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Minimal diffusion formulation of Markov chain ensembles and its application to ion channel clusters
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We study ensembles of continuous-time Markov chains evolving independently under a common transition
rate matrix in some finite state space. A diffusion approximation, composed of two specifically coupled Ornstein-
Uhlenbeck processes in stochastic differential equation representation, is formulated to deduce how the number of
chains in a given particular state evolves in time. This particular form of the formulation builds upon a theoretical
argument adduced here. The formulation is minimal in the sense that it is always a two-dimensional stochastic
process regardless of the state space size or the transition matrix density, and that it requires no matrix square
root operations. A set of criteria, put forward here as to be necessarily captured by any consistent approximation
scheme, is used together with the master equation to determine uniquely the parameter values and noise variances
in the formulation. The model is applied to the gating dynamics in ion channel clusters.
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I. INTRODUCTION

Motions governed by Markov chains are the most com-
monly applied class of stochastic processes in science and en-
gineering [1,2]. In this paper, we consider not just one Markov
chain but an ensemble of chains. The chains in the ensemble
are assumed to be evolving independently in the same finite
state space with some continuous-time Markov transition rules
common to all the chains. The primary objective of this study
was to deduce the temporal evolution of the number of chains
in a prescribed relevant state. Although the analysis of the
temporal evolution of one Markov chain is comparatively easy,
the mathematics becomes quite complicated for the collective
behavior of a population of chains. In this context, Kurtz [3] has
approximated density-dependent Markov processes, for large
system size, down to a diffusion model represented by a system
of stochastic differential equations (for a detailed account,
see Ref. [4]). The Kurtz approach was later rediscovered
by Fox and Lu [5] in the study of ion channel clusters.
Density-dependent processes have appeared in a variety of
biological and physical contexts, including chemical kinetics,
ecological models, epidemics, metapopulations, telecommuni-
cations, and computational neuroscience (e.g., see Refs. [5,6]).

The use of the diffusion approximation is, however, deterred
by the inherent requirement of calculation of a matrix square
root at each time step in it. In addition, the number of
noise terms required there increases with the state space size.
Recently, approaches that circumvent the matrix square root
calculations were introduced [7,8], but at the expense that the
number of noise terms employed does not only increase with
the state space size, but also with the transition rate matrix
density. This extra increase in the number of noise terms
continues to be the case even when one is interested in the
dynamics specific to the relevant state only. The approaches
of Refs. [7,8] yield the same resulting formulation (see the
Appendix in Ref. [9]). These approaches derive from the fact
that different but equivalent Itô stochastic differential equation
models of random dynamical systems can be constructed [10].
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Our diffusion approximation formulated here, on the other
hand, is minimal in the sense that it accommodates only
two stochastic variables (correspondingly two noise terms)
irrespective of the state space size or the transition matrix
density and is not hindered by the matrix square root
operations; therefore, it provides a simple analytic formulation
and a fast computation algorithm for the problem. This is
made possible by treating the effect of the state density
fluctuations, other than that of the relevant state, collectively
instead of using the density fluctuations of the individual
states explicitly. The approximation is formulated as a two-
dimensional stochastic process comprised of two specifically
coupled Ornstein-Uhlenbeck processes in stochastic differ-
ential equation representation. This form of the formulation
stems from a theoretical argument that we present later in
this paper. The parameter values and noise variances in the
formulation are determined uniquely by means of a set of
criteria put forward here as to be necessarily captured by any
consistent approximation scheme. This requires the knowledge
of the expectation value of the number of chains in a given
state, which is easily computed from the master equation
deterministically.

We apply our model to the gating by ion channel clusters to
illustrate its accuracy in reproducing the statistical properties
of the exact microscopic Markov simulations. These channels
facilitate excitability of cells [11]. The gating of ion channels
is typically modeled by means of a continuous-time discrete
state Markovian kinetic scheme, in which, a channel can be
open (the relevant state) or else it is found in one of the multiple
closed states.

