed
and blue-dashed lines are the fits y = 0.03(ln t)2.5 and y = 0.04(ln t)2.1, respectively. In the inset, the effective exponent 1/ζeff is plotted against
d . Panel (b) (right) L(t) is plotted against t in a double-log plot for a quench of the ARBIM to different final temperatures (specified in the key,
curves lower upon decreasing temperature), with ε = J0 and d = 0.5. In the inset, the exponent 1/ζ (ε = J0,T ,d = dc), obtained from a fit of
the curves from t = 102 onward, is plotted against T .

turquoise in Fig. 1. As discussed in Sec. II B 1, in this region
of the parameter space we expect to see behavior analogous
to that observed in the SDIM. Specifically, as the parameter
d is varied, one should observe power laws for L(t) when
d is set to the limiting values d = 0 and d = dc = 1/2, a
logarithmic behavior for a certain value 0 < d∗ < dc, and
a crossover from power law to logarithm for intermediate
values of d. Hence, comparing L(t) for different values of d, a
nonmonotonous behavior is expected, with a faster growth at
d = 0 progressively slowing down upon approaching d = d∗,
and then speeding up again in going from d = d∗ to d = dc.

As shown in the left panel of Fig. 2, this is precisely what
one observes in the ARBIM. Notice that here and in the
following, in order to better compare the asymptotic behavior
of L(t) as the parameters are changed, we plot L(t)/L(10) to
make the curves cross at the time tearly � 10 when the early
regime is over. In the case d = 0, one recovers the behavior
L(t) ∼ t1/2 of the pure case. As d is increased up to d∗ � 0.25,
L(t) gets slower and slower but it grows faster again above d∗.
Notice that at d = dc one has a behavior compatible with
a power law L(t) ∼ t1/ζ (ε,T ,d), with 1/ζ (ε = J0,T = ε,dc) �
0.22 in this case. The same power-law behavior is observed
also by quenching to different temperatures, as is shown in the
right panel of Fig. 2. Here it is shown that the growth is slower
for lower temperatures, signaling that ζ depends on T . Notice
also that, for low temperatures, the growth of L(t) is decorated
by periodic oscillations that can be interpreted as due to the
recurrent trapping of the interfaces on the pinning centers. The
value of ζ , extracted by fitting the data with a power law for
t � 102, is shown in the inset. Here it is observed that 1/ζ is
an increasing function of the temperature with a tendency to
saturate for large T . For values 0 < d < dc, the curves bend
downward, signaling a slower logarithmic growth.

In the upper set of Fig. 2, some of the curves displayed in the
main picture are plotted against ln t on a double-logarithmic

scale. In this plot, a logarithmic law L(t) ∼ (ln t)ψ looks like
a straight line with slope 1/ψ . Here one sees that, while the
curves for d = 0 and d = dc tend to bend upward, signaling
a growth faster than a logarithmic one, the ones for d = 0.1
and 0.25 can be interpreted as slowly converging to a straight
line. For completeness we mention that, fitting the data from
the last decade with the above logarithmic form, we find
1/ψ = 2.5, 2.4, 2.1, and 2.5 for d = 0.05, 0.1, 0.25, and
0.4, respectively. These values, however, should be taken as
a qualitative indication, due to the difficulty to fit logarithmic
forms.

To better illustrate this pattern of behaviors, we have
computed the effective exponent 1/ζeff, which is obtained by
fitting the curves to a power law in the last time decade. This
is a tool to compare the speed of growth of the different curves
since, as we noticed already, a power law is only observed
at d = 0 and d = d∗. The effective exponent is plotted in the
inset of the figure, showing very clearly the nonmonotonous
behavior of the growth law as d is varied.

Finally, it should be mentioned that at d = dc one has
Tc = 0, hence our quenches are in this case above the
critical temperature. Therefore, we expect that the system will
eventually reach the final equilibrium state in a finite time even
forL → ∞, and the coarsening phenomenon we are observing
is not a truly asymptotic behavior. However, as discussed in
[6], this preasymptotic stage lasts for a time that diverges in the
T → 0 limit, similarly to what happens in the one-dimensional
Ising model [26,27].

