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The O(n) φ4 model on a strip bounded by a pair of planar free surfaces at separation L can be solved
exactly in the large-n limit in terms of the eigenvalues and eigenfunctions of a self-consistent one-dimensional
Schrödinger equation. The scaling limit of a continuum version of this model is considered. It is shown that the
self-consistent potential can be eliminated in favor of scattering data by means of appropriately extended methods
of inverse scattering theory. The scattering data (Jost function) associated with the self-consistent potential are
determined for the L = ∞ semi-infinite case in the scaling regime for all values of the temperature scaling
field t = (T − Tc)/Tc above and below the bulk critical temperature Tc. These results are used in conjunction
with semiclassical and boundary-operator expansions and a trace formula to derive exact analytical results for
a number of quantities such as two-point functions, universal amplitudes of two excess surface quantities, the
universal amplitude difference associated with the thermal singularity of the surface free energy, and potential
coefficients. The asymptotic behaviors of the scaled eigenenergies and eigenfunctions of the self-consistent
Schrödinger equation as function of x = t(L/ξ+)1/ν are determined for x → −∞. In addition, the asymptotic
x → −∞ forms of the universal finite-size scaling functions �(x) and ϑ(x) of the residual free energy and the
Casimir force are computed exactly to order 1/x, including their x−1ln|x| anomalies.
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I. INTRODUCTION

In the vicinity of critical points of systems undergoing con-
tinuous phase transitions fluctuations occur on length scales
ranging from microscopic separations up to the correlation
length ξ . If the dimensionality of the system is below the upper
critical dimension d∗ above which the Ginzburg-Levanyuk
criterion [1,2] holds arbitrarily close to the critical point, the
fluctuations on all such scales affect the long-distance behavior
in a nontrivial fashion [3]. The renormalization group (RG)
has provided an appropriate conceptual framework for dealing
with such problems involving many length scales and led
to the development of powerful calculational tools for their
quantitative investigation [4–10].

When such fluctuations in a near-critical medium are
confined by external boundaries (walls) or macroscopic bodies
immersed into it, effective forces are induced between the
walls and these objects. The theory of such fluctuation-
induced critical forces (critical “Casimir forces” [11–15]) is
substantially harder than the theory of bulk critical behavior
because it involves a number of additional challenges. First
and foremost, beyond bulk critical behavior, boundary and
finite-size critical behaviors must be treated in an adequate
manner. Second, difficult dimensional crossovers are typi-
cally encountered, which perturbative RG approaches do not
normally capture [16–25]. A particularly demanding case is
that of three-dimensional systems whose large-scale physics
can be represented by a φ4 model with an O(n) symmetric
Hamiltonian in a geometry that involves a crossover to two-
dimensional behavior, such as a slab of size ∞2 × L whose
width L is finite. Provided the boundary conditions along the
finite direction do not explicitly break the O(n) symmetry, we
know from the Mermin-Wagner theorem [26–28] that for finite
L the system cannot exhibit long-range order at temperatures
T > 0. Thus, the low-temperature behavior strongly interferes
with the dimensional crossover.

This combination of hard problems has hampered the
design and application of satisfactory analytical theories. Exact
solutions of appropriate models can—and have—provided
helpful guidance and benchmarks for approximations. An
example is Danchev’s exact solution of the O(n) φ4 model on a
cylinder of circumference L, i.e., a slab of thickness L subject
to periodic boundary conditions [29,30]. Its incompatibility
with the n dependence obtained for the critical Casimir force
by naive extrapolation of the ε-expansion results of [16,17] to
d = 3 dimensions [14,21] strongly hinted at a breakdown of
the ε expansion [18,24].

Unfortunately, real experimental systems of finite size
usually involve free rather than periodic boundary conditions
(pbc). In the present paper we are concerned with the exact
n → ∞ solution of the O(n)φ4 theory on a slab of size ∞2 × L
subject to free boundary conditions along the finite direction
(called z direction henceforth). Unlike the case of pbc, where
the n → ∞ limit leads to a translation-invariant constraint
Gaussian model equivalent to the spherical model [31], the
breakdown of translation invariance along the z direction
due to the free boundary conditions (fbc) entails that the
exact n → ∞ solution involves a self-consistent Schrödinger
equation with a z-dependent potential V (z). Upon solving this
self-consistency problem by numerical means, very precise
results for the temperature-dependent scaling functions of the
excess surface free energy and the Casimir force could be
obtained in Refs. [32,33].

The aim of this paper is to explore the potential of
inverse scattering-theory methods [34,35] for obtaining exact
analytical information about the self-consistent potential V (z)
and the above-mentioned scaling functions for temperatures
T �= Tc both for the semi-infinite caseL = ∞ and for finiteL.

To put things in perspective, recall that the available
exact analytical knowledge about n → ∞ solutions for fbc is
rather scarce. Bray and Moore [36,37] managed to determine
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the self-consistent potential V (z) for the semi-infinite case
precisely at the critical point T = Tc. Building on this work,
we computed in Ref. [38] the correction toV (z;L = ∞,t = 0)
linear in t ∝ (T − Tc)/Tc and combined it with results deduced
via boundary-operator and operator-product expansions to
work out a few other exact analytical properties. These were
accurately confirmed by the numerical results of [32,33],
along with the exact analytical information about the low-
temperature behavior of the Casimir force derived in the latter
one of these two papers.

The basic idea of our subsequently developed approach
based on inverse scattering-theory methods is to eliminate
the potential V (z) in favor of scattering data. Since the
self-consistency equation forV (z) corresponds to a stationarity
condition for the free-energy density, one can exploit the
latter to determine the scattering data from the corresponding
variational equations. Proceeding in this way in the semi-
infinite case enables us to get the scattering data for all
temperatures t � 0. In this manner, the determination of V (z)
can be bypassed, although V (z;L = ∞,t) can, in principle, be
reconstructed as the solution to an integral equation analogous
to those of Gelfand, Levitan, and Marchenko [34,35]. From
Bray and Moore’s solution [36,37] it follows that the potential
becomes singular at the boundary planes [38]. Although
singular potentials were considered in some inverse scattering-
theory investigations [35,39], the particular kind of boundary
singularities that the self-consistent potential v(z) exhibits at
d = 3 has not yet been investigated and requires appropriate
modifications of the established inverse scattering theory. The
necessary extensions of the latter are described in a separate,
accompanying paper [40] (referred to as II henceforth). Here
the results required from II are simply stated and applied.

The remainder of this paper is organized as follows.
Although our ultimate interest is in the n → ∞ solution of
the continuum φ4 model on a strip of size ∞2 × L, we start
in the next section with a discretized version of it, namely, the
lattice φ4 model called “model B” in the numerical analyses
of [32,33]. The chosen discretization serves to avoid any
ultraviolet (UV) (bulk and surface) singularities. We then
recall the exact n → ∞ solution of the model in terms of
the eigenenergies and eigenstates of a self-consistent one-
dimensional Schrödinger equation, discuss the simplifications
that can be achieved by taking the limit g → ∞ of the φ4

coupling constant and the addition of appropriate irrelevant
interactions, and reformulate the self-consistency equation
via Green’s functions. In Sec. III we turn to the analysis of
the continuum limit of the model and its self-consistency
equation and recall known properties of the self-consistent
scaling solutions for the potential and required background
on the thermal singularities of the surface free energy and
excess energy, their logarithmic anomalies, and an associated
universal amplitude difference. In Sec. IV, we first provide
the necessary background on inverse scattering theory, next
use it to reformulate the self-consistency equations in terms
of scattering data rather than the potential, and then determine
the scattering data (scattering amplitudes and phase shifts) for
temperatures t > 0, t = 0, and t < 0.