II. AVERAGE STATE DENSITIES

Consider N ergodic (irreducible) continuous-time Markov
chains evolving independently under a common transition rate
matrix in the finite space of states {0,1, . . . ,L}. Let θl (l =
0,1, . . . ,L) be the number of chains in state l at a particular
time, and refer to the synonym ψl := θl/N as the density of
state l. Symbolize the fluctuation in the state density ψl by φl ,
that is,

ψl := 〈ψl〉 + φl, (l = 0,1, . . . ,L), (1)
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FIG. 1. Example state transition diagram used in demonstrating
the implementation of the master equation. z’s are the transition rates.

where 〈· · · 〉 denotes the expectation value. Note that the
average state density 〈ψl〉 corresponds to the probability of
finding a chain in state l. 〈ψl〉 are, in general, time-dependent
quantities. By definition, it reads that

L∑
l=0

〈ψl〉 = 1. (2)

The evolution of the expectation values 〈ψl〉 (l =
0,1, . . . ,L) can be computed from the L coupled linear
deterministic differential equations governed by the master
equation. A fundamental property of the master equation in
Markov processes is that, as t → ∞, all solutions tend to
a stationary solution if the state set contains strictly a finite
number of discrete states and the transition rates are constant in
time. There exists only one stationary solution if the transition
rate matrix is not decomposable. Therefore, with constant
transition rates, 〈ψl〉 (l = 0,1, . . . ,L) reaches to the unique
steady state in the long-time limit. We assume the transition
rates to be constant in our analysis in the next section, but later
allow them to be slowly varying.

For demonstration, consider the example state transition
diagram given in Fig. 1. In this particular case, the master
equation reads

d〈ψ0〉
dt

= −z01〈ψ0〉 + z10〈ψ1〉,
d〈ψ1〉

dt
= z01〈ψ0〉 − (z10 + z12)〈ψ1〉 + z21〈ψ2〉,

d〈ψ2〉
dt

= z12〈ψ1〉 − z21〈ψ2〉,

(3)

where z’s are the transition rates and Eq. (2) becomes

〈ψ0〉 + 〈ψ1〉 + 〈ψ2〉 = 1. (4)

For time-dependent transition rates, the average state densities
can be solved iteratively from Eq. (3). For constant transition
rates, the steady state

d〈ψ0〉
dt

= d〈ψ1〉
dt

= d〈ψ2〉
dt

= 0 (5)

prevails in the long-time limit. Then, after noting that only
two of the equations in the set given by Eq. (3) are linearly
independent, Eqs. (3)–(5) uniquely solve 〈ψ0〉, 〈ψ1〉, and 〈ψ2〉.

III. THE RELEVANT STATE DENSITY FLUCTUATIONS:
SPECIAL CASE

In formulating the dynamics of the fluctuation φr , where
the subscript r stands for the relevant state, let us start with
the special case that the relevant state is directly connected
only to one state—say, to state s—in the transition diagram

r
α

β

s

FIG. 2. Sketch of the relevant state when it makes a direct
connection with one state only.

(see Fig. 2). Assume that the transition rates α and β,
shown in Fig. 2, are positive constants. Recall that our
formalism presumes an equilibrium framework, and therefore,
the equations below derived for the evolution of state density
fluctuations hold after the relaxation of the system.

A. Theory and the derivation

This section gives the underlying theory, and correspond-
ingly the derivation, of our minimal diffusion formulation. The
reader impatient to use or implement the governing equations,
however, might prefer to jump directly to the next section.

Note that, by definition, we have

L∑
l=0

ψl = 1. (6)

Then it follows from Eqs. (1) and (2) that

L∑
l=0

φl = 0 (7)

and

〈φl〉 = 0, (l = 0,1, . . . ,L). (8)

In addition, we need the second moments of the fluctuations.
It follows from the dispersion relation of the binomial
distribution that

〈
φ2

l

〉 = 〈ψl〉(1 − 〈ψl〉)
N

, (l = 0,1, . . . ,L). (9)

One can also derive, for any two different states l and m, that

〈φlφm〉 = −〈ψl〉〈ψm〉
N

, l �= m. (10)

Regarding states l and m as a single combined state and
applying Eq. (9) yields

〈(φl + φm)2〉 = (〈ψl〉 + 〈ψm〉)(1 − 〈ψl〉 − 〈ψm〉)
N

,

which, in turn, results in Eq. (10).
In the designated special case, the relevant state density

fluctuation φr changes in time under the control of the
stochastic differential equation [5,7]

φ̇r = −βφr + αφs + ξ, (11)
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where ξ is mean zero Gaussian white noise with the mean
square

〈ξ (t)ξ (t ′)〉 = α〈ψs〉 + β〈ψr〉
N

δ(t − t ′). (12)

