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Ising antiferromagnet on the Archimedean lattices
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Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean
lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and
residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual
entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them
were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and
one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have
the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
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I. INTRODUCTION

The Ising model [1] has played a crucial role to understand
the phase transition and magnetic ordering. There exists a
phase transition at finite temperature from a high-temperature
disordered phase into a low-temperature ordered phase in a
lattice of two and three dimensions, if it is not frustrated [2–5].
With frustration, the Ising model has various ground states
such as long-range-ordered phase, spin glass, spin ice, and spin
liquid phase [6,7]. Frustration can be induced in two ways: by
disorder (spin glass) or by geometry (geometrically frustrated
systems) [8]. In this paper, effects of the geometric frustration
are investigated systematically for the antiferromagnetic Ising
model on the two-dimensional Archimedean lattices.

An Archimedean lattice, also called as a uniform tiling,
is a two-dimensional lattice of regular polygons in which all
vertices are topologically equivalent. It is known that Kepler
proved that there exist only 11 Archimedean lattices [9], which
are listed in Fig. 1 and Table I. They are important not only in
mathematics but also in materials science, because most of the
lattices have corresponding natural material systems [10,11].
Since all vertices are in the same topological environment, they
can be labeled by the sequence of the polygons surrounding
a vertex [9]. For example, a square and a triangular lattice
are represented by (44) and (36), respectively. We follow
the naming convention of Ref. [10], where homopolygonal
lattices (T1, T2, T3) are followed by heteropolygonal lattices
(T4, . . . , T11). Due to the simplicity, the Archimedean lattice is
a good starting point to study geometric frustration. With the
antiferromagnetic nearest-neighbor interaction, four lattices
are bipartite and unfrustrated, and the other seven lattices are
frustrated.

There have been systematic studies about percolation on
the Archimedean lattices [12,13]. As for the magnetic models,
the ferromagnetic Ising model [14] and antiferromagnetic
quantum Heisenberg model [10,15] were studied. In this paper,
we report detailed study of the antiferromagnetic Ising model
on the Archimedean lattices. Specific heat, exact residual
entropy, and freezing order parameter are obtained to identify
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the ground state. Finite temperature phase transitions in weakly
frustrated lattices are also discussed.

II. MODEL AND METHOD

The Ising model studied in this work is represented by the
following Hamiltonian:

H = −J
∑

〈i,j〉
SiSj . (1)

The spin at the ith site Si may take the values of +1 or −1, only.
The summation runs for all the nearest-neighbor pairs, exclud-
ing double counting. The coupling constant J is set to −1 and
|J |/kB is used as an energy unit, where kB is the Boltzmann
constant. Negative J means an antiferromagnetic interaction.

The calculation was done for parallelepiped lattices with
number of sites N = B×L×L with the periodic boundary
condition. B is the number of sites per unit cell and L is the
linear size. Without frustration, the most efficient algorithm for
the Ising model is the combination of the Wolff cluster update
[17] and the histogram reweighting [18,19]. In the ferromag-
netic (antiferromagnetic) case, a cluster is made by adding
nearest neighbors of the same (opposite) spin with a probability
P = 1 − exp(−2/T ). When a cluster is completed, all spins of
the cluster are flipped. The cluster update is not efficient away
from the critical temperature, where the cluster size is too small
(at high temperature) or too large (at low temperature). Close
to the critical temperature, the cluster size is moderate and the
critical slowing down can be eliminated. The information of
energy and magnetization distribution at a fixed temperature
is used by the histogram method to calculate thermodynamic
quantities at any temperature near the simulation temperature
[20]. With frustration, however, cluster-update methods do
not work because the cluster may include the whole lattice
and cluster size becomes too large even without a phase
transition. Therefore, we used the Wang-Landau algorithm
[21] in this study. While conventional Monte Carlo methods
such as the Metropolis [22] and the Wolff algorithm [17]
perform a simulation within the canonical ensemble at a
fixed temperature, the Wang-Landau algorithm calculates
the density of states (DOS) as a function of energy ρ(E)
directly by the random walk with the transition probability
P (i → j ) = min{1,ρ(Ei)/ρ(Ej )} in the whole energy space.
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FIG. 1. (Color online) The 11 Archimedean lattices. Lattice
points in the same unit cell are represented by circles of the same
color (grayscale).