In Sec. V these data are exploited to obtain exact results for
the asymptotic large-distance scaling forms of the two-point
order-parameter correlation function at, above, and below Tc.

In Sec. VI the exact scattering data are used in conjunction with
a trace formula, semiclassical expansions, and perturbative
asymptotic solutions of the Schrödinger equation to determine
the limiting value v0 of the regular part of the self-consistent
potential at the boundaries, universal amplitudes associated
with the thermal singularities of the surface excess energy,
and the surface excess squared order parameter for t < 0.

Section VII deals with the asymptotic behavior of the
universal scaling functions�(x) and ϑ(x) of the L-dependent
part of the surface free energy per boundary area and the
critical Casimir force in the low-temperature scaling limit x =
t(L/ξ+)1/ν → −∞, where ν = 1 is the critical exponent of
the bulk correlation length ξ and ξ+ its nonuniversal amplitude
for t → 0+. This requires the determination of the x → −∞
behavior of the eigenenergies and the eigenfunctions of
the self-consistent Schrödinger equation. Subsequently, the
universal amplitudes of the logarithmic anomalies x−1ln|x|
and the x−1 terms are computed. The first agree with the results
previously derived from a nonlinear σ model in Ref. [33]; the
latter is new. Section VIII contains a brief summary of our
main results and concluding remarks. Finally, there are seven
appendixes describing technical details of some of the required
calculations.

II. THE LATTICE φ4 MODEL AND ITS n → ∞ LIMIT

A. Definition of the lattice model

We consider a lattice φ4 model on a three-dimensional slab
with the O(n)-symmetric Hamiltonian

Hl =
∑

j

[
1

2

3∑
i=1

(φ j+ei − φ j )
2 + τ̊

2
φ2

j + g

4!n
|φ j |4

]
, (2.1)

where j = (j1,j2,j3) ∈ Z3 with 1 � ji � Ni , i = 1,2,3, la-
bels the sites of a finite simple cubic (sc) lattice whose lattice
constant we denote as a [41]. For the sake of brevity, we
write j‖ = (j1,j2), j3 = j , and N3 = N henceforth. Each φ j

is an n-vector spin ∈ Rn of unconstrained length, and the ei
represent orthonormal unit vectors pointing along the principal
directions i of the lattice.

Along the first two directions we choose pbc:

φ j+Ni ei = φ j for i = 1,2. (2.2a)

Along the third one, we impose Dirichlet boundary conditions,
requiring

φ j‖,j = 0 for j = 0,N + 1. (2.2b)

In conjunction with the chosen interactions in Hl, the
prb (2.2a) imply that the model has translation invariance
with respect to lattice translations along the directions i = 1,2.
By contrast, the Dirichlet boundary conditions (2.2b) break
the corresponding discrete translation invariance along the
direction (i = 3) normal to the boundary planes j = 0,N .

The latter breakdown of translation invariance generically
occurs for models with free surfaces perpendicular to the 3
direction. As a simple and natural generalization, one might
want to consider analogs of our model (2.1), where the
strength of the coupling between φ j and φ j ′ on nearest-
neighbor (NN) sites has been changed from the uniform
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value K = 1 to different ones K1 and K2 in the layers
j = 1 and j = N , respectively (cf. the standard semi-infinite
lattice models reviewed in Refs. [42,43]). However, this is
unnecessary. Since a phase with long-range surface order
is ruled out in the bulk limit Ni → ∞, i = 1,2,3, for all
temperatures T > 0 and arbitrary finite values of K1/K and
K2/K by extensions of the Mermin-Wagner theorem [26–28],
only the ordinary surface transition [42–44] remains for this
generalized three-dimensional model in the semi-infinite case.
It is well established [43–51] that the universal surface critical
behavior at this transition is described by a continuum field
theory satisfying large-scale Dirichlet boundary conditions.
Deviations from this boundary condition induced by modified
surface interactions (which entail Robin boundary conditions
for the continuum theory) are irrelevant in the RG sense. As
is expounded in Ref. [33], this irrelevance can be checked
explicitly in the large-n theory for a three-dimensional film
of finite thickness L = Na. For the sake of simplicity, we
therefore restrict ourselves to the above-defined model with
K = K1 = K2 and the boundary conditions (2.2).

For later use, we introduce the partition function of the
model

Z =
∫

D[φ] e−H[φ] (2.3)

and define the n → ∞ limit of the free energy per number of
boundary sites and number of components by

fN = − lim
n→∞ lim

N1,N2→∞
lnZ
nN1N2

. (2.4)

We also introduce the associated bulk, excess, surface, and
residual free-energy densities by

fb(T ) ≡ lim
N→∞

fN (T )/N,

f ex
N (T ) ≡ fN −Nfb(T ),

(2.5)
fs(T ) ≡ f ex

∞ (T )/2,

f res
N (T ) ≡ f ex

N (T ) − 2fs(T ),

respectively, and the Casimir force

βFC(T ,N ) = − ∂

∂N
f res
N (T ) = − ∂

∂N
f ex
N (T ). (2.6)

Near the bulk critical temperature Tc, the asymptotic
behaviors of the singular parts of the aboveN -dependent func-
tions on long length scales are described by familiar scaling
forms. Let us introduce a dimensionless temperature variable
t = const(T/Tc − 1) and fix the proportionality constant by
absorbing in it the nonuniversal amplitude ξ+ of the bulk
correlation length [52],

ξ (t) � ξ+(T/Tc − 1)−ν, T � Tc, (2.7)

in the disordered phase, defining

t = sgn(t)[ξ (|t |)/ξ+]−1/ν (2.8)

and the scaling variable

x = tN1/ν . (2.9)

Following the conventions of [16,32,33], we write the
scaling forms of the residual free energy and the Casimir force

as

f res
N (T ) � N−(d−1)�(x) (2.10)

and

βFC(T ,L) � N−dϑ(x). (2.11)

The scaling function ϑ(x) is related to �(x) via (see,
e.g., [16,22,24,32,33])

ϑ(x) = (d − 1)�(x) − x

ν
�′(x). (2.12)

Furthermore, the value of the function �(x) at x = 0, which
measures the strength of the critical Casimir force, is the so-
called Casimir amplitude,

�C = �(0). (2.13)

Since we have fixed the scale of x and no other (e.g., surface-
related) macroscopic lengths are present, the functions � and
ϑ are universal [53].

B. Large-n self-consistency equations

The techniques for deriving the equations that govern the
n → ∞ limit of models such as ours are well established
(see, e.g., [10,54,55], Appendix B of Ref. [56], and [32]). For
the case of the lattice model defined above, they have been
explicitly given in Ref. [33]. Hence, we can be brief and list
them in the slightly different notation preferred here.