The variance of the noise ξ used here, however, slightly differs
from Refs. [5,7] by the presence of expectation values on the
right side of Eq. (12). The fluctuation φs in Eq. (11) cannot
be determined by itself without solving all the state density
fluctuations φl (l = 0,1, . . . ,L) simultaneously at each time
step when the current approaches [3,7,8] are used. Further
difficulties are faced with the use of these approaches. In the
approach of Kurtz [3], the number of noise terms required
increases with the state space size and some matrix square root
calculations have to be performed at each time step. Although
the approaches of Refs. [7,8] avoid the matrix square root
operations, it is at the expense that the number of noise terms
then does not only increase with the state space size but also
with the density of the transition rate matrix. Our diffusion
approximation developed here, on the other hand, does not
suffer from any of these difficulties as it does not require
individual use of the state density fluctuations other than φr

and φs ; instead, the collective effect of these other density
fluctuations is implicitly incorporated into the formulation.

Concerning the state density fluctuation φs , it is obvious
that

(i) φs must necessarily counterbalance the variation caused
by ξ in φr due to Eq. (25a);

(ii) 〈φ2
s 〉 must agree with Eq. (9);

(iii) 〈φsφr〉 must agree with Eq. (10).
These criteria, however, do not suffice to uniquely identify

φs . We therefore introduce a method that facilitates unique
identification of φs , when used together with the above criteria.
The method is as below.

Define φH := (φl|l �= s) and assume that the system iden-
tified by the array φH × φs = (φl|l = 0,1, . . . ,L) has had
enough time to reach equilibrium. Note that the space
of values that φH can attain is dependent on φs due to
Eq. (7) and that the space changes in time as φs varies.
Let T (φH

(2) × φ(2)
s ,t2 | φH

(1) × φ(1)
s ,t1) denote the transition

probabilities that governs the temporal evolution of the system
φH × φs at equilibrium. Now suppose that we perform an exact
microscopic Markov simulation of the system in a thought
experiment and obtain a vast number of stochastic evolution
paths of φH × φs and then measure a new type of transition
probabilities T (φ(2)

s ,t2|φ(1)
s ,t1) over the paths collectively. Here

T (φ(2)
s ,t2 | φ(1)

s ,t1) is not decided by a single measurement, but
rather assumed to be obtained from the average of collective
measurements, subject to φs(t1) = φ(1)

s and φs(t2) = φ(2)
s , over

the φH × φs paths generated. Then consider some function
f (φs(t),φs(t ′)). Let 〈f 〉T and 〈f 〉T denote f ’s expectation
values as computed using the transition probabilities T and T ,
respectively. It accordingly applies that 〈f 〉T = 〈f 〉T . Thus,
in computing the expectation values of functions of φs , we can
use T instead of T .

The process φs characterized by the transition probability
T , at equilibrium, is Markovian and stationary. It can also
be regarded as a Gaussian process, even though this is only
approximately true. Therefore, the process is an Ornstein-

Uhlenbeck process. This is due to Doob’s theorem, which
states that if a process is simultaneously Markovian, stationary,
and Gaussian, then it is either an Ornstein-Uhlenbeck process
or a completely random process. An Ornstein-Uhlenbeck
process is represented by a stochastic differential equation in
the form of Langevin equation. Thus, we employ an equation
for the evolution of φs ,

φ̇s = −γφs − ξ + η, (13)

where η is a mean zero Gaussian white noise independent
of ξ (i.e., 〈ηξ 〉 = 0). The term ξ is the same noise as in
Eqs. (11) and (12). The −ξ term in Eq. (13) was included
for counterbalancing ξ ’s effect on φr . The parameter γ and the
variance of η are determined below.

The differential equations (11) and (13) have the solutions

φr (t) = e−βt

{
φr (0) +

∫ t

0
eβt ′[αφs(t

′) + ξ (t ′)
]
dt ′

}
(14)

and

φs(t) = e−γ t

{
φs(0) −

∫ t

0
eγ t ′ [ξ (t ′) − η(t ′)]dt ′

}
, (15)

respectively. From these equations, we calculate 〈φ2
s 〉 and

〈φsφr〉 at equilibrium, i.e., in the long-time limit. It follows
from Eq. (15), using 〈ηξ 〉 = 0, that

〈φs(t)
2〉

= e−2γ t

∫ t

0

∫ t

0
eγ (t1+t2)[〈ξ (t1)ξ (t2)〉 + 〈η(t1)η(t2)〉]dt1dt2,

(16)

which, in turn, gives

〈
φ2

s

〉 = 〈ξ 2〉 + 〈η2〉
2γ

(17)

in the limit t → ∞. Note that, on the course of derivation, we
have taken the expectation values out of the integral, as their
values are constants at equilibrium; which we utilize also in
the below derivation. It reads from Eqs. (14) and (15) that

