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We revisit the problem of the overdamped (large-friction) limit of the Brownian dynamics in an inhomogeneous
medium characterized by a position-dependent friction coefficient and a multiplicative noise (local temperature)
in one-dimensional space. Starting from the Kramers equation and analyzing it through the expansion in terms
of eigenfunctions of a quantum harmonic oscillator, we derive analytically the corresponding Fokker-Planck
equation in the overdamped limit. The result is fully consistent with the previous finding by Sancho, San Miguel,
and Dürr [J. Stat. Phys. 28, 291 (1982)]. Our method allows us to generalize the Brinkman’s hierarchy, and thus
it would be straightforward to obtain higher-order corrections in a systematic inverse-friction expansion without
any assumption. Our results are confirmed by numerical simulations for simple examples.

DOI: 10.1103/PhysRevE.91.062118 PACS number(s): 05.40.Jc, 05.10.Gg, 66.10.C−

The stochastic differential equation (SDE) with a multi-
plicative noise always presents a basic question about what
is the correct choice in representing the noise integration, so
called the noise calculus with various types: Ito, Stratonovich,
anti-Ito, and others. One consensus is that the noise calculus
itself is a part of the problem that should be provided
experimentally or theoretically prior to inferring the SDE
[1]. The Brownian motion of a colloidal particle suspended
in a spatially inhomogeneous medium is such an example.
The medium inhomogeneity can be characterized, in general,
by space dependence of the friction coefficient and the local
temperature (or the diffusion coefficient). The naive Langevin
description in the overdamped (large friction) limit led to the
SDE with a multiplicative noise, which raised a question of the
noise calculus choice, the so-called Ito-Stratonovich dilemma.
However, it is clear that the corresponding underdamped
Langevin equation does not depend on the noise calculus,
thus the overdamped limit should not depend on it, either.

This dilemma was settled 30 years ago by Sancho, San
Miguel, and Dürr (SSMD) [2], for most general cases. They
successfully integrated out the fast variable (velocity) of the
underdamped Langevin equation in the large friction limit
by the so-called adiabatic elimination procedure, an extended
version of the work done by Haken [3]. Interestingly, their
results do not correspond to any choice of the noise calculus
in the naive Langevin description, in general, except simple
cases. However, this derivation is quite involved and mixes up
the Langevin equation approach with the Fokker-Planck-type
description. And their results have never been tested against
numerical simulations. These might cause some confusions,
which triggered several recent works on this already resolved
Ito-Stratonovich dilemma [4–9].

For a simpler case with a constant friction coefficient (still
space-dependent local temperature), the overdamped limit was
rigorously derived by the Fokker-Planck equation approach
[10] and also by the Langevin equation approach at the level
of a single realization [11]. This case turns out to correspond
to the naive Langevin description with the Ito calculus. The
other simpler case with a space-dependent friction coeffi-
cient and a constant temperature was also studied and the

Fokker-Planck equation in the overdamped limit was rig-
orously derived [12,13], which is equivalent to the naive
Langevin description with the anti-Ito calculus. The over-
damped limit for more general cases was rederived later by
a singular perturbation theory [14] and also by the Chapman-
Enskog procedure [15] with higher-order corrections in the
large friction limit. We also note that Yang and Ripoll [8]
succeeded to yield the SSMD result very recently, through
the Langevin equation approach by assuming the macroscopic
force balance condition.

In this study, we take the standard Fokker-Planck approach
to rederive the overdamped limit and present a systematic
inverse-friction expansion rigorously for general cases without
any assumption. We start with the Kramers equation for the
underdamped Langevin equation, which is independent of
the noise calculus. With some operator transformations, we
obtain the time-dependent probability distribution function
in terms of the eigenfunctions of the quantum harmonic
oscillator, similar to the method employed by Risken [16].
Eventually, we generalize the Brinkman’s hierarchy [17],
which allows for a systematic expansion of the Kramers
equation in the large friction limit at any order of the inverse
of the friction coefficient. Keeping up to the first order,
we find the same overdamped Fokker-Planck equation as in
the SSMD. The next order calculation naturally yields the
high-order corrections obtained by Widder and Titulaer (WT)
[15]. We may emphasize that, thanks to this hierarchy, we
obtain a more general time-dependent differential equation for
the probability distribution function, which is valid even for
very early transient regime. In order to test the robustness
of the first-order approximation, we present the numerical
simulation results for simple examples, which are in excellent
accord with our analytic results. Finally, we show that
the overdamped limit is generally equivalent to the zero-
mass limit in one-dimensional space, which was previously
known only when the Einstein relation (constant temperature)
holds [5].