Let us disregard for the moment the possibility that the
symmetry is spontaneously broken in the bulk limit Ni → ∞,
i = 1,2,3, focusing on the disordered phase. Then, in the limit
n → ∞, the lattice model (2.1) is equivalent to n copies of
a constrained Gaussian model for a one-component field 
 j

with the Hamiltonian

HG = 1

2

∑
j

[
3∑
i=1

(
 j+ei −
 j )
2 + Vj
2

j − 3

g
(Vj − τ̊ )2

]
.

(2.14)

Here
 j ≡ φ j ,1 and Vj is a self-consistent potential satisfying
the constraint

Vj = τ̊ + g

6

〈

2

j‖,j
〉 = τ̊ + g

6

〈

2

0,j

〉
. (2.15)

Upon taking the limits N1,N2 → ∞, the self-consistency
equation implied by Eqs. (2.14) and (2.15) becomes

τ̊ − Vj = −g
6

N∑
ν=1

W2(εν)|fν(j )|2 = −g
6
〈j |W2(H)|j 〉,

(2.16)

whereW2(λ) is a particular one of the Watson integrals [57],

Wd (λ) ≡
∫ π

0

dq1

π
· · ·

∫ π

0

dqd

π

1

λ+ 4
∑d
i=1 sin2(qi/2)

.

(2.17)

The index ν = 1, . . . ,N in Eq. (2.16) labels the eigenvalues εν
and orthonormalized eigenstates fν(j ) = 〈j |ν〉 of the discrete
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Sturm-Liouville problem

N∑
j ′=1

Hj,j ′ fν(j
′) ≡ Vj fν(j ) + [2fν(j ) − fν(j − 1) − fν(j + 1)]

= ενfν(j ), j = 1, . . . ,N. (2.18)

The latter must satisfy the Dirichlet boundary conditions

fν(0) = fν(N + 1) = 0. (2.19)

We choose them real-valued, so that their orthonormality
relations become

〈ν|ν ′〉 =
N∑
j=1

fν(j )fν ′ (j ) = δν,ν ′ . (2.20)

The coefficientsHj,j ′ in Eq. (2.18) correspond to the elements
of an N ×N tridiagonal matrix “Hamiltonian,” namely,

H =

⎛
⎜⎜⎜⎜⎝

2 + V1 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 + VN

⎞
⎟⎟⎟⎟⎠. (2.21)

In order that the free energy fN be well defined, H must
be positive definite; i.e., we must have εν > 0 for all ν =
1, . . . ,N .

Note that the trace of H is simply related to the trace of the
diagonal potential matrix V = (Vj δj,j ′ ). One has

tr H = 2N + tr V. (2.22)

Further, by symmetry, the self-consistent potential Vj must be
even under reflection about the midplane, i.e.,

Vj = VN+1−j . (2.23)

Straightforward evaluation of the free energy (2.4) gives

fN = 1

2

N∑
ν=1

U2(εν) − 3

2g

N∑
j=1

(Vj − τ̊ )2 + f (0)
N , (2.24)

where f (0)
N is a trivial background term independent of Vj ,

which can be eliminated by a shift and is henceforth dropped.
The function Ud (λ) means the antiderivative

Ud (λ) =
∫ π

0

dq1

π
· · ·

∫ π

0

dqd

π
ln

{
λ+ 4

d∑
i=1

sin2(qi/2)

}

(2.25)

of the Watson integral (2.17). The explicit form of its derivative
for d = 2, W2(λ), in terms of a complete elliptic integral is
given in Eq. (A1) of Appendix A. Integrating this result yields
the explicit form of U2(λ) given in Eq. (A3) (cf. Eq. (48) of
Refs. [58,59]). We do not work with the explicit forms of these
functions, but make use of some of their properties below. We
postpone a discussion of these properties for the time being.

As has been shown in Ref. [33], the free energy fN (with
f

(0)
N omitted) is given by the global maximum of the functional

fN [V] of the potential V = (Vj ) defined by the first two terms
on the right-hand side of Eq. (2.24). That is,

fN = max
V
fN [V], (2.26)

with

fN (V) ≡ 1

2
tr{U2[H(V)]} − 3

2g
tr[(V − τ̊ )2], (2.27)

where we have explicitly indicated the dependence of the
matrix Hamiltonian (2.21) on V. That the self-consistent
potential corresponds to the global maximum of fN (V) is a
consequence of two facts: (i) fN (V) is concave in V because
it is a difference of a concave and a convex function of V [60];
(ii) the self-consistency Eq. (2.16) is equivalent to the
extremum condition

∂fN (V)

∂Vj
= 0. (2.28)

Taking the bulk limit N → ∞ in Eq. (2.16) shows that the
bulk critical value of τ̊ is given by

τ̊c = −g
6
W3(0). (2.29)

Following [32,33], we define a temperature variable t into
which the amplitude ξ+ = g/(24π ) of the bulk correlation
length ξ � ξ+/(τ̊ − τ̊c) for deviations τ̊ − τ̊c → 0+ is ab-
sorbed by

t = 24π

g
(τ̊ − τ̊c) = 24π

[
τ̊

g
+ 1

6
W3(0)

]
. (2.30)

Owing to this definition, the bulk critical point is located at
t = 0.

C. Simplifications of the equations

1. Due to the limit g → ∞
Further simplifications can be achieved by taking the limit

g → ∞. In this limit, the model (2.1) goes over into a layered
spherical model in which

∑
j‖ 〈
2

j‖,j 〉/(N1N2) = 〈
2
0,j 〉 ful-

fills a separate constraint for each layer j = 1, . . . ,N . As
we know from [32,33], taking the limit g → ∞ causes a
suppression of corrections to scaling, making it easier to extract
the universal large-scale behavior. To take this limit, we add a
contribution regular in t and define

f
(∞)
N (V,t) ≡ lim

g→∞

{
fN (V) +N g

4!

[
t

4π
−W3(0)

]2}

= 1

2
trU2[H(V)] + 1

2

[
t

4π
−W3(0)

]
tr V, (2.31)

where we have explicitly indicated the t dependence of the
limiting function, and the superscript (∞) reminds us that g has
been set to ∞.

The g = ∞ analog of the self-consistency condition (2.16)
follows from ∂f

(∞)
N (V,t)/∂Vj = 0; it reads

t

4π
−W3(0) = −〈j |W2(H)|j 〉. (2.32)
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Substitution of the solution V ≡ V(t,N ) of Eq. (2.32) for
given t andN that maximizes the functional (2.31) gives us the
g = ∞ analog f (∞)

N (t) = f
(∞)
N [V(t,N ),t] of the free energy

fN in Eq. (2.26). Taking its temperature derivative yields the
useful equation

df
(∞)
N (t)

dt
= 1

8π
tr V(t,N ). (2.33)

Let us also list some known results [33] for bulk quantities
that are needed below. The bulk value of the self-consistent po-
tential, Vb(t) = limN→∞ VN (t,N ), maximizes the bulk analog

f
(∞)
b (Vb,t) = 1

2
U3[Vb] + Vb

[
t

8π
− W3(0)

2

]
(2.34)

of the function f (∞)[V,t], where we temporarily restrict
ourselves to the disordered bulk phase t � 0. When t < 0 and
N = ∞, one must allow for spontaneous symmetry breaking.
Since the corresponding bulk results can be found in textbooks
such as [55] and elsewhere (see, e.g., [7,10,61]), there is no
need to rederive known bulk results for t < 0 here. Instead, we
incorporate them into the t � 0 results for Vb and f (∞)

b given
in Eqs. (2.37) and (2.38) below.