〈φs(t)φr (t)〉

= e−βt

∫ t

0
eβt ′ [α〈φs(t)φs(t

′)〉 + 〈φs(t)ξ (t ′)〉]dt ′. (18)

Utilizing

〈φs(t)ξ (t ′)〉 = −〈ξ 2〉e−γ (t−t ′), t � t ′,

and employing the autocorrelation function of the Langevin
motion [12]

〈φs(t
′)φs(t)〉 = 〈

φ2
s

〉
e−γ (t−t ′), t � t ′,

yields that

〈φsφr〉 = α
〈
φ2

s

〉 − 〈ξ 2〉
γ + β

. (19)

Solving Eqs. (17) and (19) for γ and 〈η2〉 simultaneously and
substituting 〈φ2

s 〉 and 〈φsφr〉 with their corresponding values
given by Eqs. (9) and (10), respectively, derives that

γ = α〈ψs〉2 + β〈ψr〉(1 − 〈ψs〉)
〈ψs〉〈ψr〉 (20)
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and

〈η(t)η(t ′)〉 = α〈ψs〉Cα + β〈ψr〉Cβ

N〈ψr〉 δ(t − t ′), (21)

where Cα and Cβ stand for

Cα := 2〈ψs〉(1 − 〈ψs〉) − 〈ψr〉,
Cβ := 2(1 − 〈ψs〉)2 − 〈ψr〉.

(22)

Thus, the above criteria for 〈φ2
s 〉 and 〈φsφr〉 uniquely identify

the friction coefficient γ and the noise η.
Although γ given by Eq. (20) is unconditionally non-

negative, it is not the case for 〈η2〉 given by Eq. (21). If 〈ψr〉
is within a certain proximity of its steady state value, then
〈η2〉 is guaranteed to be non-negative, which is just fine as
our analysis presumes an equilibrium framework. To see this,
consider the master equation for 〈ψr〉:

d〈ψr〉
dt

= −β〈ψr〉 + α〈ψs〉, (23)

which reads at the steady state as

β〈ψr〉 = α〈ψs〉. (24)

Inserting Eq. (24) into Eq. (21) yields

〈η2〉 = 2β

N
[1 − 〈ψs〉 − 〈ψr〉],

which is by Eq. (2) always non-negative.
Since the nearly Gaussian process φs , characterized by the

transition probability T , was taken to be exactly Gaussian in
developing our formulation, the error of our formulation is
expected to be larger than the error of diffusion approximation
by Kurtz. However, we anticipate still the same order of error
in both models. Kurtz has given a bound on the order of error
of his diffusion approximation as O(lnN/N ) [3].

B. Governing model equations and implementation issues

The evolution of φr , in our model, is thus given by the
coupled stochastic differential equations

φ̇r = −βφr + αφs + ξ, (25a)

φ̇s = −γφs − ξ + η, (25b)

where the parameter γ is as given by Eq. (20). The terms ξ

and η are independent mean zero Gaussian white noises with
the mean squares given by Eqs. (12) and (21), respectively.
Then, solving φr from the formulation here and using 〈ψr〉 as
obtained from the master equation, we conclude the evolution
of ψr by means of ψr = 〈ψr〉 + φr .

Although we have assumed the transition rates to be
constant in our analysis in the preceding section, the governing
equations can be safely used also with slowly varying transition
rates. Then, the average state densities 〈ψl〉 (l = 0,1, . . . ,L)
need to be obtained iteratively from the master equation.
Correspondingly, note that despite that the noise variance 〈η2〉,
defined by Eq. (21), is guaranteed to be non-negative when
〈ψr〉 is within the proximity of its steady state value, it may
be negative during the initial transient period in an iterative
numerical implementation. In such case, η may be set to zero
or the absolute value |〈η2〉| may be used for the variance.

In applying Euler’s method for the numerical solution of
Eq. (25b), the step size �t should satisfy, for the stability
reasons, that �t γ < 1. However, γ can attain large values,
which dictates the usage of a very small �t , or else φs can
be set directly to zero for γ values that violate the inequality
�t γ < 1.

The above formulation is essentially the same also in the
case when the relevant state makes direct connection with an
arbitrary number of states: It then only requires a modification
of α, β, and 〈ψs〉, as to be given in Sec. IV.