We consider the underdamped Langevin equation for
one-dimensional Brownian motion of a colloidal particle
in an inhomogeneous medium, which is described by the
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second-order SDE as

mẍ = −γ (x)ẋ + f (x) + g(x)ξ (t), (1)

where γ (x) is the friction coefficient and g(x) the noise
strength, both of which depend on position x. ξ (t) is a
white noise satisfying 〈ξ (t)ξ (t ′)〉 = 2δ(t − t ′). Even though
the noise is multiplicative (position-dependent), the choice of
the noise calculus is meaningless because the stochastic noise
g(x)ξ (t) directly affects velocity variation rather than position
variation in the second-order SDE. This will be clear in the
probability description, i.e., Kramers equation, later.

Naive approach to the overdamped limit begins with
neglecting the inertia term in the left-hand side of the equation,
because the overdamped limit is defined in the regime of
γ � (�t)−1 with coarse-graining time scale �t . Then, we
may end up with

ẋ = f (x)

γ (x)
+ g(x)

γ (x)
ξ (t). (2)

However, this equation depends on the noise calculus because
the stochastic noise here directly changes the position instantly,
so it will be crucial when the noise strength g(x)/γ (x) should
be evaluated during the integration of the equation over time
interval �t . This dependence of the noise calculus causes
the Ito-Stratonovich dilemma. Therefore, the above naive
overdamped Langevin equation cannot be a correct one to de-
scribe the overdamped limit of the noise-calculus-independent
underdamped equation. For its correct description, one should
carefully take the proper large γ limit, in particular, for the
noise-induced drift force and then integrate out the velocity
(fast) degree of freedom in the underdamped equation.

For later convenience, we first discuss the noise-calculus
dependence of Eq. (2). By integrating it during time interval
[t,t + �t], one can get the equation for �x ≡ x(t + �t) −
x(t) as

�x =
[
f

γ
+ 2α

g

γ

(
g

γ

)′]
�t +

(
g

γ

)
I

�W, (3)

where �W = ∫ t+�t

t
dsξ (s) is called the Wiener process,

satisfying 〈�W 〉 = 0, 〈(�W )2〉 = 2�t . The noise calculus
parameter α ∈ [0,1] specifies when the noise amplitude
function h = g/γ is evaluated, such that

∫ t+�t

t
dsh[x(s)]ξ (s)

is replaced by h(x∗)�W with an intermediate value x∗ =
(1 − α)x(t) + αx(t + �t). Various noise calculi depend on
α; Ito (α = 0), Stratonovich (α = 1/2), anti-Ito or isothermal
(α = 1). Employing the Taylor expansion of the noise-
amplitude function h(x∗) and the subsequent iteration pro-
cedure, the stochastic term can be decomposed into the last
two terms as above. The subscript I (Ito) in the last term
indicates that the noise amplitude function should be evaluated
at the initial time t for the Wiener process. The second term
is the additional drift force induced by the noise calculus
where the superscript ′ represents the derivative as h′ = ∂h/∂x.
Note that this term vanishes when the noise amplitude function
h(x) is independent of position x.

Following the standard procedure involving the Kramers-
Moyal coefficients [1,16], it is easy to derive the corresponding
Fokker-Plank equation for the probability distribution function

P (x,t) as

∂P (x,t)

∂t
= ∂

∂x

[
−f

γ
− α

(
T

γ

)′
+ ∂

∂x

T

γ

]
P (x,t), (4)

where the local temperature T (x) is defined by T (x) ≡
g2(x)/γ (x), called the generalized Einstein relation.

Now, we return to the underdamped Langevin equation,
Eq. (1). It is well known that the corresponding probability
evolution (Kramers) equation can be written as [16]

∂tP (x,v,t) = (Lrev + Lirr)P (x,v,t) (5)

with

Lrev = −v∂x − (f/m)∂v,
(6)

Lirr = (γ /m)∂v[v + (T/m)∂v],

where ∂y ≡ ∂/∂y (y = t,v,x). The reversible operator Lrev

describes the deterministic motion, while the irreversible
operator Lirr describes the thermal stochastic motion. As
discussed before, there is no dependence on the noise calculus
in the Kramers equation, in contrast to Eq. (4).