The necessary condition ∂f (∞)
b [Vb,t]/∂Vb = 0 yields

W3(Vb) −W3(0) = − t

4π
, t � 0. (2.35)

The functionW3(λ) is known to behave as [59]

W3(λ) = W3(0) − 1

4π

√
λ+O(λ) (2.36)

for small λ > 0. Using this together with the fact that Vb for
t < 0 corresponds to the inverse transverse bulk susceptibility
(which vanishes on the coexistence line), one concludes that

Vb(t) = t2θ (t) +O(t3), (2.37)

where θ (t) is the Heaviside step function. The familiar
result [10,32,33,38]

f
sing
b (t) � 1

24π
t3θ (t) (2.38)

for the leading thermal singularity of fb can be recovered
by integrating Eq. (2.36) to obtain U3(λ) for small λ and
substituting Eq. (2.37) into Eq. (2.34).

2. Due to an appropriate choice of U2

The above Eq. (2.31) for the free-energy function and the
self-consistency condition (2.32) can be simplified further.
This is because the functions W2 and U2 are expected to
contain contributions that are irrelevant in the sense that their
omission does not change the asymptotic large-scale behavior
such as the leading thermal singularities of the bulk and surface
free energies and the scaling functions �(x) and ϑ(x) of the
residual free energy and the Casimir force. Hence, we should
be able to replace W2 and U2 with appropriate simplified
functions W̃2 and Ũ2 that differ from W2 and U2 by such
irrelevant contributions. To justify the choice of W̃2 and Ũ2

we are going to make below, we need some properties of
their exact counterparts W2 and U2, which are established in
Appendix A and are now discussed.

From Eq. (2.17) or the closed-form expression (A1) one
sees that W2(λ) is analytic in the complex λ plane except for
the branch cut [−8,0]. Arguments given in Appendix A show
that it can be written for small |λ| as

W2(λ) = −w2(λ) ln λ+ R2(λ), (2.39)

where both w2(λ) and R2(λ) are analytical functions at small
enough |λ|. The former one is given by the spectral function

w2(λ) ≡ 1

2πi
[W2(λ− i0) −W2(λ+ i0)]

= − 1

π
ImW2(λ+ i0), (2.40)

which for real λ characterizes the singularity across the branch
cut. Integration of Eq. (2.39) shows that U2 can be written as

U2(λ) = λ(1 − ln λ)

4π
[1 + λA(λ)] + B(λ), (2.41)

with regular functions A(λ) and B(λ).
Let us introduce the analogs

W̃2(λ) = 1 − ln λ

4π
, (2.42)

w̃2(λ) = 1

4π
, (2.43)

and

Ũ2(λ) = λ+ 1

4π
λ(1 − ln λ) − 2 (2.44)

of the functions W2, w2(λ), and U2 corresponding to the
substitutions

A(λ)

B(λ)

}
→

{
Ã(λ) ≡ 0,

B̃(λ) ≡ λ− 2,
(2.45)

in Eqs. (2.39)–(2.41). Then the free-energy function (2.31) can
be decomposed as

f
(∞)
N (t,V) = f̃N (t,V) + trR(H) (2.46)

into the contribution

f̃N (t,V) = 1

8π
{tr[H(1 − ln H)] + t tr V} (2.47)

associated with Ũ2 and the remainder

R(λ) = 1

8π
A(λ)λ2(1 − ln λ) + B(λ)

2
+ W3(0)

2
(2 − λ).

(2.48)
In the derivation of f̃N (t,V) we used Eq. (2.22) and anticipated
that W̃3(λ), the analog of the functionW3(λ), has the property

W̃3(0) = 1. (2.49)

The latter follows from the explicit expression given below in
Eq. (2.52).

The power series expansions ofA and B can be determined
in a straightforward fashion. Explicit results to low powers of
λ can be found in Eqs. (A14) and (A15) of Appendix A.

The functions Ũ3(λ) and W̃3(λ) associated with Ũ2(λ) and
W̃2 can be obtained via the analog of the relation

U3(λ) ≡
∫ π

−π

dp

2π
U2[λ+ 4 sin2(p/2)]. (2.50)
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FIG. 1. (Color online) Integration paths C1 and C2 in the complex
λ plane.

This gives

Ũ3(λ) = λ+
√
λ(4 + λ)

4π
+ 2 + λ

4π
ln

2

2 + λ+ √
λ(4 + λ)

(2.51)

and

W̃3(λ) = Ũ ′
3(λ) = 1 + 1

4π
ln

2

2 + λ+ √
λ(4 + λ)

. (2.52)

Furthermore, the stationarity condition for V corre-
sponding to the omission of R(H) in Eq. (2.46), namely
∂f̃N (t,V)/∂Vj = 0, takes the simple form

〈j | ln H|j 〉 = t (2.53)

known from the analysis of model A in Refs. [32,33].

D. Green’s function reformulation
of the self-consistency equation

Being interested in the universal large-length-scale proper-
ties of the solutions to the above equations, we consider their
behavior in an appropriate continuum (scaling) limit a → 0.
To this end, their reformulation in terms of Green’s functions
turns out to be helpful.

Let us introduce the resolvent

G(λ) = (λ1 − H)−1 =
N∑

j,j ′=1

Gj,j ′ (λ)|j 〉〈j ′| (2.54)

for λ ∈ C \ spec(H), where spec(H) = {εν,∀ ν} denotes the
spectrum of H and a self-explanatory Dirac notation is used
on the right-hand side. Equation (2.32) can be rewritten as

t

4π
−W3(0) = −

∮
C1

dλ

2πi
W2(λ)Gj,j (λ), (2.55)

where C1 encircles the spectrum in a counterclockwise fashion
as depicted in Fig. 1.

Since the functionW2(λ) is analytic in the complex λ plane
except for the branch cut [−8,0], we can deform the contour
C1 into C2 (see Fig. 1) and recast Eq. (2.55) as

t

4π
−W3(0) =

∫ 0

−8
dλw2(λ)Gj,j (λ), (2.56)

where w2 is the spectral function defined in Eq. (2.40).
It is convenient to rewrite the term W3(0) on the left-hand

side also as an integral involving w2. Using the analog of

Eq. (2.50) forW3 gives [62]

W3(0) =
∫ π

−π

dp

2π
W2(2 − 2 cosp) =

∫ 4

0

dλ

π

W2(λ)√
λ(4 − λ)

=
∫ 0

−8
dλ

w2(λ)√
λ(λ− 4)

. (2.57)

This can now be subtracted from Eq. (2.56) to recast Eq. (2.56)
as

t

4π
=

∫ 0

−8
dλw2(λ)

[
Gj,j (λ) + 1√

λ(λ− 4)

]
. (2.58)

The second term inside the square brackets of Eq. (2.58)
corresponds to minus the bulk critical analog of the first one.
Thus, it must be given by the diagonal element Gb,c

j,j (λ) of the
critical bulk Green’s function

Gb,c(λ) ≡ G(λ)|V=0,N=∞. (2.59)

To verify this, note that G for given V and finite N is
the solution to (λ1 − H) · G(λ) = 1 subject to the Dirichlet
boundary conditions

G0,j ′ (λ) = GN+1,j ′ (λ) = 0 (2.60)

implied by Eq. (2.19). Hence, Gb,c(λ) is the solution to the
difference equation

(λ−2)Gb,c
j,j ′ (λ) +Gb,c

j+1,j ′ (λ)+Gb,c
j−1,j ′ (λ) = δj,j ′ , j,j ′ ∈ Z,

(2.61)

that vanishes as |j − j ′| → ∞, namely,

G
b,c
j,j ′ (λ) = − 1√

λ(λ− 4)
exp[−q(λ)|j − j ′|], (2.62)

with

q(λ) = 2 arcsinh
√

−λ/4. (2.63)

The result proves the above statement made below Eq. (2.58)
about its diagonal element.