As seen, our formulation does not require matrix square
root operations and contains only two stochastic variables—φr

and φs—for any state space size or transition matrix density.
Clearly, it is very much simpler than the formulations of Kurtz
[3] or Orio and Soudry [7] and offers a faster computation
algorithm. This point is discussed further in Sec. V, together
with making reference also to the model by Güler [13] that
was developed in the context of ion channels.

IV. GENERALIZATION

We next consider the case that the relevant state directly
connects to two states, say, to states j and k. Assume that the
transition rates from the state r to states j and k are denoted
by βj and βk , respectively, and the rates from j to r and from
k to r are denoted by αj and αk , respectively. Then φr evolves
in accordance with

φ̇r = −(βj + βk)φr + αjφj + αkφk + ξ. (26)

Instead of dealing with the states j and k explicitly, here we
substitute them by a single effective state s with the objective
of being able to use the above formulation, developed for the
case of one-state direct connection, also in this case.

Define new parameters α and β and set

β = βj + βk. (27)

Then making substitution αjφj + αkφk → αφs converts
Eq. (26) to Eq. (25a). For the effective state s to be treated
as a single state, the following must be satisfied:

(i) α〈ψs〉 = αj 〈ψj 〉 + αk〈ψk〉;
(ii) 〈ψs〉 abides by Eq. (23);
(iii) 〈φ2

s 〉 agrees with Eq. (9);
(iv) 〈φsφr〉 agrees with Eq. (10);
(v) 〈ψs〉 + 〈ψr〉 � 1.
The necessary and sufficient condition for these require-

ments to hold is that the parameter α and the probability 〈ψs〉
are set as

α = A + B

A
(28)

and

〈ψs〉 = A2

A2 + B
, (29)

with

A := αj 〈ψj 〉 + αk〈ψk〉,
B := α2

j 〈ψj 〉(1 − 〈ψj 〉) − 2αjαk〈ψj 〉〈ψk〉
+α2

k 〈ψk〉(1 − 〈ψk〉). (30)

062116-4



MINIMAL DIFFUSION FORMULATION OF MARKOV CHAIN . . . PHYSICAL REVIEW E 91, 062116 (2015)

The proof is as follows. The first requirement directly reads
from Eqs. (28) and (29). In this case, the master equation
implies that

d〈ψr〉
dt

= −β〈ψr〉 + αj 〈ψj 〉 + αk〈ψk〉,
which, under the first requirement, reads in the same form as
Eq. (23). Comparison of Eq. (26) with Eq. (25a) shows that

φs = αjφj + αkφk

α
,

which gives

〈φsφr〉 = αj 〈φjφr〉 + αk〈φkφr〉
α

and

〈
φ2

s

〉 = α2
j

〈
φ2

j

〉 + 2αjαk〈φjφk〉 + α2
k

〈
φ2

k

〉
α2

.

In turn, using Eqs. (9) and (10) yields

〈φsφr〉 = −〈ψr〉 A

αN
and

〈
φ2

s

〉 = B

α2N
,

where A and B are as given by Eq. (30). It then follows that
〈φ2

s 〉 and 〈φsφr〉 agree with Eqs. (9) and (10), respectively,
provided that α and 〈ψs〉 are set to be as given by Eqs. (28) and
(29), respectively. Suppose that the inequality 〈ψs〉 + 〈ψr〉 �
1 holds. Then, multiplying both sides of it by α and using
Eqs. (28) and (29) implies that A � α(1 − 〈ψr〉), which, in
turn, gives

A2 � (A2 + B)(1 − 〈ψr〉). (31)

On the other hand, we have that 〈ψj 〉 + 〈ψk〉 � 1 − 〈ψr〉.
Then, if the inequality

A2 � (A2 + B)(〈ψj 〉 + 〈ψk〉) (32)

holds, so does (31). After substituting A and B, Eq. (32)
gives 0 � (αj − αk)2. Thus, the inequality 〈ψs〉 + 〈ψr〉 � 1
is indeed satisfied.

To sum up, the governing equations are valid also in the case
of two-state direct connection once the settings (27)–(30) are
done. Moreover, to extend the formulation to a case where the
relevant state makes direct connection with arbitrary number of
states, one only needs to modify β defined by Eq. (27) and the
parameters A and B in Eq. (30). Assume that the relevant state
directly connects to the set of states D. Then, the modifications
to be made are

β =
∑
i∈D

βi, A =
∑
i∈D

αi〈ψi〉,

and

B = N

〈(∑
i∈D

αiφi

)2〉
. (33)

The resulting second moments in Eq. (33) can be easily
computed from Eqs. (9) and (10).