From now on, we set m = 1 for simplicity [18]. It is
convenient to put Lirr into a Hermitian form via a similar-
ity transformation, using the stationary solution of Lirr as
P s

irr(v,T ) = (2πT )−1/2e−v2/2T [16]. Then, the Hermitianized
operator L̄irr is given as

L̄irr = [
P s

irr

]−1/2
Lirr

[
P s

irr

]1/2 = γ

(
T ∂2

v − v2

4T
+ 1

2

)
, (7)

which is identical to the Hamiltonian operator of a quantum
harmonic oscillator. Introducing the lowering and raising
ladder operators b and b†, we get

L̄irr = −γ b†b, (8)

with

b =
√

T ∂v + v

2
√

T
, b† = −

√
T ∂v + v

2
√

T
. (9)

Then, the orthonormal eigenfunctions of L̄irr are given by

ψ0(v,T ) = (2πT )−1/4 exp[−v2/(4T )] = [
P s

irr

]1/2
,

ψn(v,T ) = b†ψn−1(v,T )/
√

n = ψ0(v,T )Hn(v/
√

2T )/
√

n!2n,

(10)

where Hn are the Hermite polynomials (n = 1,2, . . .). Note
that these eigenfunctions depend on position x through T (x).
For the operator Lrev, the same procedure gives

L̄rev = ψ0(v,T )−1(−v∂x − f ∂v)ψ0(v,T )

= −ψ−1
0 ∂x

√
T ψ0(b + b†) + f√

T
b†. (11)

With these transformed operators, Eq. (5) obviously becomes

∂t P̄ (x,v,t) = (L̄rev + L̄irr)P̄ (x,v,t), (12)

with P̄ (x,v,t) = ψ−1
0 P (x,v,t). It is convenient to decompose

the distribution function in terms of {ψn} as

P̄ (x,v,t) =
∞∑

n=0

cn(x,t)ψn(v,T ). (13)
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The transformed operators act on P̄ in the following way

L̄irrP̄ = −γ

∞∑
n=0

n cn(x,t)ψn(x,T )

L̄revP̄ = −
∞∑

n=0

(
[Dcn]bψn + [D̂cn]b†ψn

+ cnψ
−1
0 ∂x

√
T ψ0(b + b†)ψn

)
, (14)

where D = √
T ∂x , D̂ = √

T ∂x − f/
√

T , and [· · · ] means that
the operator acts only inside. When T is a constant, {ψn} is
independent of x and the last term of L̄revP̄ drops out, which
simplifies the algebra.

For general T (x), a straightforward algebra yields with the
help of the Hermite polynomial recurrence relation property,
H ′

n/Hn = √
2nψn−1/ψn, that

∂t P̄ = −
∞∑

n=0

(γ ncn + [Dcn]b + [D̂cn]b†

+ (
√

T )′cn(b + b†)b†(b + b†))ψn. (15)

From this equation, one can easily extract the hierarchy of the
expansion coefficients cn(x,t) as

∂tcn = −γ ncn − (n + 1)1/2Dcn+1 − n1/2D̂cn−1

− (
√

T )′
[
(n + 1)3/2cn+1 + 2n3/2cn−1

+
√

n(n − 1)(n − 2)cn−3
]
, (16)

which is a generalized version of the Brinkman’s hierarchy
[16,17]. We emphasize that all results are rigorous without
any approximation up to now.

Now, we take the overdamped limit of γ � (�t)−1, in such
a way that ∂tcn is neglected in comparison with γ cn for n � 1
in Eq. (16). Considering the remaining terms in the order of
the power of γ −1, one can easily show that cn ∼ O(γ −n) for
n = 0, 1, 2 and cn ∼ O[γ −(n−2)] for n � 3. Note that the last
term proportional to cn−3 in Eq. (16) makes cn behave distinctly
for n � 2 and n � 3. Up to O(γ −1), there remain only three
equations as

0 = ∂tc0 + [D + (
√

T )′]c1,

0 = γ c1 + [D̂ + 2(
√

T )′]c0, (17)

0 = 3γ c3 +
√

6(
√

T )′c0.

By combining the first two equations, we get the partial
differential equation for c0(x,t) as

∂tc0 = [D + (
√

T )′]γ −1[D̂ + 2(
√

T )′]c0

= ∂x

[
−f

γ
+ 1

γ
∂xT

]
c0. (18)

By solving this equation for c0, and rewriting c1 and c3 in
terms of c0 as given in Eq. (17), we finally get the solution
for P (x,v,t) = ψ0P̄ (x,v,t) through Eq. (13) in the large γ

limit.

