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General transient solution of the one-step master equation in one dimension
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Exact analytical solutions of the master equation are limited to special cases and exact numerical methods are
inefficient. Even the generic one-dimensional, one-step master equation has evaded exact solution, aside from
the steady-state case. This type of master equation describes the dynamics of a continuous-time Markov process
whose range consists of positive integers and whose transitions are allowed only between adjacent sites. The
solution of any master equation can be written as the exponential of a (typically huge) matrix, which requires
the calculation of the eigenvalues and eigenvectors of the matrix. Here we propose a linear algebraic method
for simplifying this exponential for the general one-dimensional, one-step process. In particular, we prove that
the calculation of the eigenvectors is actually not necessary for the computation of exponential, thereby we
dramatically cut the time of this calculation. We apply our new methodology to examples from birth-death
processes and biochemical networks. We show that the computational time is significantly reduced compared to
existing methods.
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I. INTRODUCTION

The master equation (ME) describes the evolution of the
probability distribution of states of a continuous-time Markov
process and is commonly used to describe stochastic physical,
chemical, or biological systems. ME could consist of countably
infinite set of coupled differential equations, which makes it
hard to solve analytically or numercially. There is renewed
interest in solutions of the master equation as they can be
used to describe stochastic dynamics of biochemical reaction
networks inside living cells [1,2]. Indeed, it has been shown
that the chemical master equation accurately describes the
dynamics of well-stirred dilute chemical systems [3]. Full
analytical solutions to master equations are rare. However,
there are several approximate analytical methods, including
the system size expansion [4], the Fokker-planck equation
and corresponding Langevin equation [5–7], moment closure
approximations [8–11], and time-scale separation [12,13].

Alternatively, statistically exact trajectories of the Markov
process can be simulated using Gillespie’s stochastic simula-
tion algorithm (SSA) [14]. However, the SSA is not efficient
in estimating probability distributions as it requires many
simulations. As the ME is a linear equation, its solution
can be written as the exponential of a transition matrix.
Direct numerical solution of the ME requires calculation
of the exponential of an infinite dimensional matrix. An
error-controlled method based on projection of the ME to
a finite state space is proposed that requires the numerical
calculation of a finite dimensional matrix exponential [15]. The
exponential of a matrix is calculated by the time-consuming
process of obtaining the eigenvectors and eigenvalues and
then computing the inverse of the eigenvector matrix [16,17].
A graph theoretic method has been recently proposed to
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approximate the eigenvectors and eigenvalues of the transition
matrix [18], which accelerates the calculation of matrix
exponential but is applicable only to the reversible system
A + A � B. A related method using Laplace transforms is
proposed for the reversible reaction A + B � C [19].

An approximate method that also uses Laplace transforms
and builds on Ref. [20] has recently been derived and is
applicable to all one-step, one-dimensional (1D) systems [21].
This method approximates the Laplace transform of the
distribution using continued fractions and then approximates
the inverse transform using the Trapezium rule. The authors
also publish error bounds for their approximation of the true
distribution. The method presented in this paper differs from
the approach taken in Ref. [21] in the sense that it uses neither
Laplace transforms nor continued fraction representation.

In this paper, we focus on solutions of the 1D, one-step ME.
This type of ME has the form

Ṗm(t) = amPm−1(t) + bmPm+1(t) + (−am+1 − bm−1)Pm(t),

where Pm(t) denotes the probability of having m copies of the
species of interest at time t , and am,bm are positive real-valued
sequences. The generating function method has solved this
ME when the sequences am,bm are constant or linear, for
instance, if am = m + 3, and bm = 2m, which corresponds
to all reactions having at most one reactant. However, in
cases where the reactions have two or more reactants (or
if complicated reaction rates such as Michaelis-Menten are
used), the sequences are nonlinear and there is no general
solution except for the steady state [4].

Here we show that the eigenvectors are not needed for
the computation of the exponential of the transition matrix
in this case, and only the eigenvalues must be computed,
which we can achieve computationally if necessary [22]. We
show in a computational plot that computational calculation
of eigenvalues adds negligible time to the calculation. Thus
we dramatically improve on brute force exponentiation. We
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illustrate the application of our novel technique with three
biological examples and compare our results with exact
simulations.