The DOS is adjusted by ρ(E) → fn ρ(E) at each step resulting
in a flat histogram in the energy space. The simulation
continues until the histogram becomes flat, when its standard
deviation is less than 4% of its average. Then, a new iteration
is performed with a smaller value of fn+1 = √

fn. The whole
simulation begins with an initial multiplier f0 = e and stops
when fn becomes close enough to 1: fn < exp(10−10). The
error in DOS depends on many factors, but can be assumed to
be the same order as ln(fn) if the calculation is proper. Since
the random walk is in the whole energy space, it is not stuck to
a metastable state and can be applied to any system even with
frustration or first-order transition. From the obtained ρ(E),
the average energy 〈E〉T and the specific heat c(T ) can be
calculated easily as a function of temperature T :

〈E〉T =
∑

i Ei ρ(Ei) e−Ei/T

∑
i ρ(Ei) e−Ei/T

, (2)

〈E2〉T =
∑

i E
2
i ρ(Ei) e−Ei/T

∑
i ρ(Ei) e−Ei/T

, (3)

c(T ) = 〈E2〉T − 〈E〉2
T

T 2
. (4)

Since the Wang-Landau algorithm can give only static infor-
mation, we also used the Metropolis algorithm to study fluctu-
ation around an equilibrium state or among equilibrium states.

III. RESULTS AND DISCUSSION

We calculated the specific heat as a function of temperature
using the Wang-Landau algorithm, as shown in Fig. 2. The
bipartite lattices (T2, T3, T10, and T11) show a phase transition
to the antiferromagnetically ordered ground state at the same
critical temperatures as their ferromagnetic cases, which are
represented by the vertical lines. For strongly frustrated lattices
(T1, T4, T7, T8, and T9), the specific heat shows only a broad
maximum without a critical feature, implying a disordered

TABLE I. Name, number of lattice points per basis (B), bipartiteness (Bip.), coordination number (z), antiferromagnetic ground state
energy per bond (EAF

g ), ferromagnetic and antiferromagnetic transition temperatures (Tc), exact residual entropy (S0), and ground state for each
Archimedean lattice. Ferromagnetic transition temperatures are from Ref. [14], where exact values are given. Results of this work is in bold.

Name B Bip. z EAF
g T F

c T AF
c S0 Ground state

T2 Square (44) 1 Y 4 −1 2.2692 =T F
c ln(2) Long-range order

T3 Honeycomb (63) 2 Y 3 −1 1.5187 =T F
c ln(2) Long-range order

T11 CaVO (CaV4O9)a (4,82) 4 Y 3 −1 1.4387 =T F
c ln(2) Long-range order

T10 SHDb (4,6,12) 12 Y 3 −1 1.3898 =T F
c ln(2) Long-range order

T6 SSLb (32,4,3,4) 4 N 5 −0.6 2.9263 1.261(1) ln(2) Long-range order
T5 Trellis (33,42) 2 N 5 − 0.6 2.8854 0.19(2) ln(2)L Long-range orderc

T7 Bounce (3,4,6,4) 6 N 4 −0.6667 2.1433 0.0538N Spin ice
T4 Maple leaf (34,6) 6 N 5 −0.4667 2.7858 0.0538N Spin ice
T9 Stara (3,122) 6 N 3 −0.5556 1.2315 0.2509N Spin ice

T1 Triangular (36) 1 N 6 −0.3333 3.6410 0.3231N Spin liquid
T8 Kagome (3,6,3,6) 3 N 4 −0.3333 2.1433 0.5018N Spin liquid

aT11 and T9 are also called bathroom tile and expanded kagome, respectively.
bSSL and SHD are abbreviations for Shastry-Sutherland lattice [16] and square-hexagonal-dodecagonal, respectively.
cLong-range order only in one direction.
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FIG. 2. (Color online) Specific heat as a function of temperature
in the Archimedean lattices. Upper left panel is for bipartite lattices
(T2, T3, T10, and T11) with long-range-ordered ground states.
Vertical dashed lines represent exact T F

c = T AF
c . Upper right panel is

for strongly frustrated lattices (T1, T4, T7, T8, and T9). In the case of
weakly frustrated lattices (T6 and T5), the antiferromagnetic critical
temperatures (T AF

c ) were calculated by the finite-size scaling shown
in the inset with the critical exponent ν = 1 and 2.3(1) for T6 and T5,
respectively. They are T AF

c = 1.261(1) for T6 and T AF
c = 0.19(2) for

T5. The two vertical lines represent T F
c (green, right) and T AF

c (black,
left). Exact results of the infinite-size lattice are from Refs. [3–5] for
the square, triangular, and kagome lattices, respectively.

ground state. Another important feature is very weak size
dependence of the specific heat, which can be understood by
the absence of the long-range correlation.