In this work, we are interested in the probability distribution
function of position x, integrated over velocity v as

P̂ (x,t) =
∫ +∞

−∞
dvP (x,v,t)

=
∫ +∞

−∞
dvψ0(v,T )P̄ (x,v,t) = c0(x,t), (19)

where the orthonormal property of {ψn} is used. Thus, we find

∂t P̂ (x,t) = ∂x

[
−f

γ
+ 1

γ
∂xT

]
P̂ (x,t). (20)

This result is exactly the same as the SSMD result, Eq. (2.18)
in Ref. [2].

It is certainly different from the naive result in Eq. (4).
First, it is independent of the noise calculus, α. Moreover, any
choice of α in Eq. (4) is not consistent with the above equation
in general. The naive result with the anti-Ito choice (α = 1)
happens to be identical to the above equation, only when T is
a constant [12,13]. The Ito calculus (α = 0) also happens to
give a correct result, only when γ is a constant [10,11].

The correct and general Langevin equation corresponding
to the above Fokker-Plank equation, Eq. (20), can be written
as

ẋ = f

γ
+ T

(
1

γ

)′
− α

(
T

γ

)′
+

(√
T

γ

)
α

ξ (t), (21)

where the noise-calculus-dependent drift force is included to
cancel out the additional drift term induced by the multi-
plicative noise. This inclusion implies that the naive approach
with an extra physical drift force cannot describe the correct
overdamped limit in general.

The overdamped limit as above is an extreme limit of large γ

such that γ � (�t)−1. However, the generalized Brinkman’s
hierarchy of Eq. (16) allows us to derive a systematic expansion
in terms of γ −1 for γ � 1. Thus, the inverse-friction expansion
should be valid for a reasonably large value of γ . In this case,
one cannot simply ignore ∂tcn in Eq. (16), which makes the
analysis complicated.

We again focus on deriving a partial differential equation for
c0(x,t), which is the probability distribution function P̂ (x,t)
after integrating out the velocity degree of freedom. First, we
take the hierarchy equations into the Laplace space as

scL
n − cn(0) = −nγ cL

n − √
n + 1Ln+1c

L
n+1 (22)

−√
nL̂2nc

L
n−1 −

√
n(n − 1)(n − 2)T cL

n−3,

where cL
n is the Laplace transform of cn as cL

n ≡∫ ∞
0 dte−st cn(t) and cn(0) is the initial value at t = 0. Here,

we use simple notations as

Ln =
√

T ∂x + n(
√

T )′,

L̂n =
√

T ∂x + n(
√

T )′ − f/
√

T , (23)

T = (
√

T )′.

For simplicity, we assume the initial condition cn(0) = 0
for n � 1, which implies the Maxwell velocity distribution
initially at local temperature T (x). Then, similar to the
overdamped case, it is easy to show that cL

n ∼ O(γ −n) for
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n = 0, 1, 2 and cL
n ∼ O[γ −(n−2)] for n � 3. Collecting all

terms up to O(γ −3), we find

scL
0 − c0(0) = L1

1

s + γ
L̂2c

L
0

+L1
1

s + γ
L2

2

s + 2γ
L̂4

1

s + γ
L̂2c

L
0

+L1
1

s + γ
L2

2

s + 2γ
L3

3

s + 3γ
T cL

0 +O(γ −4)

≡ KL
0 (s)cL

0 (s). (24)

Applying the inverse Laplace transform, we can formally write
the equation for P̂ (x,t) = c0(x,t) as

∂t P̂ (x,t) =
∫ t

0
dτK0(τ )P̂ (x,t − τ ), (25)

where K0(t) is the inverse Laplace transform of the kernel
KL

0 (s). Note that this differential equation is not local in
time, but has the memory kernel K0. Our derivation of the
first few expansion terms for K0 in Eq. (24) is regarded as a
substantial extension of the previous result in Ref. [13] to a
general inhomogeneous and nonisothermal (local temperature)
case. In contrast, WT [15] also studied the general case, but
assumed a Smoluchowski-type differential equation, which is
local in time with a time-independent evolution operator to
derive higher-order corrections.

It is easy to notice that K0(t) should decay exponentially
fast (∼e−γ t ) even at the first order in Eq. (24). Therefore, one
can utilize a Taylor expansion for P̂ (x,t − τ ) around τ = 0,
and by iteration we get

∂t P̂ (x,t) =
[ ∫ t

0
dτK0(τ )

−
∫ t

0
dττK0(τ )

∫ t

0
dτK0(τ ) + · · ·

]
P̂ (x,t)

≡ L̂(x,t)P̂ (x,t). (26)

Note that all the memory terms are recast into a time-dependent
evolution operator L̂. Furthermore, as KL

0 is O(γ −1), the above
expansion can be also regarded as another inverse-friction
expansion in γ −1.