Note that all equations given in this section remain valid
upon replacement of the functionsW2 andW3 by their analogs
with a tilde, except that the lower integration limit must be
changed from −8 to −∞ in Eqs. (2.56)–(2.58).

III. SCALING LIMIT

A. Scaling limit of the self-consistency equation

We now turn to the study of the appropriate continuum
scaling limit a → 0 of the n = ∞ self-consistency problem.
Equation (2.58) is a convenient starting point since the
subtracted bulk term eliminates the UV singularities. To this
end, we introduce the dimensionful quantities

y1 = j1a, y2 = j2a, z = ja,
(3.1)

L = Na, E = λa−2, m = ta−1,

and

va(z) = Vja
−2, Ga(z,z′;E) = Gj,j ′ (λ) a. (3.2)

Note that the variablem, which reduces for t � 0 to the inverse
of the bulk correlation length ξ , becomes negative for t < 0.
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Equation (2.58) changes into

m = Ja(z), (3.3)

with

Ja(z) ≡ 4π
∫ 0

−8/a2
dEw2(Ea2)

[
Ga(z,z;E)+ 1√

E(Ea2 − 4)

]
,

(3.4)

when expressed in these variables. We are interested in the limit
a → 0 at fixed L and m. Since the widths of the nonuniversal
boundary regions |z| � a and |L− z| � a shrink to zero in
this limit, we must be prepared to encounter singular behavior
at the boundary planes and UV singular contributions with
support on the boundaries. This means that Ja(z) should be
regarded as a distribution and the a → 0 limit of Eq. (3.3)
interpreted accordingly.

Before we turn to this issue, let us first discuss the
continuum limits of va(z) and the Green’s function Ga .
Dimensional considerations imply that va(z) can involve,
on the one hand, a-independent terms that diverge as ∼z−2

and ∼(L− z)−2 as z → 0+ and z → L−, respectively, and
boundary singularities of the form a−1δ′(z) and a−1δ′(z− L)
on the other hand. Let us disregard possible UV boundary
singularities of the latter kind ∝ δ′ for the moment by
restricting ourselves to the open interval (0,L) when studying
the a → 0 limit of va(z) and assuming that the limit

lim
a→0

va(z) = v(z), z ∈ (0,L), (3.5)

exists. That is to say, we consider v(z) as a function rather than
a distribution. For the Green’s function Ga , such caution is not
necessary. Owing to the Dirichlet boundary condition (2.60)
and the fact that its engineering dimension is a, it should have
a smooth a → 0 limit for z and z′ in the entire closed interval
[0,L], so that the limit

lim
a→0

Ga(z,z′;E) = G(z,z′;E), z,z′ ∈ [0,L], (3.6)

should exist.
The differential equation that the limiting function G

satisfies follows in a straightforward fashion. Noting that the
matrix Hamiltonian (2.21), scaled as H/a2, approaches the
operator

Hv = −∂2
z + v(z) (3.7)

as a → 0, we arrive at[
E + ∂2

z − v(z)
]
G(z,z′;E) = δ(z− z′). (3.8)

We also need the continuum analogs of the orthonormality
relation (2.20) and the spectral representation (2.55) of the
Green’s function. They read

〈fν |fν ′ 〉 =
∫ L

0
dz f∗ν(z) fν ′(z) = δν,ν ′ (3.9)

and

G(z,z′;E) =
∞∑
ν=1

fν(z) f∗ν(z
′)

E − Eν , (3.10)

where the asterisk on f∗ν may be dropped since we again choose
real-valued eigenfunctions.

If v(z) were not singular at the boundaries, we would find
that both Eq. (3.8) and the corresponding Schrödinger equation

Hvψ(z) = Eψ(z) (3.11)

on the interval [0,L] must be subjected to standard Dirichlet
boundary conditions. The latter boundary conditions would
then ensure the self-adjointness of the Hamiltonian Hv .
However, it can easily be seen that the self-consistent potential
v(z) ≡ v(z;L,m) must be singular at the boundary planes
z = 0 and z = L. For d = 3, it must vary asymptotically as

v(z;L,m) � −1

4

{
z−2, z → 0 + ,
(L− z)−2, z → L− . (3.12)

An easy way of seeing this is to recall Bray and Moore’s
exact solution [36,37],

v∞(z; 0) = (d − 3)2 − 1

4z2
, 2 < d < 4, (3.13)

for the semi-infinite critical d-dimensional case L = ∞ and
m = 0. Here we have introduced the notation

v∞(z;m) ≡ v(z; ∞,m). (3.14)

The solution (3.13) refers to the so-called ordinary surface
transition [42–44]. When 3 < d < 4, a second self-consistent
solution with the same z dependence ∝ z−2 but a different
amplitude exists [36,37], which pertains to the so-called
special surface transition. Since we are exclusively concerned
with the (d = 3)-dimensional case, we do not consider
the latter transition and restrict ourselves to the ordinary
one.

Clearly, for general m �= 0 and L < ∞, the behavior of
this potential v(z;L,m) at distances from the boundary planes
z = 0 and z = Lmuch smaller than 1/|m| and Lmust comply
with the exact solution (3.13). This dictates the singular short-
distance behavior (3.12).

The result can also be understood within the framework of
the boundary-operator expansion (BOE) [43,44,48]. Since the
application of the BOE to v(z) has been discussed in some
detail in a recent paper [38], we can be brief. Its central idea is
that scaling operators O( y,z) with scaling dimensions �[O]
can be expanded for small distances z from the boundary plane
z = 0 as

O( y,z) =
z→0

∑
j

z�
(s)
j −�[O] CO,j (mz,z/L) Ôj ( y), (3.15)

where Ôj are surface operators with scaling dimensions �(s)
j .

The potential v(z) corresponds to the energy density operator

2 whose scaling dimension is (1 − α)/ν = d − 1/ν, which is
2 for 2 < d � 4 when n = ∞. The asymptotic behavior (3.12)
results from the contribution of the unity operator 1̂.