II. MAIN RESULT

A 1D ME is a countably infinite set of coupled ODEs of
the form

Ṗm(t) = amPm−1(t) + bmPm+1(t) + (−am+1 − bm−1)Pm(t).

Let τ be a large positive integer. Following the error-controlled
method of Ref. [15], we truncate the ME at Pτ−1(t) and ignore
all higher terms. We can then write Pm(t) as a finite vector,

P (t) = (P0(t),P1(t), . . . ,Pτ−1(t))T .

Then the ME can be written as

Ṗ (t) = AP (t),

where for the transition matrix A we have

A =

⎛
⎜⎜⎜⎜⎝

−a1 b0 0 0 ...

a1 −a2 − b0 b1 0 ...

0 a2 −a3 − b1 b2 ...

0 0 a3 −a4 − b2 ...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ .

The solution to this ODE is simply

P (t) = eAtP (0),

but what we seek is a closed form expression for P (t), and in
particular, one which can be computed quickly and easily.

Computing the exponential of a matrix is an extremely
difficult problem, in general we have to calculate the eigen-
vectors and eigenvalues of A. But the special tridiagonal
form of the matrix A allows us to bypass the eigenvector
calculation. Cauchy’s integral forumla for matrices [23] is, for
any integrable function f :

f (A) = 1

2πi

∮
γ

f (z)(zI − A)−1 dz,

where γ is any closed curve in C, which contains the
eigenvalues of A in its interior. If we choose f (z) = eztP (0),
then we see that

P (t) = 1

2πi

∮
γ

ezt (zI − A)−1P (0) dz.

Suppose now that the initial solution of the ME is Pm(0) = Qm.
Typically this distribution will be a Kronecker delta, Qm =
δm,m0 for some m0 ∈ N. We will assume this for now and
later explain how to extend our results to more general initial
distributions. We can simplify further with

Pm(t) = 1

2πi

∮
γ

ezt (zI − A)−1
m+1,m0+1 dz.

A formula for (zI − A)−1 exists, when A is tridiagonal [24]:

(zI − A)−1
i,j =

⎧⎪⎪⎨
⎪⎪⎩

bi−1 . . . bj−2
pi−1(z)qj+1(z)

pτ (z) i < j

pi−1(z)qj+1(z)
pτ (z) i = j

aj . . . ai−1
pj−1(z)qi+1(z)

pτ (z) i > j

,

where p and q are orthogonal polynomials defined recursively
by

pi(z) = (z + ai + bi−2)pi−1(z) − bi−2ai−1pi−2(z),

p0(z) = 1, p1(z) = z + a1,

qi(z) = (z + ai + bi−2)qi+1(z) − bi−1aiqi+2(z),

qτ+1(z) = 1, qτ (z) = z + bτ−2.

Therefore,

Pm(t) =

⎧⎪⎪⎨
⎪⎪⎩

bm...bm0−1

2πi

∮
γ

ezt pm(z)qm0+2(z)
pτ (z) dz m < m0

1
2πi

∮
γ

ezt pm(z)qm0+2(z)
pτ (z) dz m = m0

am0+1...am

2πi

∮
γ

ezt pm0 (z)qm+2(z)
pτ (z) dz m > m0

.

We also have the following useful results about the eigenvalues
of A. Assuming the system of interest is ergodic, then A should
be irreducible, so ai and bi should be nonzero for all i. As these
parameters are also non-negative by definition, we have that
aibi−1 > 0 for all i, which permits the following result.

Let

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 ...

0
√

b0
a1

0 0 ...

0 0
√

b0b1
a1a2

0 ...

0 0 0
√

b0b1b2
a1a2a3

...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and let

Ā =

⎛
⎜⎜⎜⎜⎜⎝

−a1
√

b0a1 0 0 ...√
b0a1 −a2 − b0

√
b1a2 0 ...