First, consider the lowest order in γ −1. Then, KL
0 (s) =

L1
1

s+γ
L̂2 and L̂ = ∫ t

0 dτK0(τ ) = ∫ t

0 dτL1e−γ τ L̂2, which
yields

∂t P̂ (x,t) = ∂x

[
1 − e−γ t

γ
(−f + ∂xT )

]
P̂ (x,t). (27)

This equation reduces to the overdamped limit of Eq. (20) in
the limit of γ t � 1. This is a much weaker condition for large
γ , compared to the extreme limit of γ�t � 1. However, for
small t < γ −1, the exponential factor produces a nonnegligible
correction.

For a moment, we assume that γ t � 1 for simplicity. As
K0(t) is a function of γ t , one can safely replace the upper
integral limit by an infinity in Eq. (26). Then, we get a time-
independent evolution operator as

L̂(x) = KL
0 (0) + ∂sK

L
0 (s)

∣∣
s=0K

L
0 (0) + · · · . (28)

Taking the terms up to the second order in the Taylor
expansion, it is easy to see that the equation is valid up to
O(γ −3). Finally, using Eq. (24), the evolution operator is
written, up to O(γ −3), as

L̂(x) = L1
1

γ
L̂2 + L1

1

γ
L2

1

γ
L̂4

1

γ
L̂2

+L1
1

γ
L2

1

γ
L3

1

γ
T − L1

1

γ 2
L̂2L1

1

γ
L̂2. (29)

Rearranging the above terms reproduce the WT result in
Eq. (3.1) of Ref. [15]. It is quite straightforward to obtain
higher-order terms in γ −1 in a Smoluchowski-type expression
for γ t � 1 and also feasible to obtain a time-dependent
evolution operator L̂(x,t) in higher orders for γ � 1.

We now want to confirm and test the robustness of Eq. (20)
by numerical simulations for simple examples. First, we
perform numerical integrations of the second-order SDE,
Eq. (1), for large γ . Casting the second-order SDE into a
set of two first-order SDE’s and integrating them during time
interval [t,t + �t], we get

�x = v�t,

�v = (−γ v + f )�t + (
√

T γ )I�W, (30)

where we set m = 1 and choose the Ito calculus for con-
venience without loss of generality for small �t . Here, we
take �t = 10−3 and the initial distributions are Gaussian with
variance 4 centered on x = 1 for the position and centered on
v = 0 for the velocity. To obtain a reasonable accuracy for
the probability distribution function, we repeat simulations for
2 ∼ 5 × 106 samples.

Next we perform numerical simulations, using our result of
Eq. (21) with α = 0 (identical with any other choice of α) as

�x =
[
f

γ
+ T

(
1

γ

)′]
�t +

(√
T

γ

)
I

�W, (31)

and also using the naive result of Eq. (3)

�x =
[
f

γ
+ α

(
T

γ

)′]
�t +

(√
T

γ

)
I

�W. (32)

Finally, we compare the results from Eq. (30) with those from
Eq. (31) and Eq. (32).

In the first example, we take γ (x) = γ0(1 + e−x2/2) and
T (x) = 2/[(1 + e−x2/2)(1 + 2x2)2] with f (x) = 0. Here, we
set γ0 = 10, which is much smaller than (�t)−1 = 103, but
still reasonably good for the first-order approximation in γ −1.
Thus, this example should be well described by Eq. (20) at
t = 5 (> γ −1

0 = 0.1). In Fig. 1, one can easily see that the
naive overdamped limit with either α = 1 or α = 0 does not
fit the data points obtained from Eq. (30), though the latter
seems to fit better by chance. In contrast, our overdamped
limit given by Eq. (31) shows an excellent agreement.