B. ε < J0

Evidence supporting an interpretation in terms of the
existence of three fixed points along the ε = J0 axis was
discussed in the preceding section. Here we show that a similar
structure is observed for any value of ε. To do that, we have
scanned the parameter space by a set of cuts along lines with
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FIG. 3. (Color online) L(t) is plotted against t in a double-log plot for a quench of the ARBIM to T = ε, with ε = 3/4 J0 and different
values of d specified in the key. Panel (a) (left) shows the cases with 0 � d � dc, the right one those with dc � d � 1. The inset is a zoom
on the curves in the last two decades. The black-dashed line is the pure-case power law L(t) ∝ t1/2. The green-dashed line is the power law
L(t) ∝ t0.2. In the upper inset, some of the curves of the main picture are plotted against ln t on a double-log plot. The orange-dashed line is
the fit y = 0.03(ln t)2.4. Panel (b) (right) shows the cases with dc � d � 1. In the inset, the behavior of the effective exponent 1/ζeff is shown
for the whole range of 0 � d � 1.

fixed ε. An example (with ε = 3/4 J0) is shown in Fig. 1 with
a horizontal dashed magenta line. The behavior of L(t) along
this line is reported in Fig. 3. Even if, when ε < J0, asymptotic
coarsening occurs for any value of d (the brown region in
Fig. 1 is peculiar to the case with ε = J0) for sufficiently low
temperatures, in order to compare the data to those for ε = J0

discussed in the preceding Sec. III A (Fig. 2), let us initially
restrict the discussion to the cases with d � dc = 0.5, which
are shown in the left panel of the figure. For these values of
d we see a pattern qualitatively similar to that observed for
ε = J0 (Fig. 2): Starting from the power law L(t) ∼ t1/2 of the
pure case d = 0, the growth of L(t) slows down up to a certain
value d∗(ε) � 0.3 and then speeds up again, reaching at d =
dc = 1/2 a form compatible with a power law L(t) ∼ t1/ζ (ε,T ,d)

with an exponent 1/ζ (ε = 3/4 J0/2,T = ε,d) � 0.2 roughly
similar to the one 1/ζ (ε = J0,T = ε,dc) � 0.22 observed for
ε = J0. The most notable difference with the case ε = J0

is the somewhat larger value of d∗, since we have here
d∗(ε = 3/4 J0) � 0.3 > d∗(ε = J0) � 0.25. The fact that d∗
is closer to dc than for ε = J0 makes the corresponding curves
closer and the nonmonotonic behavior less evident than in
Fig. 2 (this can be better appreciated in the lower inset of the left
part of Fig. 3, where a magnification the large-time portion of
the figure is shown, or by inspection of the effective exponent
1/ζeff reported in the inset of the right panel of the figure). In
the upper set of Fig. 2, some of the curves displayed in the main
picture are plotted against ln t on a double-logarithmic scale
since, as explained in Sec. III A, this is a useful representation
to check for a logarithmic growth law. While the curves for
d = 0 and d = dc bend upward, signaling a growth faster than
a logarithmic one, the curve for d = 0.1 can be interpreted,
also in this case, as converging to a straight line. Fitting all the
data in the last decade with the logarithmic form of Sec. III A,
one finds 1/ψ = 2.4, 2.3, and 2.1 for d = 0.1, 0.2, and 0.3,
respectively.

Clearly, although the overall behavior is similar, the inter-
pretation of the cases with ε < J0 cannot follow literally the
one for ε = J0, which relied on the geometrical properties of a
diluted system. However, this very same pattern of behaviors
suggests that, since at low temperatures interfaces are located
preferentially on the weak bonds Jij = J0 − ε, what really
matters is the topology of the network of this set of bonds. At
d = dc = 1/2, such a network is a percolation fractal, and this
turns the logarithmic growth into a power-law one.