At this point, we mention a study [14] which partly moti-
vated our present work. The study argues that the computing
time of the exact microscopic Markov simulations can be
shortened considerably, without significant loss in accuracy, by

αn

βn

2αn

βn2

αn4 αn3

βn3 4βn

n
0 2 3 4n n n1

n

FIG. 3. State transition diagram of a potassium channel.

regarding fluctuations only in those states directly connected
to the relevant state in every chain. That conjecture, in a sense,
is similar to the one we used in this work, but our utilization of
the conjecture is different. First, contrary to our formulation,
the simulation method in Ref. [14] violates the criterion that
〈φsφr〉 agrees with Eq. (10). Second, instead of ignoring the
fluctuations in those states that are not directly connected to the
relevant state, our diffusion approximation implicitly reflects
the collective effect of these fluctuations into the formulation.
Third, the simulation method needs an increasing number of
noise terms with the increase in the number of states directly
connected to the relevant state, whereas there is no such
increase in our formulation. Of course, unlike the diffusion
models but like any microscopic Markov simulation algorithm,
the computational complexity of that simulation method still
increases with the number of chains.

V. APPLICATION TO ION CHANNEL CLUSTERS

The excitability of cells is facilitated by voltage-gated ion
channels. Each type of ion channel is selective to conduct a
particular ion species, and that the transmembrane conduc-
tance of potassium and sodium is controlled by these channels
[11]. The number of open channels fluctuates in a seemingly
random manner [15], which results in a fluctuation in the
conductivity of the membrane and, in turn, a fluctuation in
the transmembrane voltage. When the number of ion channels
(i.e., the cell’s membrane area) is very large, the voltage
fluctuations become negligible, and, therefore, the transmem-
brane voltage dynamics is then described by the celebrated
Hodgkin-Huxley (HH) equations [16]. For smaller membrane
patches, however, the effects of the channel fluctuations are
potentially profound. The stochastic behavior of ion channels
is generally characterized by continuous-time, discrete-state
Markov jump processes [17]. State transition diagrams of
potassium and sodium channels are given in Figs. 3 and 4,
respectively. Note that there exist four n gates in a potassium
channel and three m gates and one h gate in a sodium channel.

m0 1h m h11 m h12 m h13

3αm 2 mα αm

βm 2βm 3βm

3αm 2 mα αm

βm 3βm

m0 m m m

2βm

αh αh αh αhβh βh βh βh

h0 h01 h02 h03

FIG. 4. State transition diagram of a sodium channel.
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A channel is open when all of its gates are open; otherwise, it
is closed. There is no mutual interaction among the channels.

Microscopic Markov simulation of a population of channels
can be pursued by the simple stochastic method that keeps
track of each Markov process for the state of each gate
simultaneously. Although faster microscopic methods, based
on the well-known Gillespie algorithm, that need to keep
track only of the total populations of channels in each
possible state are available [18], the computational complexity
necessarily increases with the number of channels. As a
result, there has been high motivation for developing an
alternative formulation that approximates the microscopic
dynamics efficiently without computational cost increase with
population size. In a pioneering work in this line of research,
Fox and Lu [5] developed a diffusion approximation to the
discrete gate dynamics in which the vector containing the
fractions of possible channel states evolves in accordance with
a Langevin-type equation in matrix form. The method requires
numerical calculation of a matrix square root at each time step,
making it a time-consuming algorithm. The same authors also
developed a stochastic version of the HH equations that avoids
the matrix operations. Although the former version captures
the microscopic dynamics efficiently [19], the latter fails to
produce accurate enough statistics of spike generation [20,21].

More recently, a model based on stochastic renormalization
[22] and alternative diffusion models that need no matrix
square root calculation [7,13,23] were introduced. However,
these models are not without their own shortcomings. The
model of Ref. [22] was developed for a special membrane.
The model of Ref. [23] can suffer significant loss in accuracy
when the rate functions for the gate opening and closing are
noisy [24]. The model of Ref. [13] contains some constant
parameters the values of which are estimated phenomenolog-
ically. The model of Ref. [7] accommodates relatively large
numbers of noise terms and differential equations. For a recent
comparative study of these models, see Ref. [25]. On the issue
of computation time, the study shows that the Güler model [13]
is, as expected, the fastest: three times as fast as the Orio and
Soudry model [7] and the Linaro model [23]. This result can be
easily understood by comparing the structures of these models.
Table I shows the numbers of first-order differential equations
and noise terms needed in each model for modeling both
potassium and sodium channels. It is seen that the Orio and
Soudry model accommodates nearly twice the number of first-
order differential equations and nearly three times the number
of noise terms with respect to the corresponding numbers in
the Güler model. Likewise, with respect to the Linaro model.
The present model contains the same number of differential
equations as the Güler [13] model and one less noise term
(see below), and, therefore, it is much faster than the Orio

TABLE I. Structure of the membrane models.