0
√

b1a2 −a3 − b1
√

b2a3 ...

0 0
√

b2a3 −a4 − b2 ...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

.

Then,

Ā = D−1AD.

The matrix Ā is real and symmetric, and so it has real
eigenvalues. Since A and Ā are similar, they have the same
eigenvalues, and so A has real eigenvalues. Since the sub- and
superdiagonals of A are nonzero, the matrix is irreducible and
therefore has distinct eigenvalues.

Moreover, we know from the definition of the ME that the
columns of A each sum to zero. It follows that there is at least
one row which is a linear combination of the others. Therefore
A has zero determinant, and so 0 is an eigenvalue of A.

We now show that the matrix −Ā is positive semidef-
inite. It follows from the Gershgorin Circle Theorem that
if ai+1 + bi−1 � −√

bi−1ai − √
biai+1, then −Ā is positive

semidefinite. But this is clearly true because the left-hand
side is strictly positive while the right-hand side is strictly
negative. So it follows that −Ā has exclusively non-negative
eigenvalues, and so also −A does. Then A must have
nonpositive eigenvalues. But zero is an eigenvalue, so the
largest eigenvalue of A must be zero.

With these results, we can now proceed further with the
ME. By its definition, pτ (z) is the characteristic polynomial of
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A, so we can write, for λi eigenvalues of A,

pτ (z) = (z − λ1)(z − λ2) · · · (z − λτ ).

We can then use Cauchy’s Residue Theorem:∮
γ

f (z) dz = 2πi
∑

Res(f,ak),

where ak are the singularities of f inside γ . For us, these
singularities are simply the eigenvalues λi , so

∮
γ

ezt pm(z)qm0+2(z)

pτ (z)
dz = 2πi

τ∑
i=1

eλi t
pm(λi)qm0+2(λi)∏

j �=i(λi − λj )
.

So if we know the eigenvalues of A then we can obtain Pm(t):

Pm(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bm . . . bm0−1
∑τ

i=1 eλi t
pm(λi )qm0+2(λi )∏

j �=i (λi−λj ) m < m0∑τ
i=1 eλi t

pm(λi )qm0+2(λi )∏
j �=i (λi−λj ) m = m0

am0+1 . . . am

∑τ
i=1 eλi t

pm0 (λi )qm+2(λi )∏
j �=i (λi−λj ) m > m0

.

For general, non-delta-type initial distributions Pm(0) = Qm,
the transient solution is given instead by P̃m(t), which satisfies

P̃m(t) =
∞∑

m0=0

Pm(t)Qm0 .

We can obtain steady-state distributions by taking t → ∞.
We notice that the only term in the sum which does not depend
on t is the first, since λ1 = 0, and all other terms tend to zero
as t grows. Since the system is ergodic, the value of m0 which
we take (or equivalently the function Qm) is irrelevant, so we
take m0 large, allowing us to pay attention only to the m < m0

expression, which is now

Pm(t → ∞) = bm . . . bm0−1
pm(0)qm0+2(0)∏

j �=1(−λj )
.

But the fraction
qm0+2(0)∏
j �=1(−λj ) contributes the same to each term,

so we ignore it as a normalizing factor. We can also do the
same with product bm . . . bm0−1, which contributes the same
as 1

b0...bm−1
up to normalization. Therefore we have a simplified

expression:

Pm(t → ∞) = pm(0)

b0 . . . bm−1
.

We can simplify this further, since one can prove by induction
that pm(0) = a1 . . . am, which leads to the following simple
expression:

Pm(t → ∞) = am . . . a1

bm−1 . . . b0
,

up to normalization. The steady-state result is derived in
Ref. [4] using a different method.

III. EXAMPLES

A. Bacterial growth

A model of bacterial growth with a source term can be used
to model the bacterial population in a reservoir, or any situation
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FIG. 1. (Color online) Probability distribution of A in the bacte-
rial growth system. Our method agrees excellently with the Gillespie
algorithm as expected. Parameter values are v = 0.95,k = 0.08,d =
0.1,A(0) = 0.

where bacteria are introduced at a constant rate:

∅ v
�
d

A, A
k−→ 2A.