Let us now go back to the data with d > dc = 1/2 (still
with ε = 3/4J0), where, at variance with the case ε = J0

discussed in Sec. III A, asymptotic phase ordering may still
occur. In this region, one observes in the right panel of Fig. 3
that the curves bend upward as time elapses. Furthermore,
the growth law becomes faster and faster as d is raised from
d = dc up to d = 1. This can be interpreted as follows: Right
at d = 1 the system is a pure one with Jij ≡ J0 + ε and
the power law L(t) ∼ t1/2 holds. This is analogous to the
case with d = 0, apart from a trivial shift of the value of
the coupling constants. However, starting from this pure case
with d = 1, the effect of lowering d is very different from the
one occurring when, starting from the pure case d = 0, d is
increased. In the former case, by lowering d one introduces
strong bonds Jij = J0 + ε in a majority background of weak
ones Jij = J0 − ε. Instead, in the second case, by increasing d

one does precisely the opposite, introducing strong bonds in a
background of weak ones. Although these two situations might
look symmetrical on purely geometrical grounds, they are not
so from an energetic point of view. In fact, a weak bond acts
as an attractive pinning point for a wandering interface, and
an activation energy is required to leave it. This brings in the
slow logarithmic growth law for 0 < d < dc. Conversely, for
d > dc the strong bonds form finite repulsive regions that the
interfaces manage to overcome without activation. Therefore,
in the whole region with d > dc, coarsening is expected to
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proceed over the compact network of weak bonds with the
pure asymptotic growth law L(t) ∝ t1/2.

Clearly, for d larger than dc but sufficiently close to dc, we
expect a crossover phenomenon with a growth law initially
influenced by the presence of the nearby W line. The purelike
growth law should set in when the domain size L(t) has grown
larger than the typical size of the clusters of strong bonds Jij =
J0 − ε. Hence the crossover to the late L(t) ∝ t1/2 behavior
should occur earlier upon increasing d.

These expected behaviors are consistent with what we
observe in Fig. 3. The data show a gradual crossover as d

is increased above dc, which occurs before raising d. The
upward bending of the curves shows that the effective exponent
is bound to increase above the values measured in the time
accessed in the simulations. For d = 0.9, the growth law is
asymptotically very close to the pure one, as indicated by the
effective exponent 1/ζeff � 0.46 (see inset), which grows up
to 1/ζeff � 0.47 if computed for t > 5 × 105.

Repeating the simulations for different values of ε, in
the whole range 0 < ε � J0, we find a structure similar to
the case ε = 3/4J0 discussed so far, with a value of d∗
that steadily increases as ε is lowered [specifically we find
d∗(ε = J0/2) � 0.35, d∗(ε = J0/4) � 0.4 − 0.45)]. This can
be interpreted as a line of attractive fixed points, pictorially
drawn dot-dashed in red in Fig. 1, which, starting from S,
reaches the d axis. Next to it, there is also a line of W -like
points that starts from W (depicted in green). Along this
line, the two kinds of bonds (Jij = J0 ± ε) are arranged
on a percolation network and L(t) ∼ t1/ζ (ε,T ,d), similarly to
what occurs at W . Concerning the exponent ζ (ε,T ,d), we
have found 1/ζ � 0.2, roughly irrespective of the value of ε,
suggesting that this exponent depends sensibly only on the
ratio ε/T . The power-law behavior observed at dc and the
properties of the exponent ζ can be understood by considering
what is observed on a simple model based on a deterministic
fractal network, as we will discuss in Sec. IV C.

C. Summary of the results for the ARBIM

Let us briefly summarize the results for the ARBIM. First
of all, our results confirm the existence of a rich interplay
between the behavior of the pure system and two other types of
dynamical behaviors caused by the inhomogeneities, which are
characterized, respectively, by logarithmic or by temperature-
dependent power-law growth of L(t). This can be interpreted
along the lines of what has been previously found for the
SDIM: Moving along the segment with ε = J0 (turquoise in
Fig. 1), one encounters three fixed points: the pure one at d = 0
and those denoted with the letters S and W . W is located at
the percolation point dc = 0.5 and S at a value d∗(ε = J0) �
0.25 roughly half-way between d = 0 and d = dc. At W the
topology of the substrate is such that the critical temperature
of the Ising model defined on it is Tc = 0, and this, according
to the conjecture proposed in [12], implies a power-law growth
L(t) ∼ t1/ζ . Since W is a repulsive fixed point, the dynamics
is always ruled by the attractive point S for any 0 < d < dc,
resulting in an asymptotic logarithmic growth. However, the
power laws associated with the pure fixed point with d = 0
or to W may show up preasymptotically due to a crossover
phenomenon.