In the second example, we take γ (x) = γ0[1 + 4.4x
3(x2+1) ]

and T (x) = (3 + 4x
x2+1 )2/[4(3 + 4.4x

x2+1 )] with f (x) = −2x. We
take γ0 = 30, which should be large enough for Eq. (20) at
t = 10. Again, the data in Fig. 2 show a perfect agreement
between our overdamped limit given by Eq. (31) and the
stochastic differential equation of Eq. (30). We also check
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P^ (x
,t)

Without approx
Naive (Anti-Ito)
Naive (Ito)
Correct limit

FIG. 1. (Color online) Probability distribution function P̂ (x,t) at
t = 5. We take γ (x) = γ0(1 + e−x2/2), T (x) = 2/[(1 + e−x2/2)(1 +
2x2)2], and f (x) = 0 with a large value of γ0 = 10. Circles (without
approximation) and crosses (correct limit) represent the data obtained
from Eqs. (30) and (31), respectively, which overlap each other very
well. Squares (Ito) and triangles (anti-Ito) represent the data obtained
from Eq. (32) with α = 0, 1, respectively.

the exponentially small correction term in Eq. (27), compared
to Eq. (20) at small time t . With γ0 = 10 and t = 0.2, one can
see, in Fig. 3, the better data collapse with Eq. (27) than with
Eq. (20).

Finally, we discuss the zero-mass limit of Eq. (1). Ao
et al. derived the Fokker-Planck equation in the zero-mass
limit when T is a constant [5]. Here, we extend their result to
the general case where T = T (x). Starting from the Kramers
equation given by Eqs. (5) and (6), we change the variables
such that s = t/

√
m and u = v

√
m to obtain the covariant

form of the Kramers equation in terms of variables (x,u,s) as

∂sP (x,u,s) = (Lrev + Lirr)P (x,u,s) (33)

-2 -1 0 1 2 3 4
x

0

0.1

0.2

0.3

0.4

P^ (x
,t)

Without approx
Naive (Anti-Ito)
Naive (Ito)
Correct limit

FIG. 2. (Color online) Probability distribution function P̂ (x,t) at
t = 10. We take γ (x) = γ0[1 + 4.4x

3(x2+1)
], T (x) = (3 + 4x

x2+1
)2/[4(3 +

4.4x

x2+1
)], and f (x) = −2x with γ0 = 30. The same symbols are used

as described in the legend of Fig. 1.
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FIG. 3. (Color online) Probability distribution function P̂ (x,t) at
t = 0.2. We take γ (x) = γ0[1 + 4.4x

3(x2+1)
], T (x) = (3 + 4x

x2+1
)2/[4(3 +

4.4x

x2+1
)], and f (x) = −2x with γ0 = 10. For initial conditions, we take

the Gaussian distribution with variance 4 centered on x = 1 for the
position and the Maxwell velocity distribution with local temperature
T (x). Data obtained from Eqs. (30) and (27) (with exponential
correction) overlap each other very well, while data obtained from
Eq. (20) show a noticeable difference.

with

Lrev = −u∂x − f ∂u, Lirr = γm∂u[u + T ∂u], (34)

with γm = γ /
√

m. These equations are the same as Eqs. (5)
and (6) by replacing γ by γm and setting m = 1. It is obvious
that the zero-mass limit (m → 0) is equivalent to the large γm

limit as long as γ does not vanish. Thus, one can perform
exactly the same transformation as we did with the variable
γm and take the large γm limit to obtain

∂sP̂ (x,s) = ∂x

[
− f

γm

+ 1

γm

∂xT

]
P̂ (x,s). (35)
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FIG. 4. (Color online) Probability distribution function P̂ (x,t)
at t = 1. We take γ (x) = 1 + e−x2/2, T (x) = 1/[2(1 + e−x2/2)(x2 +
1)2], and f (x) = −x/5 with a small value of m = 0.01. The same
symbols are used as described in the legend of Fig. 1.
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By returning back to the original variables of (x,t), we
can easily recover Eq. (20). This proves that the zero-mass
limit is equivalent to the overdamped limit for general cases.
We check this result by numerical simulations in Fig. 4,
when T is not a constant with γ (x) = 1 + e−x2/2, T (x) =
1/[2(1 + e−x2/2)(x2 + 1)2], and f (x) = −x/5 for small m =
0.01. Again we have an excellent agreement between the
simulations on the original second-order SDE and our equation
in the zero-mass limit.

To summarize, we derive the overdamped Fokker-Planck
equation for the Brownian motion in a general inhomoge-
neous medium with a position-dependent friction coefficient
as well as a position-dependent temperature. Our result
is consistent with the SSMD result [2] and at the next
order with the WT result [15]. Our derivation procedure is

straightforward and allows for a systematic calculation of
higher-order corrections without any assumption. We also
show that the zero-mass limit is generally equivalent to the
overdamped limit in one-dimensional space. We may note that
this procedure is a direct derivation from the underdamped
Kramers equation; however, on other systems, the overdamped
equation may not be simply the limit of an underdamped
one [19].
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