A similar reasoning can be used to clarify which boundary
conditions must be imposed on the eigenfunctions fν(z).
The leading contribution to the BOE of the order parameter

( y,z) ∼ 
̂( y) originates from the boundary operator 
̂.
Since the associated scaling dimensions of these two operators
are (d − 2 + η)/2 and (d − 2 + η‖)/2, respectively, one has

( y,z) ∼ z(η‖−η)/2
̂( y) for z → 0, where η = 0 and η‖ = 1
when n = ∞ and 2 < d < 4. Consequently, the boundary
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conditions under which the Schrödinger Eq. (3.11) must be
solved are

fν(z) ∝
{√

z, for z → 0 + ,√
L− z for z → L− . (3.16)

Again, this conclusion is in complete accord with the
findings of Bray and Moore [36,37] for the semi-infinite
critical case. When L → ∞, the spectrum spec(Hv) becomes
dense and continuous. At m = 0, it is given by the inter-
val [0,∞). The corresponding (improper) eigenvalues Ek
and eigenfunctions fk(z) can be labeled by a non-negative
variable k, rather than by a discrete index ν. They read
[36,37]

fk(z) = √
zJ0(kz), Ek = k2, (L = ∞,m = 0). (3.17)

The corresponding Green’s function G∞,c(z,z′;E) ≡
G(z,z′;E;L = ∞,m = 0) for E < 0 may be read off from
Bray and Moore’s result for the pair correlation function. One
has

G∞,c(z,z′;E) = −√
zz′ I0(

√−Ez<)K0(
√−Ez>), (3.18)

where z< and z> denote the smaller and larger values of z and
z′, respectively.

Note that for a given potential v(z) which exhibits the
surface singular behavior specified in Eq. (3.12), the matrix
elements

〈f |Hvg〉 ≡
∫ L

0
f ∗(z)Hvg(z)dz (3.19)

of the Hamiltonian (3.7) are well-defined for all complex-
valued functions f and g belonging to the subspace of
the Hilbert space L2([0,L]) of square integrable functions
satisfying the boundary condition (3.16). Furthermore, we
have 〈f |Hvg〉 = 〈Hvf |g〉, so that Hv is a symmetric operator
on this subspace.

We are now ready to return to the continuum limit of the
self-consistency Eqs. (2.58), (3.3), and (3.4). We claim that
Ja(z) with a → 0 is a representation of the distribution

J (z) = Jsm(z) − 1
2 [δ(z) + δ(z− L)], (3.20)

whose “smooth part” Jsm(z) is given by

Jsm(z) =
∫ 0

−∞
dE

[
G(z,z;E) + 1

2
√−E

]
, 0 < z < L.

(3.21)
As has been shown in Ref. [38], Eq. (3.20) simplifies to J (z) =
−δ(z)/2 in the critical semi-infinite case (see Eq. (3.8) of [38]).
That Jsm(z > 0;L = ∞,m = 0) = 0 is known from [36,37].
The consistency with Eq. (3.20) can be verified by inserting
Eq. (3.18) into it and computing the integral. The result
for the semi-infinite critical case just mentioned implies that
the second boundary plane contributes a term −δ(z− L)/2.
Power counting rules out other contributions localized on the
boundary planes. Hence, to complete the proof of Eq. (3.20),
it remains to show that Ja(z) converges to Jsm(z) for all
z ∈ (0,L). The leading contribution to the integral on the
right-hand side of Eq. (3.4) for small a comes from the region
of small values of Ea2. Therefore, we can insert the small-λ

expansion of

w2(λ) = 1

4π

[
1 − λ

8
+ 5λ2

256

]
+O(λ3) (3.22)

of the spectral function which one finds from its explicit form
given in Eq. (A10) to conclude that the integral converges to
Jsm as a → 0 provided z ∈ (0,L).

The upshot is that the self-consistency equation becomes

m+ 1

2
[δ(z) + δ(L− z)]

=
∫ 0

−∞
dE

[
G(z,z;E) + 1

2
√−E

]
(3.23)

in the a → 0 continuum limit considered.
Equations (3.8) and (3.11), in conjunction with the bound-

ary conditions (3.16), define a Sturm-Liouville problem for
potentials with the singular behavior (3.12). In order to
determine the exact n → ∞ solution of the model in the
continuum scaling limit specified at the beginning of this
section, it must be solved self-consistently with Eq. (3.23).
Finding closed-form analytical solutions to these equations
for noncritical temperatures m �= 0 and finite thicknesses L is
a major challenge, which may well turn out to be too difficult
to master. In Refs. [32,33] this problem was bypassed by
resorting to numerical solutions of discretized equations. This
has yielded precise results for the universal scaling functions
�(x) and ϑ(x).

Regrettably, not much exact information on the self-
consistent potential v(z;L,m) is available beyond the exact
solution (3.13) for the critical semi-infinite case L = ∞,
m = 0. To our knowledge, it is limited to what has been
provided by us in a recent paper [38]. Before we turn to
the issue of how the situation can be improved through the
use of inverse scattering-theory methods, it will be helpful to
recall these exactly known properties. This is done in the next
section, where we also express quantities such as the excess
energy density in terms of v(z; ∞,m).

B. The self-consistent potential

The self-consistent potential v(z) is proportional to the
energy density 〈
2( y,z)〉, where
( y,z) means the continuum
analog of the lattice field 
 j‖,j derived from it via the scaling

 j‖,j = ad/2−1
( y,z). Therefore, v(z;L,m) must exhibit the
corresponding scaling behavior

v(z;L,m) = z−(1−α)/ν ϒ
(d)
± (|t |νz/a,z/L)

=
n=∞, d=3

z−2ϒ
(3)
± (|m|z,z/L) (3.24)

on long length scales [63,64], where ± refers, as usual, to
m = t/a ≷ 0. Although our ultimate interest is in the case
d = 3, we give here—and where appropriate below—both
results for general values of n and d ∈ (2,4), and for the
case of n = ∞ and d = 3. The latter case is special; it
involves degeneracies, which imply logarithmic anomalies in
the leading thermal singularities of the surface free energy fs

and related quantities [38]. The results for general d we are
going to present here serve to illustrate the special features of
the d = 3 case.

062114-8



INVERSE-SCATTERING-THEORY APPROACH TO THE . . . PHYSICAL REVIEW E 91, 062114 (2015)

As is discussed in Ref. [38] and elsewhere (see,
e.g., [43,44,48,65–67]), useful information about properties
of the scaling function ϒd can be obtained from the BOE.
For the case of the ordinary transition we are concerned with
here, the leading contributions to the BOE arise from the unity
operator 1̂ and the zz component T̂zz of the stress tensor on the
boundary. One obtains

ϒ
(d)
± (z,z) =

z→0
Aor
d [X(d)

± (z,z) + zd Y (d)
± (z,z) + · · · ]

=
d=3

−1

4
[X(3)

± (z,z) + z3 Y
(3)
± (z,z) + · · · ], (3.25)

where z and z denote the dimensionless distances

z = |t |νz/a =
d=3

|m|z, z = z/L, (3.26)

while Aor
d is a normalization factor ensuring

X
(d)
± (0,0) = 1. (3.27)

Since BOE expansion coefficients such asX(d)
± and Y (d)

± are
short-distance properties, they are expected to be regular in the
temperature variable. This implies

X
(d)
± (z,0) =

z→0
1 ± a1(d)z1/ν + a2(d)z2/ν + · · ·

=
d=3, n=∞

1 + a1(3)mz+ a2(3)m2z2 + · · · , (3.28)

where the value

a1(3) = − 16

π2
(3.29)

is known from [38]. The coefficients aj (d), j = 1,2, . . ., are
independent of the sign ofm because they can be expressed in
terms of derivatives of the energy density atm = 0 andL = ∞.
The coefficient a2(3) is determined exactly in Sec. VI A. We
prove there that it has the value

a2(3) = −224

π4
ζ (3), (3.30)

independent of the sign of m, where ζ (x) is the Riemann ζ
function.