We have found that this same pattern persists also for ε <

J0. Hence, this means that S and W are not isolated fixed
points, but that each of them belongs to two lines of fixed
points extending from ε = J0 down to ε = 0. In particular, the
W line appears to be located at d = 0.5, irrespective of ε, and
it is characterized by the asymptotic power law L(t) ∼ t1/ζ .
This means that in the low-temperature limit, what matters
for power-law growth is that the network of the two kinds of
bonds is at the percolation point. An argument developed for
a deterministic fractal structure supporting the existence of a
power-law growth also for ε �= J0 will be presented in Sec. IV.
The location of d∗, on the other hand, is found to depend on ε

and to approach dc as ε → 0, as pictorially shown in Fig. 1.
In agreement with the above structure, the growth law has

been found to display the following features:
(i) Quenches to a region where the system is pure (blue

lines in Fig. 1): pure power-law behavior L(t) ∝ t1/2 from an
early microscopic time tearly(ε,T ,d) onward.

(ii) Quenches to the S line (dot-dashed red line in Fig. 1):
logarithmic behavior L(t) ∝ (ln t)1/ψ from the microscopic
time tearly(ε,T ,d) onward.

(iii) Quenches to the W line (continuous green line in
Fig. 1): disordered power-law behavior L(t) ∝ t1/ζ (ε,T ,d) from
tearly(ε,T ,d) onward. Our data suggest that ζ depends sensibly
only on the ratio ε/T .

(iv) Quenches to a point with disorder on the left of the
S line: A crossover from an early pure behavior L(t) ∝ t1/2

for tearly(ε,T ,d) < t < tcross(ε,T ,d) to logarithmic behavior
for t > tcross(ε,T ,d) [with tcross(ε,T ,d) decreasing toward
tearly(ε,T ,d∗(ε)) upon approaching the S line].

(v) Quenches between the S and the W line: A crossover
from an early disordered power-law behavior L(t) ∝ t1/ζ (ε,T ,d)

for tearly(ε,T ,d) < t < tcross(ε,T ,d) to logarithmic behavior for
t > tcross(ε,T ,d) (with tcross increasing upon approaching the
W line).

(vi) Quenches to a point with disorder on the right
of the W line (only for ε < J0): A crossover from an
early disordered power-law behavior L(t) ∝ t1/ζ (ε,T ,d) for
tearly < t < tcross(ε,T ,d) to the pure behavior L(t) ∝ t1/2

for t > tcross(ε,T ,d) [with tcross(ε,T ,d) decreasing toward
tcross(ε,T ,d = 1) moving away from the W line].

We mention that the pattern of asymptotic behaviors
summarized above is a low-temperature feature.

IV. DETERMINISTIC FRACTAL NETWORKS

In this section, we study two deterministic fractal networks
that can be considered as a simple paradigm explaining the
ARBIM dynamical behavior. The structures that we will
consider are generalizations of the Sierpinski gasket (SG) and
of the Sierpinski carpet (SC). As we will discuss below, these
networks can be considered as representative of structures with
a vanishing or with a finite critical temperature, respectively.

The SG is a network that can be built recursively as shown
in Fig. 4 (upper panel). Starting from a primitive three-spin
triangular object, the so called generation-one, the second
generation is built by merging three generation-one structures,
and the procedure is then repeated many times iteratively. As
can be seen in the lower panel of the figure, the SG can be
embedded on a triangular lattice. In this picture, the bonds of
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FIG. 4. (Color online) Upper panels: recursive construction of
the SG and of the SC. Lower panel: the SG (in black) embedded
in a triangular lattice (dashed-red line). Bonds marked with a blue X
are the cutting bonds.

the lattice belonging to the fractal network are plotted in black
while the remaining ones, in the voids of the SG, are red. In
this way, the SG can be regarded as a triangular lattice with
a deterministic bond dilution. Notice that the SG is a weak
structure, in the sense previously discussed for the percolation
network, because the removal of a finite number of links can
serve to disconnect arbitrarily large parts of the structure (an
example of such cutting bonds is shown in Fig. 4). For this
reason, the critical temperature of the Ising model on the SG
is Tc = 0.

The SC [28] is a structure similar to the gasket, for which
the recursive construction starts with a primitive four-spin
square object, as shown in Fig. 4. Similarly to the SG, it can
be embedded in a two-dimensional regular lattice, although
squared instead of triangular. The most important difference
between the SC and the SG is that cutting bonds, which are
present in the former, are absent in the latter. Related to that,
the critical temperature of the Ising model defined on the SC
is finite.