Model No_diff_eqs No_noise_terms

Orio-Soudry [7] 13 14
Linaro etal. [23] 14 11
Güler [13] 7 5
Present model 7 4

and Soudry model and the Linaro model; more importantly, it
provides a simpler self-contained analytic formulation.

Using the state transition diagrams given in Figs. 3 and
4, it is straightforward to apply our present formulation to
clusters of potassium and sodium channels. In this case, there
is a simplicity that we do not need to use the master equation
to specify 〈ψr〉 and 〈ψs〉 for neither channel type. Instead,
the averages of the gating variables—n̄, m̄, and h̄—can be
employed. The averages evolve in accordance with

˙̄n = −βnn̄ + αn(1 − n̄), (34a)

˙̄m = −βmm̄ + αm(1 − m̄), (34b)

˙̄h = −βhh̄ + αh(1 − h̄), (34c)

where αn and βn are opening and closing rates of n gates;
similarly, αm and βm are the rates of m gates and αh and βh are
the rates of h gates. Then we have for the potassium channels

〈ψ4〉 = n̄4, (35a)

〈ψ3〉 = 4n̄3(1 − n̄), (35b)

and for the sodium channels

〈ψ31〉 = m̄3h̄, (36a)

〈ψ21〉 = 3m̄2(1 − m̄)h̄, (36b)

〈ψ30〉 = m̄3(1 − h̄). (36c)

Here 〈ψ4〉 and 〈ψ31〉 are the average chain densities for the
potassium and the sodium channels’ relevant states, respec-
tively. We do not need the expectation values corresponding
to the other states as these states are not directly connected
to the potassium relevant state n4, or to the sodium relevant
state m3h1. Note that here 〈ψj 〉 (j = 0,1,2,3,4) represents the
probability of a potassium channel to have j open n gates
and 〈ψij 〉 (i = 0,1,2,3; j = 0,1) represents the probability of
a sodium channel to have i open m gates and j open h gates.

Then, in using our formulation for the potassium channel
clusters, one needs to set that

α = αn, β = 4βn, 〈ψs〉 = 〈ψ3〉,
and employ Eqs. (34a) and (35). Subsequently, the density of
open potassium channels ψ4 follows from ψ4 = 〈ψ4〉 + φr .
For the sodium channel clusters, before the use of the
formulation, one has to evaluate Eqs. (28)–(30) with the
settings

β = 3βm + βh, αj = αm, αk = αh,

〈ψj 〉 = 〈ψ21〉, 〈ψk〉 = 〈ψ30〉.
The density of open sodium channels ψ31 then easily follows.
Here 〈ψ31〉, 〈ψ21〉, and 〈ψ30〉 are decided from Eqs. (34b),
(34c), and (36). In this use of the formulation, the parameter N

corresponds to the number of potassium or sodium channels in
the cluster, depending on the channel type under consideration.

In Fig. 5, we make a numerical study of ψ4 and ψ31

using various constant sets of rate values, more specifically,
of their means (〈ψ4〉 and 〈ψ31〉), standard deviations (σ4

and σ31), and autocorrelation times (τ4 and τ31). Related
results computed using our model are compared with the
corresponding microscopic simulation results. It is seen that
our model predicts 〈ψ4〉, 〈ψ31〉, σ4, and σ31 with excellent
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FIG. 5. Numerical experiments performed to examine our
model’s efficacy for the clusters of 300 potassium channels and 1000
sodium channels. A set of 60 randomly generated rate values in
the space of {αn ∈ (0 : 1); βn ∈ (0 : 0.5)} was used in the potassium
experiments; similarly, a set of 60 rate values in the space of
{αm ∈ (0 : 1); βm ∈ (0 : 0.5); αh ∈ (0 : 1); βh ∈ (0 : 0.5)} was used in
the sodium experiments. Via these rate tuples, various statistical
observables were computed from our model (indicated by superscript
C) and compared with the corresponding microscopic simulation
measurements (indicated by superscript S). Here σ and τ denote
standard deviation and autocorrelation time, respectively. The straight
line, put for guidance in each plot, indicates the situation of perfect
match between the model and the microscopic simulation. A 400-s
time window was used in computing the expectation values.

accuracy. In predicting the autocorrelation times it is not so
perfect, but still highly accurate.