The ME for this system is

Ṗm = v(Pm−1 − Pm) + d[(m + 1)Pm+1 − mPm]

+ k[(m − 1)Pm−1 − mPm].

Therefore, in our notation,

am = v + k(m − 1),

bm = d(m + 1).

Taking the limit t → ∞ gives us that the number of A

molecules at steady state follows a negative binomial( v
k
, k
d

)
distribution, as observed in nature in Ref. [25]. In particular,
this implies that

Pm = �
(
m + v

k

)
m!�

(
v
k

)
(

k

d

)m (
1 − k

d

) v
k

.

In Fig. 1 we compare our method with the numerical results
from the Gillespie algorithm. Our method agrees perfectly with
the Gillespie algorithm but can be computed in several orders
of magnitude less time.

B. Dimerization

We consider an example of a closed dimerization reaction:

A + A
k1�
k2

B.

We have the conservation law A + 2B = N . This system has
CME for species A:

Ṗn = k1 [(n + 2)(n + 1)Pn+2 − n(n − 1)Pn]

+ k2

2
[(N − n + 2)Pn−2 − (N − n)Pn] .
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FIG. 2. (Color online) Probability distribution of A in the dimer-
ization system over time. Our method (red line) compared with
using approximate eigenvalues (blue circles). Parameter values are
k1 = 10−10,k2 = 2,N = 120.

In other words, in our notation:

an = k2

2
(N − n + 2)

bn = k12(n + 1)(2n + 1).

Figure 2 gives the time development of the probability
distribution for this system, as computed using our exact
method, compared with a faster version of our method using an
approximation of the eigenvalues found in Ref. [18], namely

λn = −k2n − 2k1n[2(N − 2n) + 1], n = 0, . . . ,N.

In general, the eigenvalues cannot be computed exactly, though
they can usually be approximated.

While our method gives analytical expressions that need to
be computed in practice, it has the advantage of being (to our
knowledge) the fastest method yet of computing the probabil-
ity distribution for one-species, one-step systems in time.

Figure 3 shows the computational time of calculating the
solution to the dimerization example at the 3 sec time point.
When we are dealing with small reaction systems, such as
when τ ≈ 50, we find that the direct matrix exponentiation
takes around 10−2 sec, compared with 10−3 sec for our
method. In situations with larger molecule numbers, our
method really starts to stand out. When we have τ ≈ 5000,
direct matrix exponentiation typically takes around 5 min,
compared with 2 sec for our method. We therefore have a
dramatic improvement over the brute force method. In cases
where the eigenvalues can be approximated, we have slightly
better performance.

These results were computed using MATLAB on a computer
with a 1.7 GHz Intel i5 processor and 8 GB RAM. The matrix
exponential was computed using MATLAB’s expm function.
When the eigenvalues needed to be approximated, the trideig
function was used.

10
2

10
310

−4

10
−2

10
0

10
2

Number of states τ

C
om

pu
ta

tio
n 

tim
e 

(s
ec

on
ds

)

FIG. 3. (Color online) Log-log plot of Dimerization example
computation time of our method (red line), our method using
approximate solutions of eigenvalues (green line), and brute force
matrix exponentiation (blue line), for a variety of system sizes. Least-
squares estimation suggests our method has an O(τ 1.7) computational
complexity, while brute force exponentiation has an O(τ 2.5) complex-
ity, compared with O(τ 1.6) for the approximation. Computational
calculation of the eigenvalues adds negligible computation time to
the process.

C. Push-pull enzyme system

A phosphorylation-dephosphorylation (or push-pull en-
zyme) system has been extensively studied as it can exhibit
zero-order ultrasensitivity [26,27]:

A + R
k+�
k−

Ã
vr−→ A�, A� + B

k′
+�

k′−
Ã� vb−→ A.