We now introduce a spin model on the embedding lattices
of these structures (either triangular or squared) by defining
Ising variables governed by the Hamiltonian (1). The coupling
constants Jij take the value J0 + ε on the primary network
(either the SG or the SC), and J0 − ε in the voids (namely
the dashed-red bonds in Fig. 4) and similarly for the SC.
Clearly, for ε ≡ 0 one recovers the usual Ising model on
the homogeneous (triangular or squared) lattice, and ε = J0

corresponds to the Ising model defined on the original SG and
SC fractal networks.

The dynamics is that described in Sec. II B. The models
introduced above will be denoted in the following as the
generalized Sierpinski gasket (or carpet) Ising model (GSGIM
or GSCIM).

A. Simulation details

We have performed a series of numerical simulations of the
deterministic fractal models described above by considering
quenches to different final temperatures for a SG of N =
2 100 225 sites, corresponding to a fractal network of the 11th
generation, and on a SC of N = 2 125 764 sites, corresponding
to a fractal of 7th generation. Data are averaged over 2–500
independent runs. The other details of the simulations are as
described in Sec. III for the ARBIM.

B. ε ≡ J0

Let us start by recalling what is known for the phase
ordering of the Ising model with a coupling constant J on
the usual SG. Since this is a diluted structure with Tc = 0,
it can be considered to be comparable in some sense to the
GSGIM with the choice J0 = J/2, ε = J0, namely at the point
W . The Ising model on the SG was studied in Refs. [12,23],
where it was shown that L(t) grows as a power law with a
temperature-dependent exponent L(t) � t1/ζ (T ). This has to
be compared to what was observed in the ARBIM at the fixed
point W where, as shown in Sec. III A, a similar power law
is observed. For low temperatures, the algebraic behavior is
decorated by a periodic oscillation that, as discussed in [12,23],
is related to the recursive construction of the network. We
notice, by the way, that similar oscillations are observed also
in disordered models, such as the ARBIM considered above,
at sufficiently low temperatures (lower than the ones used
for simulations in this paper). In [12] it was shown that the
algebraic behavior can be understood in terms of the scaling
of the barriers, which tend to pin the displacement of interfaces.
In the following, we briefly sketch the argument (more details
can be found in Ref. [12]).

Figure 5 illustrates pictorially the evolution of an interface
that progressively spans a part of the structure. Initially, the
position of the domain wall is outside the figure, in the left
corner. This means that all the spins are, say, down. As time
goes on, the interface enters the graph by moving across the
intermediate position I (max)

n indicated by a dotted green line
(this means that spins on the left of the green line have been
reversed up). The index n refers to the fact that the interface is
currently spanning the nth generation of the fractal network.
When the spins of the whole generation n have been reversed,
the interface, depicted with two green continuous arches in the
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L(n)
L(n+1)

FIG. 5. (Color online) Sketch of the movement of an interface on
the SG.

middle of the structure, is located in the configuration I (min)
n

on the four cutting bonds. Since the energy of a domain wall
is 2J times its length, it is clear that in I (min)

n the interface
has a minimum energy E(min)

n = 8J (notice that this quantity
is independent of n). Let us assume that the highest energy
E(max)

n of the system during the above process was reached in
the (generic) configuration I (max)

n , so that a barrier of height
En = E(max)

n − E(min)
n has been crossed. Now the interface must

proceed again to the right in order to reverse all the spins of
the next generation n + 1, thus reaching the position I

(min)
n+1

located on the other four cutting bonds, and indicated by the
couple of continuous magenta arches on the upper and lower
right corners of the structure (all the spins in the figure at this
stage have then been reversed). Also this configuration has
an energy equal to E(min). This configuration can be reached
by sequentially reversing parts of generation n of the structure
(e.g., by first reversing another triangle of generation n, say the
lower-right one in Fig. 5). This event is analogous to the one
described before. In particular, the interface in the intermediate
position I

(max)
n+1 , depicted with a dashed-magenta line on the

right of the structure, is analogous to the previous one at I (max)
n

(dotted-green), except for the presence of an extra part, which
in the present example is indicated with a dashed-magenta
arch in the middle of the left side. Denoting with E