In the case of T6 (SSL), the frustration is weak and an
ordered ground state is realized. However, the transition tem-
perature T AF

c = 1.261(1) is much lower than its ferromagnetic
one (T F

c ≈ 2.9263). The transition temperature was obtained
by the finite-size scaling of T AF

c (N ) = T AF
c + AN−1/2ν with

the critical exponent ν = 1 of the two-dimensional Ising
universality class and a lattice-dependent constant A [23]. The
trellis lattice (T5) shows both of size-independent broad peak
and size-dependent diverging peak. The latter represents a
phase transition at T AF

c = 0.19(2) with ν = 2.3(1). Large value
of ν implies the one-dimensional character of the ordering.

To investigate more about the ground state, we investigated
the residual entropy S0 of the Archimedean lattices. It was

calculated directly from the DOS [ρ(E)] obtained by the
Wang-Landau algorithm: S0 = ln[ρ(E0)], where E0 is the
lowest energy. The normalization of

∑
i ρ(Ei) = 2N should

be done before the calculation. The residual entropy was
confirmed to be S0 = ln(2) for the ordered ground states (T2,
T3, T10, T11, and T6), as expected. The degeneracy 2 is from
the Kramers degeneracy theorem.

As for strongly frustrated lattices (T1, T4, T7, T8, and T9),
the residual entropy is proportional to the number of lattice
points N , which can be understood by applying Pauling’s
method to the ice model [24]. Ice can be considered as a
network of corner-sharing tetrahedrons, which are composed
of an oxygen atom in the center and four hydrogen atoms at
the corners. The hydrogen atom has two possible positions
(inside and outside of the tetrahedron), but should follow
the ice rule, two-in–two-out for each tetrahedron at zero
temperature. Therefore, the residual entropy of ice can be
calculated by S ice

0 = ln [2N (6/16)N/2] = (N/2) ln(3/2), where
2N is the total number of states and N/2 is the number of
tetrahedra. (6/16) means that only 6 states out of 16 satisfy
the ice rule for a tetrahedron. This result is not exact, but
only 1.4% lower than recent estimates by the Monte Carlo
method [25] and the series expansion [26]. If we apply the
same method to the triangular and the kagome lattices, their
residual entropies become ST1

0 = ln [2N (6/8)2N ] ≈ 0.11778N

and ST8
0 = ln [2N (6/8)2N/3] ≈ 0.50136N , respectively. Since

each triangle should satisfy the 2-1 rule (2 up and 1 down
spins or 2 down and 1 up spins) to minimize the energy, only
six states out of eight are possible in the ground state. This
method is very close to the exact result for the kagome lattice
(ST8

0 /N ≈ 0.50183) [5], but fails in the triangular lattice,
where the exact result is ST1

0 /N ≈ 0.32307 [4]. Maple-leaf
(T4) and bounce (T7) lattices have a unit cell with six points
that compose a hexagon, which is arranged in a triangular
lattice (see Fig. 1). To minimize energy, each hexagon should
have one of the two configurations (↑↓↑↓↑↓) and (↓↑↓↑↓↑).
Since energy is lower when the nearest-neighboring hexagons
have different kind of configuration, if we define the first kind
of hexagon as spin “up” and the second, “down,” the interaction
between hexagons is “antiferromagnetic.” Therefore, they can
be regarded as a triangular Ising antiferromagnet composed of
hexagons, and have the residual entropy of ST1

0 per hexagon
or S

T4,T7
0 /N = ST1

0 /6N ≈ 0.05384 per lattice point. As its
nickname (expanded kagome lattice) implies, the star lattice
(T9) is a kagome lattice of dimers with spin (↑↓) or (↓↑). Thus,
its residual entropy can be obtained by ST9

0 /N = ST8
0 /2N ≈

0.250916. As shown in Fig. 3(a), the Wang-Landau algorithm
gives consistent results for the residual entropy of strongly
frustrated lattices within 0.2%.