Here A and A� are the substrate and modified substrate
respectively. R and B are modifying enzymes. We make the
quasi-steady-state assumption (QSSA) that the concentration
of the complexes Ã and Ã� does not change on the time scale
in which the production of A and A� occurs. This will simplify
the reaction system to the following [27]:

A
vrR0

A
KM +A−−−−−⇀↽−−−−−

vbB0
A�

K′
M

+A�

A�,

where KM = vr+k−
k+

, and K ′
M = vb+k′

−
k′+

. Also, R0 and B0 denote
total level of each enzyme respectively. Using the conservation
law A + A� = N , the ME for A is

Ṗm = vrR0

(
m + 1

KM + m + 1
Pm+1 − m

Km + m
Pm

)

+ vbB0

[
N−(m−1)

K ′
M+N−(m − 1)

Pm−1− N − m

K ′
M + N − m

Pm

]
.

This is effectively a 1D process, so in our notation

am = vbB0
N − m + 1

K ′
M + N − m + 1

, bm = vrR0
m + 1

K ′
M + m + 1

.

We can now use our method to very efficiently compute
transient distributions of A for a range of parameter values.
Figure 4 shows how the mean value of A approaches steady
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FIG. 4. (Color online) Mean value of A in the push-pull system
as a function of time and total enzyme level (R0). The Goldbeter-
Koshland point occurs at R0 = 1. The switchlike behavior at
steady state is clearly visible after the t = 1000 point. Parame-
ter values are vr = vb = 0.7,k+ = k− = k′

+ = k′
− = 15,B0 = 1,N =

100,A(0) = 50.

state for different levels of starting enzyme R. It is evident
that the approach to steady state is slowed close to the
ultrasensitive enzyme levels. Figure 5 shows the transient
behavior of the variance of A for the same parameter variation.
Interestingly, we observe a sharp but transient increase in
variance between 10 and 100 sec for all values of R0. However,
as the system approaches steady state, only the systems near
the ultrasensitive point have very high variance.

IV. CONCLUSION

In summary, we have derived a general closed form
expression for the solution of the 1D, one-step ME in terms of
the eigenvalues of the matrix A. This suggests the problem is
reduced to a symmetric tridiagonal eigenvalue problem rather
than an eigenvalue and eigenvector problem. This allows us
to solve the ME analytically in some cases, and otherwise
it makes it possible to very quickly compute the solution.
Indeed, in the dimerization example we studied, we solved the
problem in between 1 and 3 orders of magnitude faster than
the brute force method. The advantage is particularly apparent
for systems with a large number of states.

We also looked at three examples from biochemical
systems. In particular, we show that the ME for the push-pull
system can be reduced to a 1D, one-step ME with nonlinear
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FIG. 5. (Color online) Variance of A in the push-pull system as
a function of time and total enzyme level (R0). The parameter values
are the same as Fig. 4.

rate terms that can be solved efficiently with our method.
We then explore transient behavior of this system in the
zero-order ultrasensitive regime [27]. Interestingly, we observe
a transient increase in variance of substrate, even far from
the ultrasensitive values of enzymes. Previous, stochastic
treatments of the push-pull system have focused mainly at
the steady state [26,28,29]. Our method, is ideally suited for
the study of the transient behavior. Although we derive our
results using QSSA, our method is equally applicable to other
approximations such as total QSSA [26].

If an analytical expression for the eigenvalues of an
arbitrary tridiagonal matrix is obtained (currently this exists
only for matrices with linear coefficients), it would remove the
requirement for computation altogether. Since the calculation
of these eigenvalues is the largest computational burden of the
above method, this would speed up the process considerably.
In addition, a general formula for the elements of the inverse
of pentadiagonal, heptadiagonal, or other multidiagonal
matrices would allow us to also solve the 1D ME for multistep
systems, where the states go up or down by different numbers
with each reaction.

Finally, a generalization of our approach to higher di-
mensions would greatly increase its applicability to more
complex systems, where two or more chemical species interact
with each other. The current work already hints at possible
directions, but even two-dimensional systems require linear
algebraic techniques significantly more complicated than those
used above. We have made some progress in this direction, and
this will be the subject of a subsequent paper.