Another numerical experiment we perform is on the
spiking frequencies in a HH type membrane. Evolution of
the transmembrane voltage V in time is decided through the
differential equation

CV̇ = −gKψ4(V − EK ) − gNaψ31(V − ENa)

−gL(V − EL) + I,

where I is the input current. The values of the constant
membrane parameters are as follows: membrane capaci-
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FIG. 6. Mean spiking rates against the input current, displayed by
a membrane patch comprised of (a) 360 potassium channels and 1 200
sodium channels (b) 7 200 potassium channels and 24 000 sodium
channels. The two plots shown in each figure correspond to result
from the microscopic simulations and computation from our model.
The averages were computed over a 50-s time window.

tance C = 1 μF/cm2; maximal potassium conductance gK =
36 mS/cm2; potassium reversal potential EK = −12 mV;
maximal sodium conductance gNa = 120 mS/cm2; sodium
reversal potential ENa = 115 mV; leakage conductance gL =
0.3 mS/cm2; leakage reversal potential EL = 10.6 mV; den-
sity of potassium channels = 18 chns/μm2; density of sodium
channels = 60 chns/μm2. The rate functions of the membrane
are voltage dependent, as given by

αn = (0.1 − 0.01V )/[exp(1 − 0.1V ) − 1],

βn = 0.125 exp(−V/80),

αm = (2.5 − 0.1V )/[exp(2.5 − 0.1V ) − 1],

βm = 4 exp(−V/18),

αh = 0.07 exp(−V/20),

βh = 1/[exp(3 − 0.1V ) + 1].

Spiking frequencies against the input current are shown in
Fig. 6 for two different membrane sizes. It is seen that
the frequencies computed from our model are in very good
agreement with the frequencies obtained from the microscopic
simulations. Recall that in developing our diffusion model we
have assumed the transition rates to be constant. However, here
the rates are voltage-dependent parameters, and, therefore,
they change rapidly during the action of spiking. Nevertheless,
it is the subthreshold activity that matters for the initiation
of an action potential, and since the voltage does not vary
much within that phase of activity, the model still applies. It
was shown in Ref. [21] that a nontransient correlation takes
place between the fluctuations in the number of open channels
and the fluctuations of the transmembrane voltage within the
phase of subthreshold activity. This phenomenon (referred to
as NCCP) turns out to be the major cause of the elevated
excitability and spontaneous firing in limited-size neuronal
membranes. A property, crucial for the occurrence of NCCP,
is that the autocorrelation time of the fluctuations in the number
of open channels is finite but not zero. The accuracy that our
present model yields for the spiking frequencies in Fig. 6
is another indication of its precision in capturing fluctuation
amplitudes and the autocorrelation times.
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VI. CONCLUSION

In this paper, we have studied the temporal evolution of
collective fluctuations in Markov chain ensembles. We have
in this context formulated a new diffusion approximation to
deduce the dynamics of the number of chains in a given
relevant state. We have set a theoretical argument to derive
the form of the formulation and put forward a set of criteria,
as to be necessarily captured by any consistent approximation
scheme, to determine the parameter values and noise variances
in it. The formulation is basically in the form of two
diffusively coupled Langevin-type equations. The advantage
of our formulation lies in its minimal complexity. It always
accommodates only two stochastic variables (correspondingly
two noise terms) irrespective of the state space size or the

transition matrix density, and is not hindered by the matrix
square root operations. This was facilitated by treating the
effect of the state density fluctuations, other than of the relevant
state, collectively rather than using the density fluctuations of
the individual states explicitly. We have examined our model’s
efficacy and accuracy for the clusters of potassium and sodium
channels and for the excitability of finite-size membranes. The
model was found to yield very good accuracy.

We are currently working on an analytic evaluation of
the probability function for the relevant state density and
on the extension of the formulation to the case of having
an arbitrary number of relevant states. Finally, we remark
that the formalism developed here is potentially applicable
in diverse fields varying from physics, chemistry, and biology
to engineering and economics.
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