(max)
n+1 the

maximum energy reached by the system in the reversal of the
n + 1 generation, one concludes that E

(max)
n+1 = E(max)

n + 4J ,
where 4J is the extra amount of energy due to the new part of
interface (the dotted-magenta arch in the middle of the left side
in the figure). Then En+1 � En + 4J . Rewriting E in terms of
the size Ln � 2n − 1 of the nth generation, using Ln+1 � 2Ln,
one has E(2Ln) � E(Ln) + 4J . From this relation, dropping
the index n, one has E � 4J

ln 2 ln L. Assuming an Arrhenius time

t ∝ e
E

KB T to overcome the barrier, we arrive at an algebraic
growth law L(t) ∼ t

1
ζ (T ) with

ζ � 4

kB ln 2

J

T
(6)

at low temperatures. The argument has been developed for
the particular SG structure, but it is expected to hold more
generally for any finitely ramified deterministic fractal network
and also for disordered structures with Tc = 0, since the
key ingredient is their weakness, namely the possibility to
disconnect an arbitrarily large part of the network by cutting a
finite number of links. Due to that, the energy barriers that trap
the interfaces on the cutting bonds grow as slow as a logarithm
of the size of the domains.

A completely different situation is encountered when the
Ising model is defined on the SC. In this case, due to the
absence of cutting bonds, an argument similar to one presented
above shows that the pinning energy of the interfaces grows
faster—in an algebraic way—with the size of the ordered
domains. Details can be found in [12].

C. 0 < ε < J0

We have shown in Sec. III B that in the ARBIM, the
characteristic power-law behavior L(t) ∼ t1/ζ of the point W is
observed not only at W but along the whole line with d = 1/2;
the only effect of changing ε is possibly to change the exponent
1/ζ . Our analogy suggests that the same behavior should be
observed also in the GSGIM. We have performed a set of
simulations with a small value of J0/ε (ε/J0 = 10−1) and
another for a much larger value of this parameter (ε/J0 = 0.9).
For each choice of ε, we have considered different values of
the quenching temperature T . The results of our simulations
are shown in Fig. 6.

Starting with the case with ε/J0 = 10−1 (left panel of
Fig. 6), we see that, as expected, the growth of L(t) is similar
to the one observed in the Ising model on the SG (namely
the case with ε/J0 = 1), namely a power law decorated by
periodic oscillations whose amplitude increases upon lowering
T/ε. This behavior is also analogous to what was observed in
the ARBIM for d = 1/2 (except for the oscillations), where
the network of bonds with Jij = J0 + ε is a percolation fractal
for which the Ising critical temperature vanishes as in the SG.

For ε/J0 = 0.9 the situation is qualitatively similar, with the
quantitative difference of a much slower growth, for a given
temperature, with respect to the case for ε/J0 = 0.1. This is
expected since the height of barriers is related to ε. However,
comparing curves for ε/J0 = 0.9 and ε/J0 = 10−1 with a
similar value of ε/T , one finds roughly similar exponents (for
instance, for ε/J0 = 0.1,T = 0.2 and ε/J0 = 0.9,T = 2 one
has 1/ζ � 0.23 and 1/ζ � 0.21, respectively, and for ε/J0 =
0.1,T = 0.3 and ε/J0 = 0.9,T = 3 one has 1/ζ � 0.34 and
1/ζ � 0.31, respectively). This shows that the growth law
depends at most weakly on the parameter ε/T .

To understand the origin of these behaviors, we go back
to the argument of Sec. IV B for the Ising model on the SG.
When the interface is in the configuration I (min)

n sketched with
two continuous-green arches in the middle of the structure in
Fig. 5, the lower-left triangle ABC of Fig. 4 contains up-spins
and the rest of the structure is down (and there are no spins
in the voids). The next spin to be reversed is one of those
marked with a bold-green circle. Since these are equivalent, to
be concrete let us choose it to be the one denoted by the letter
p. The energy needed to flip it is easily computed to be

Ep = 4J. (7)
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FIG. 6. (Color online) L(t) for the GSGIM with ε/J0 = 10−1 [panel (a), left] and ε/J0 = 0.9 [panel (b), right].