[1] V. Shahrezaei and P. S. Swain, Curr. Opin. Biotechnol. 19, 369
(2008).

[2] D. J. Wilkinson, Nat. Rev. Genet. 10, 122 (2009).
[3] D. Gillespie, Physica A 188, 404 (1992).
[4] N. G. van Kampen, Stochastic Processes in Physics and

Chemistry, 3rd ed. (Elsevier, Amsterdam, 2001).
[5] R. Grima, Phys. Rev. E. 84, 056109 (2011).
[6] C. W. Gardiner, Handbook of Stochastic Methods for Physics,

Chemistry and the Natural Sciences (Springer, New York, 2004).
[7] R. Grima, P. Thomas, and A. V. Straube, J. Chem. Phys. 135,

084103 (2011).

[8] P. Whittle and J. R. Stat. Soc. Ser. B (Methodol.) 19, 268
(1957).

[9] D. A. McQuarrie, C. J. Jachimowski, and M. E. Russell, J. Chem.
Phys. 40, 2914 (1964).

[10] R. Grima, J. Chem. Phys. 136, 154105 (2012).
[11] D. Schnoerr, J. Chem. Phys. 141, 024103 (2014).
[12] V. Shahrezaei and P. S. Swain, Proc. Natl. Acad. Sci. USA 105,

17256 (2008).
[13] P. Thomas, A. V. Straube, and R. Grima, BMC Sys. Biol. 6, 39

(2012).
[14] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).

062119-5

http://dx.doi.org/10.1016/j.copbio.2008.06.011
http://dx.doi.org/10.1016/j.copbio.2008.06.011
http://dx.doi.org/10.1016/j.copbio.2008.06.011
http://dx.doi.org/10.1016/j.copbio.2008.06.011
http://dx.doi.org/10.1038/nrg2509
http://dx.doi.org/10.1038/nrg2509
http://dx.doi.org/10.1038/nrg2509
http://dx.doi.org/10.1038/nrg2509
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1103/PhysRevE.84.056109
http://dx.doi.org/10.1103/PhysRevE.84.056109
http://dx.doi.org/10.1103/PhysRevE.84.056109
http://dx.doi.org/10.1103/PhysRevE.84.056109
http://dx.doi.org/10.1063/1.3625958
http://dx.doi.org/10.1063/1.3625958
http://dx.doi.org/10.1063/1.3625958
http://dx.doi.org/10.1063/1.3625958
http://dx.doi.org/10.1063/1.1724926
http://dx.doi.org/10.1063/1.1724926
http://dx.doi.org/10.1063/1.1724926
http://dx.doi.org/10.1063/1.1724926
http://dx.doi.org/10.1063/1.3702848
http://dx.doi.org/10.1063/1.3702848
http://dx.doi.org/10.1063/1.3702848
http://dx.doi.org/10.1063/1.3702848
http://dx.doi.org/10.1063/1.4885345
http://dx.doi.org/10.1063/1.4885345
http://dx.doi.org/10.1063/1.4885345
http://dx.doi.org/10.1063/1.4885345
http://dx.doi.org/10.1073/pnas.0803850105
http://dx.doi.org/10.1073/pnas.0803850105
http://dx.doi.org/10.1073/pnas.0803850105
http://dx.doi.org/10.1073/pnas.0803850105
http://dx.doi.org/10.1186/1752-0509-6-39
http://dx.doi.org/10.1186/1752-0509-6-39
http://dx.doi.org/10.1186/1752-0509-6-39
http://dx.doi.org/10.1186/1752-0509-6-39
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3


STEPHEN SMITH AND VAHID SHAHREZAEI PHYSICAL REVIEW E 91, 062119 (2015)

[15] B. Munsky and M. Khammash, J. Chem. Phys. 124, 044104
(2006).