In the case of the trellis lattice, the residual entropy is
proportional to the linear size L. This can be understood
from its ground state shown in the inset of Fig. 3(b). Spins
are antiferromagnetically ordered in each row: (↑↓↑↓ . . .)
or (↓↑↓↑ . . .). For example, when the first row has a
configuration (↑↓↑↓ . . .), the second row should have the
configuration (↓↑↓↑ . . .). Now the third row may have either
configuration (↑↓↑↓ . . .) or (↓↑↓↑ . . .). Therefore, there
exists degeneracy of two every other rows and the residual
entropy becomes S0 = ln(2L). The Wang-Landau simulation
supports this conclusion. This one-dimensional long-range
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FIG. 3. (Color online) (a) Residual entropy S0 per lattice point
N calculated by the Wang-Landau method for strongly frustrated
lattices without long-range-ordered ground state. Lines represent the
exact results for each lattice. (b) In the case of the trellis lattice (T5),
S0 is proportional to the linear size L because the long-range order
appears only in one direction. One of the ground states is shown in
the inset.

ordering is possible because there exist constraints induced
by neighboring rows.

Finally, we classified the ground state of the Ising antifer-
romagnet on the 11 Archimedean lattices. Unfrustrated and
weakly frustrated lattices have a long-range-ordered ground
state for their residual entropy per site goes to zero. The trellis
lattice is a special case where the long-range order is only
in one direction. Strongly frustrated lattices have extensive
residual entropy and their ground states are disordered even at
0 K. There are three possible phases: spin glass, spin ice, and
spin liquid. Since there is no disorder in lattice or magnetic
interaction, which is required for the spin glass, they are either
spin ice or spin liquid. The difference between spin ice and
spin liquid comes from their flexibility or dynamic property:
The spin ice is frozen and the spin liquid fluctuates. In order to
study the fluctuation behavior, we performed a single-site-
update Metropolis simulation with L = 40. We calculated
the Edwards-Anderson order parameter qEA [27] to measure
degree of freezing. It was proposed for the order parameter
of spin glasses, but it can be used generally to study freezing
phenomena even in ferromagnets and antiferromagnets. It can
be defined in a few ways [28–31], which are equivalent to one
another. We adopted

qEA = 1

NM

N∑

i

∣∣∣∣∣

M∑

t

Si(t)

∣∣∣∣∣ (5)
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FIG. 4. (Color online) The freezing order parameters vs temper-
ature (upper panel) and the ground state energy per bond (EAF

g ) and
the coordination number of the 11 Archimedean lattices with their
ground states indicated (lower panel). The freezing order parameters
were obtained by Eq. (5) with lattice size L = 40 and number of
measurements M = 2×106.

from Ref. [30], where M is the number of measurements
after equilibration, which is fixed to be M = 2×106 in
this calculation. The spins begin to freeze at the freezing
temperature Tf , where the freezing order parameter deviates
from zero. qEA does not depend on M for M � 1×106 except
very close to the freezing temperature Tf , where larger M

makes the freezing sharper. Tf are in the order of T2, T3,
T11, T10, T6, T5, T7, T4, and T9. The former four lattices
are unfrustrated and the next two are weakly frustrated with
long-range-ordered ground states, as expected. The last three
lattices can be classified as a spin ice because the spins are
frozen without long-range order at zero temperature. As for T1
and T8, the freezing order parameters saturate to very small
values, which decrease as 1/

√
M . It means spins fluctuate

actively even at 0 K and so spin liquid phase.
These results are consistent with the theory about the degree

of frustration in Ref. [10]. They proposed two parameters
to determine the degree of frustration: ground state energy
per bond EAF

g and the coordination number z. EAF
g = −1 for

unfrustrated lattices and larger EAF
g means more frustration.
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Smaller z also strengthen the frustration effect. This is also
consistent with the residual entropy: Larger residual entropy
implies more frustration. Summarizing all these, the degree of
frustration was determined for seven frustrated cases as shown
in Fig. 4 and Table I.

IV. CONCLUSIONS

In summary, we studied systematically the frustration effect
of the Ising antiferromagnet on the Archimedean lattices. From
the results of specific heat, exact residual entropy, and freezing

order parameter we determined ground states of frustrated
lattices. They can be listed in the order of degree of frustration:
Shastry-Sutherland lattice and the trellis lattice (long-range
order); bounce, maple-leaf, and star lattices (spin ice phase);
triangular and kagome lattices (spin liquid).
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