Returning to the case of general d ∈ (0,4) and n, consider
the analogous expansion of Y (d)

± (z,0),

Y
(d)
± (z,0) =

z→0
b0,±(d) ± b1,±(d)z1/ν + · · ·

=
d=3, n=∞

b0,±(3) + b1,±(3)mz+ · · · . (3.31)

As indicated, the expansion coefficients here must be expected
to have different values for m ≷ 0. In fact, the term ∝ b0,±
yields the leading singularity ∼|m|2−α of the surface energy
density and the ratio b0,+(d)/b0,−(d) should take the same
universal value as its analog for the bulk free energy [44,68,69].
In results for d = 3 and n = ∞ given in the second line of
Eq. (3.31) we have utilized the fact that b0,±(d) does not have
a pole at d = 3 (see the discussion in Ref. [38]).

As has been discussed in Ref. [38], the above BOE
expansion can also be applied to the L < ∞ case at Tc to
gain information about the distant-wall correction ∼(z/L)d to
the potential. The associated amplitude is proportional to the
Casimir amplitude �C. The proportionality factor is known

from [38] for the (d = 3)-dimensional case. This led to the
prediction

v(z;L,0)

v(z; ∞,0)
=
d=3

1 − 1024�C

π

z3

L3
+ o[(z/L)−3

]
, (3.32)

which is in conformity with the numerical solution of the
self-consistency equation [33].

Focusing on the case of d = 3, we can expand the scaling
function ϒ (3)

± (z,z) about z = 0 and match with the above
equations to conclude that

v(z;L,m) =
z/L→0

1

z2

[
A±(|m|z) + z3

L3
B±(|m|z) + · · ·

]

= v(z; ∞,m) + z

L3
B±(|m|z) + · · · , (3.33)

where the functions A±(z) and B±(z) must vary for small z as

A±(z) =
z→0

−1

4
± 4z
π2

+ 56ζ (3)

π4
z2 + o(z2) (3.34)

and

B±(z) =
z→0

256�C

π
+O(z), (3.35)

respectively. In the large-z limit, A±(z) and B±(z) must
decay on the scale of 1/|m|. Depending on whether m > 0
or m < 0, the latter length corresponds to the correlation
length or Josephson length and the decay of these functions
is exponential or algebraic, where the algebraic decay is due
to the presence of Goldstone modes in the ordered bulk phase
(m < 0,L = ∞). In fact, results derived in Sec. VII A yield
the asymptotic behaviors

A−(z) =
z→∞

−1

2z
− α2

z2
+ o(1/z2) (3.36)

and

B−(z) =
z→∞

−ζ (3)

z
− β2

z2
+ o(1/z2), (3.37)

with

β2 = ζ (3)/2 (3.38)

and the unknown coefficient α2 whose value we have not
determined and do not need below.

For use below, let us also briefly mention the behavior of
v(z; ∞,m) for large z. In this limit, v(z; ∞,m) approaches the
bulk value vb(m),

v(z; ∞,m) =
z→∞ vb(m) = m2 θ (m), (3.39)

given by the square of the inverse correlation length when
m > 0, and zero in the ordered bulk phase on the coexistence
curve. The approach to the limiting value vb(m) is exponential
∼e−2mz or algebraic ∼(|m|z)−3, depending on whetherm > 0
orm < 0. Evidently, vb(m) is the continuum limit of the scaled
bulk lattice potential a−2Vb(t = ma), where

Vb(t) ≡ lim
j→∞

Vj (N = ∞,t) = lim
N→∞

1

N
tr V(N,t) (3.40)

is the bulk potential given in Eq. (2.37).
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C. Excess surface energy and its leading thermal singularity

In Sec. III A we have seen that the continuum limit of
the self-consistent equation, Eq. (3.23), is well-defined and
free of UV singularities. However, quantities such as the
excess energy density and bulk and free energies still involve
UV singularities, which must be properly subtracted to gain
the desired information about universal quantities such as
universal amplitude combinations and scaling functions. We
first consider this problem for the excess surface energy
density. To this end, we introduce the N ×N matrix,

Ṽ(N,t) ≡ V(N,t) − Vb(t) 1, (3.41)

in terms of which the excess energy density,

Es(t) ≡ d

dt
fs(t), (3.42)

of our lattice model can be expressed with the aid of Eq. (2.33)
as

Es(t) = 1

8π
lim
N→∞

tr Ṽ(N,t). (3.43)

For general dimension d ∈ (2,4) with d �= 3, the leading
thermal singularity of the surface free energy fs for t → ±0
is of the form

fs − f (reg)
s = f (sing)

s � A
(s)
± (d)|t |2−α−ν = A

(s)
± (d)|t | d−1

d−2 ,

(3.44)

where f (reg)
s = ∑

k=0 f
(s)
k (d)t k is a regular background term.

As has been explained in Ref. [38], the degeneracy of the
singular and regular terms ∝ t2 at d = 3 entail by a standard
mechanism [70] possible logarithmic temperature anomalies.
The amplitudesA(s)

± (d) and f (s)
2 (d) generically are expected to

have Laurent expansions of the forms

A
(s)
± (d) = − f

(s)
2,−1

d − 3
+ A(s)

0,± − f (s)
2,0 +O(d − 3) (3.45)

and

f
(s)
2 (d) = f

(s)
2,−1

d − 3
+ f (s)

2,0 +O(d − 3). (3.46)

These yield the limit

lim
d→3

[
A

(s)
± (d)|t | d−1

d−2 + f (s)
2 (d) t2

] = t2
[
A

(s)
0,± − f (s)

2,−1ln|t |],
(3.47)

which, in turn, implies the following small-t expansion for
the surface free energy fs(t) in the three-dimensional system
d = 3 near the bulk critical point,

fs(t)|d=3 = [
f

(s)
0 (3) + f (s)

1 (3) t + f (s)
2,0 t

2 +O(t3)
]

+ [
A

(s)
0,± − f (s)

2,−1ln|t |]t2 +O(t3ln|t |). (3.48)

Accordingly, one obtains for the singular part of the excess
energy density (3.42)

E sing
s (t) + E sing

s (−t) �
t→0+

2�A(s)
0 |t |, (3.49)

where

�A
(s)
0 ≡ A

(s)
0,+ − A(s)

0,− (3.50)

is a universal amplitude difference [71]. The residue f (s)
2,−1 is

also universal and according to [38] given by

f
(s)
2,−1 = 1

4π3
. (3.51)

Upon studying the continuum scaling limit of Es, we now
show that this amplitude difference can be expressed as

�A
(s)
0 = α+ + α−

16π
(3.52)

in terms of the following finite integrals involving the self-
consistent potential v∞(z;m) of the continuum theory:

α± =
∫ ∞

0
dz

[
v∞(z; ±1) − vb(±1) + 1

4z2
∓ 4

π2z
θ (1−z)

]
.

(3.53)

These integrals are finite because the two last terms in the
square brackets subtract the boundary singularities near z = 0,
while the subtraction produced by the second term along with
the restriction of the last term to the interval (0,1) implied by
the θ function ensures the integrability at the upper integration
limit z = ∞. Note that the coefficient of the subtracted z−1

term has been chosen in accordance with the result for a1(3)
given in Eq. (3.29).