In the case of the GSGIM, the dynamics proceeds along
the same lines. However, starting again with the interface in
the configuration with two continuous-green arches, besides
the spin marked with the green circle in Fig. 4, also those
indicated by a heavy violet box can flip. Computing the
energetic barriers, one can easily see that one of the latter
is the next spin to be reversed (for which the energy barrier is
lower). Let us stipulate this to be the one denoted with the letter
q. The energy cost turns out to be 4(J0 − ε). After reversing
q, spin p will be flipped, which requires an energy 8ε. The
maximum energy required to arrive at flip p is then

EGSGIM
p = max[4(J0 − ε),8ε]. (8)

At this point we are left with the situation reached by the Ising
model on the SG described before, since the blocked spin p has
been flipped, and we can repeat the argument developed before
to arrive at the conclusion that also in this case barriers grow
logarithmically with the size of the domains, which in turn
implies a temperature-dependent power-law growth of L(t).
Notice, however, that in the case of the GSGIM, the reversal
of p has been facilitated by the intermediate flipping of q.
This, as we will show below, lowers the energy of the pinning
barriers [still maintaining the logarithmic scaling with L(t)].
To show this, we must compare the energy scale to flip p in
the GSGIM Eq. (8) to the one (7) of the Ising model on the
SG with a coupling constant J = (J0 + ε) (namely, the one
obtained from the GSGIM by removing altogether the bonds
in the voids of the SG). The latter turns out to be always higher
for ε < J0. Then, we can conclude that the evolution is faster
in the GSGIM, or, in other words, that the addition of the extra
dashed-red bonds of Fig. 4 speeds up the dynamics. Indeed,
for instance, extracting the effective exponent for the case
with ε/J0 = 10−1,T = 1 we find 1/ζ � 0.46, a much larger
value than that found for the Ising model on the SG with J =
J0 + ε = 1.1 at the same temperature, which is 1/ζ � 0.23.

To check the consistency of our conjectures, we have
performed a series of simulations analogous to those for the
GSGIM also for the GSCIM. In this case, since on the SC
cutting bonds are absent and the Ising model defined on it has
Tc > 0, we expect to see a situation similar to that observed

in the ARBIM away from the line of fixed points W , namely
an asymptotic logarithmic law for the domains size. For the
Ising model defined on the SC, in fact, it was shown in [12]
that this is indeed the case. For the GSCIM the results for
L(t) are presented in Fig. 7. From the inset of this figure one
sees that on a double-log plot the data clearly bend downward
for both values of ε/J0 considered. This indicates that the
growth of the domain size is lower than a power law. In the
main figure, the same data for L(t) are plotted against ln t , still
in a double-logarithmic scale. For a growth like L ∼ (ln t)φ

in this kind of plot, one should observe a straight line with
slope φ. Due to the oscillating character of the data, there
is no clear-cut evidence of the real form of L(t). However,
particularly for the higher values of temperatures considered,
one can conclude that at least logarithmic behavior describes
the data much better with respect to a power law. Notice that,
also in this case, curves with comparable values of ε/T behave
quite similarly, suggesting that this combination of parameters
only weakly affects the dynamics.

D. Summary of the results for the GSGIM and analogies with
the ARBIM

In summary, we have shown the following analogies
between the ARBIM and the paradigmatic models based on
deterministic fractal networks:

(i) For ε = J0, when the randomness of the coupling con-
stant amounts to bond dilution, one finds a power-law growth
of the ordered domains (possibly with periodic oscillations)
in those cases with weak diluted networks. This means the
ARBIM at the percolation threshold or the GSGIM (since the
SG has Tc = 0).

(ii) One finds power-law growth also for ε < J0 in those
cases in which the network of the stronger bonds Jij = J0 + ε

is weak, i.e., in the ARBIM on the green W line schematized
in Fig. 1, or in the GSGIM.

(iii) The growth law slower than a power law (of a logarith-
mic type) in all the other cases, namely when the network of
bonds with Jij = J0 + ε is not weak. This corresponds to the
region of parameter space of the ARBIM away from the green
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FIG. 7. (Color online) L(t) for the GSCIM with ε/J0 = 10−1 [panel (a), left] and ε/J0 = 0.9 [panel (b), right].

W line of Fig. 1 or, considering the fractal structures, in the
GSCIM for any choice of the parameters.