[16] C. Moler and C. Van Loan, SIAM Rev. 20, 801 (1978).
[17] C. Moler and C. Van Loan, SIAM Rev. 45, 3 (2003).
[18] R. Basile, R. Grima, and N. Popovic, Bull. Math. Biol. 75, 1653

(2012).
[19] I. J. Laurenzi, J. Chem. Phys. 113, 3315 (2000).
[20] J. Murphy and M. O’Donohoe, IMA J. Appl. Math. 16, 57

(1975).
[21] F. W. Crawford and M. A. Suchard, J. Math. Biol. 65, 553 (2012).
[22] I. S. Dhillon, Ph.D. thesis, University of California, Berkeley,

1997.

[23] N. J. Higham, Functions of Matrices: Theory and Computation
(SIAM, Philadelphia, 2008).

[24] R. A. Usmani, Linear Algebra Appl. 212, 413 (1994).
[25] A. H. El-Shaarawi, Appl. Environ. Microbiol. 41, 107 (1981).
[26] P. K. Jithinraj, U. Roy, and M. Gopalakrishnan, J. Theoret. Biol.

344, 1 (2014).
[27] A. Goldbeter and D. E. Koshland, Proc. Natl. Acad. Sci. USA

78, 6840 (1981).
[28] O. Berg, J. Paulsson, and M. Ehrenberg, Biophys. J. 79, 1228

(2000).
[29] T. Shibata and K. Fujimoto, Proc. Natl. Acad. Sci. USA 102,

331 (2005).

062119-6

http://dx.doi.org/10.1063/1.2145882
http://dx.doi.org/10.1063/1.2145882
http://dx.doi.org/10.1063/1.2145882
http://dx.doi.org/10.1063/1.2145882
http://dx.doi.org/10.1137/1020098
http://dx.doi.org/10.1137/1020098
http://dx.doi.org/10.1137/1020098
http://dx.doi.org/10.1137/1020098
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1007/s11538-013-9864-z
http://dx.doi.org/10.1007/s11538-013-9864-z
http://dx.doi.org/10.1007/s11538-013-9864-z
http://dx.doi.org/10.1007/s11538-013-9864-z
http://dx.doi.org/10.1063/1.1287273
http://dx.doi.org/10.1063/1.1287273
http://dx.doi.org/10.1063/1.1287273
http://dx.doi.org/10.1063/1.1287273
http://dx.doi.org/10.1093/imamat/16.1.57
http://dx.doi.org/10.1093/imamat/16.1.57
http://dx.doi.org/10.1093/imamat/16.1.57
http://dx.doi.org/10.1093/imamat/16.1.57
http://dx.doi.org/10.1007/s00285-011-0471-z
http://dx.doi.org/10.1007/s00285-011-0471-z
http://dx.doi.org/10.1007/s00285-011-0471-z
http://dx.doi.org/10.1007/s00285-011-0471-z
http://dx.doi.org/10.1016/0024-3795(94)90414-6
http://dx.doi.org/10.1016/0024-3795(94)90414-6
http://dx.doi.org/10.1016/0024-3795(94)90414-6
http://dx.doi.org/10.1016/0024-3795(94)90414-6
http://dx.doi.org/10.1016/j.jtbi.2013.11.014
http://dx.doi.org/10.1016/j.jtbi.2013.11.014
http://dx.doi.org/10.1016/j.jtbi.2013.11.014
http://dx.doi.org/10.1016/j.jtbi.2013.11.014
http://dx.doi.org/10.1073/pnas.78.11.6840
http://dx.doi.org/10.1073/pnas.78.11.6840
http://dx.doi.org/10.1073/pnas.78.11.6840
http://dx.doi.org/10.1073/pnas.78.11.6840
http://dx.doi.org/10.1016/S0006-3495(00)76377-6
http://dx.doi.org/10.1016/S0006-3495(00)76377-6
http://dx.doi.org/10.1016/S0006-3495(00)76377-6
http://dx.doi.org/10.1016/S0006-3495(00)76377-6
http://dx.doi.org/10.1073/pnas.0403350102
http://dx.doi.org/10.1073/pnas.0403350102
http://dx.doi.org/10.1073/pnas.0403350102
http://dx.doi.org/10.1073/pnas.0403350102