These observations can be rationalized as follows: The
GSGIM depends on the quantities ε/J0, T/J0, whereas in the
ARBIM the extra parameter d is also present. The network of
bonds Jij = J0 − ε of the GSGIM, being a SG, is always weak.
The dynamics of this model can then be understood consider-
ing that, in a sense, changing ε corresponds to driving the AR-
BIM along the green W line. On the other hand, the GSCIM,
which is based on a structure with no cutting bonds, corre-
sponds to the ARBIM away from the line of fixed points W .

V. CONCLUSIONS AND PERSPECTIVES

This paper was devoted to the study of phase-ordering on
inhomogeneous systems, focusing on the growth law of the
ordered domains. Previous studies on systems with site dilu-
tion, either random [6] or deterministic [12], suggest that the
growth law is strongly affected by the topological properties of
the substrate, namely the network of nondiluted sites, similarly
to what is known for equilibrium properties. Specifically, it
was shown that the growth law is of a logarithmic type if the
substrate is such that a finite-temperature phase transition is
present, whereas it turns into a power law on networks that
do not support such a phase transition. This suggests that a
similar correspondence could be at work also in systems with
different kinds of inhomogeneities.

In this paper, we have studied this possibility by consider-
ing, as a first step, a system with bond dilution, a source of
inhomogeneity that is different, but as close as possible, to that
of site-diluted systems. In addition to addressing the problem
of the influence of topology on nonequilibrium processes, our
study is also meant to possibly shed some light on the nature
of the power-law-like preasymptotic regime in ferromagnetic
systems with a random bond distribution [16,18]. In this
perspective, we have undertaken a thorough investigation of
the nonequilibrium evolution of a quenched random-bond
Ising model, the ARBIM, in which two kinds of bonds with
strength Jij = J0 ± ε occurring with relative probabilities d,
1 − d, are randomly seeded on a two-dimensional square

lattice. This allows us not only to study the case of bond
dilution, corresponding to ε = J0, but also the generic case
that, as discussed above, is relevant to the physics of disordered
ferromagnets.

Our study shows that the whole pattern of behaviors of the
model as its parameters (such as ε, the quench temperature, and
d) are varied can be interpreted in terms either of logarithmic or
power-law growth laws, and of crossover phenomena between
them, similarly to what was found in models with site dilution
[6]. For ε = J0, when the randomness of the bonds amounts
to a dilution, this interplay can be interpreted in terms of the
topology of the substrate. Interestingly, this very interpretation
provides a framework to the behavior of the system also for
ε �= J0, where the form of bond randomness does not amount
to simple dilution.

To check the generality of such an interpretation, and
in order to study the phenomenon on simpler systems, we
have also considered a ferromagnetic model defined on deter-
ministic substrates, such as the Sierpinski carpet and gasket,
which do (or do not, respectively) support a finite-temperature
phase transition. According to the general conjecture put
forth in [12], these models should represent two paradigmatic
examples of logarithmic and power-law growth, because these
behaviors are not expected to depend on specific details of the
system, but they only rely on the presence of a critical point.
Since these structures have the advantage to be deterministic,
they can be regarded as toy systems in which the properties
observed in the more complex disordered cases, as in the
ARBIM model, can be more carefully studied, checked, and
possibly understood. Indeed, by defining an Ising model with
the same bimodal distribution of bonds as in the ARBIM, we
were able to identify a similar pattern of behaviors to the one
observed in the ARBIM.

Since the occurrence of preasymptotic power laws followed
by a logarithmic growth is observed also in systems with
different kinds of quenched disorder, such as, for instance,
random fields, it would be interesting to understand if a
similar interpretation applies also in these cases. This would
promote the conjecture put forth in this paper to a more general
character.
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Next to the behavior of L(t), the role of disorder (and
more generally of any source of inhomogeneity) is relevant for
the form of the scaling functions of correlation and response
functions [29]. In particular the so-called superuniversality
[20], namely the property according to which L(t) should
depend on the strength of the disorder while the scaling func-
tions should not, after some initial confirmations [8,10,13,19],
has been recently questioned [6,14,16,17]. In this respect,
the results of this paper and their interpretation in terms of

competition between different scaling behaviors strengthen
previous findings against superuniversality.
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