To prove the asserted representation of �A(s)
0 in terms of

v∞, we start from Eq. (3.43), express Ṽj (∞,t) in terms of its
continuum analog ṽ∞(z;m) = m2 ṽ∞(|m|z; ±1), and use the
Euler-McLaurin formula

a

∞∑
j=1

f (ja) =
∫ ∞

a

dz f (z) + a

2
f (a) +O(a2) (3.54)

to find

8πEs(t) = a|m|
∫ ∞

a|m|
ṽ∞(z; ±) dz + 1

2
Ṽ1(∞,t) + · · · .

(3.55)

The second term is regular in t and does not contribute to E sing
s .

From the integral we split off the contribution∫ ∞

a|m|
dz

[
1

4z2
∓ 4

π2z
θ (1−z)

]
= 1

4a|m| ± 4

π2
ln(a|m|),

(3.56)
which diverges as a → 0, obtaining

8π Es = a|m|
∫ ∞

a|m|
dz

[
ṽ∞(z|±) + 1

4z2
∓ 4

π2z
θ (1−z)

]

∓ 4a|m|
π2

ln(a|m|) + reg, (3.57)

where “reg” represents contributions regular in t . Hence, the
leading thermal singularity of Es is given by

E sing
s (t) �

t=am→0+
a|m|
8π

[
α± ∓ 4

π2
ln(a|m|)

]
. (3.58)

Comparing with Eqs. (3.47) and (3.49) then yields the result
for �A(s)

0 given in Eq. (3.52).
To determine the universal number �A(s)

0 in an analytic
manner from this equation, one would have to know the
self-consistent potential v∞(z; ±1) for all values of z ∈ (0,∞).
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Unfortunately, the latter is known only in numerical, but
not in closed analytical, form. The inverse scattering-theory
techniques developed in Sec. IV in conjunction with the
semiclassical expansions described in Appendix C will enable
us to obtain an exact analytic result for α− and to express
the quantities α+ and �A(s)

0 in terms of a single, numerically
computable integral. The results are given in Eqs. (6.20)–(6.22)
below [see Sec. VI B].

IV. INVERSE SCATTERING THEORY

A. Preliminaries

The aim of inverse scattering theory [34,35,72] is to recon-
struct the potential of the stationary Schrödinger equation v(r)
from scattering data. Usually, either Schrödinger equations for
three-dimensional systems with radially symmetric potentials
or one-dimensional Schrödinger problems are considered.
In the first case, one must deal with a radial Schrödinger
equation involving an effective potential that differs from v(r)
by a centrifugal term l(l + 1)r−2, where l = 0,1,2, . . . are
orbital angular-momentum quantum numbers. Provided the
effective potential satisfies certain conditions, such as absolute
integrability of V (r) over intervals (b,∞) with b > 0 and
integrability of r|V (r)| over integrals (0,a) with a > 0, various
classes of inverse scattering problems are known to have a
unique solutions so that the potential can be determined—at
least in principle—from scattering data as solutions to certain
integral equations such as the Gel’fand-Levitan or Marchenko
integral equations [35].

As we have seen above, the Schrödinger equation we
are concerned with here involves a self-consistent potential
v(z;L,m) that becomes singular at the boundary planes and
has a leading near-boundary singularity of the form specified
in Eq. (3.12). At L = ∞ and m = 0, it corresponds formally
to a radial Schrödinger equation with angular-momentum
quantum number l = −1/2. Although there exists some
recent work on inverse scattering problems involving singular
potentials ∼κ/r2 with κ > −1/4 [39], the case of κ = −1/4,
corresponding to the marginal value below which the particle
is supposed to fall into the center according to Landau and
Lifshitz [73], requires appropriate extensions of the theory
which become clear as we describe our procedure.

Let us begin by noting that we are not faced with a usual
inverse scattering problem here, where scattering data are
given from which the potential is to be reconstructed. Rather,
we are dealing with a self-consistent Schrödinger problem.
An obvious way to attack the problem is to exploit the
relation of the potential with scattering data to reformulate
the self-consistency equation in terms of scattering data and
then determine the latter from it. Upon expressing quantities
of interest through the scattering data, one can bypass the
determination of the self consistent potential. This is the
strategy we pursue, focusing on the semi-infinite case L = ∞
and considering both the disordered phase m � 0 as well as
the ordered one m < 0.

Scale invariance enables us to scale the temperature variable
m to ±1. Introducing

v±(z) ≡ v∞(z; ±1) (4.1)

and noting that

v±(∞) = δ±1,1, (4.2)

we see that we must study the Schrödinger problem[−∂2
z + v±(z) − δ±1,1

]
ψ(z,k) = k2 ψ(z,k), (4.3)

with

k2 = E − δ±1,1 (4.4)

on the half-line [0,∞) for potentials that vary as

v±(z) =
z→0

− 1

4z2
+ v±

−1

1

z
+ v±

0 +O(z) (4.5)

and approach the limiting values δ±1,1 sufficiently fast as z →
∞ (exponentially or as a power, depending on the sign ±) [74].

Since v(z;L,m) corresponds to the energy density whose
leading thermal singularity in the near-boundary region origi-
nates from the contribution ∼m3, the terms linear and quadratic
in m must both be regular in m. Therefore, the coefficients
±v±

−1 and v±
0 must be independent of the sign ofm. According

to Eqs. (3.29) and (3.33)–(3.35), we have indeed

v±
−1 = ∓1

4
a−1(3) = ± 4

π2
(4.6)

and

v±
0 ≡ v0 = −a2(3)

4
= 56

π4
ζ (3). (4.7)

The spectrum of the associated Sturm-Liouville operator
Hv± on [0,∞) should be continuous and equal to spec(Hv±) =
[δ±1,1,∞). Following a standard approach, we introduce two
Jost solutions of Eq. (4.3) satisfying the boundary conditions

f (z,±k) �
z→∞ e

±ikz (4.8)

and normalize the so-called “regular solution” of Eq. (4.3)
such that

ϕ(z,k) = √
z [1 +O(z)]. (4.9)

The latter behaves asymptotically as

ϕ(z,k) �
z→∞

A(k)

k
sin[kz + η(k)], A(k) = eσ (k), (4.10)

which defines the scattering amplitude A(k) and phase shift
η(k). The regular solution can be expressed in terms of the
Jost solutions as

ϕ(z,k) = 1

2ik
[F (−k)f (z,k) − F (k)f (z,−k)], k > 0,

(4.11)
where F (k) is a complex-valued function, the Jost function.
For real k it can be written as

F (k) =
{
eσ (k)−iη(k), k > 0,
eσ (−k)+iη(−k), k < 0.

(4.12)

For later use let us also note that F (k) can be written as a
Wronskian of two functions, f1 and f2,

W [f1(z),f2(z)] = f1(z)
∂f2(z)

∂z
− ∂ f1(z)

∂z
f2(z). (4.13)

One has

F (k) = W [f (z,k),ϕ(z,k)]. (4.14)
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This known result can be verified in a straightforward fashion
by substituting (4.11) for ϕ(z,k) in the Wronksian and evalu-
ating the latter for z → ∞, making use of its independence of
z.

For the sake of notational conciseness, we have refrained
here from adding subscripts ± to the above quantities
ϕ,F, . . . ,η. However, it should be remembered that they all
differ for the cases ± of the self-consistent potentials v±.

In the ordered phase m < 0, L = ∞, the divergence of
the susceptibility on the coexistence curve implies that the
Schrödinger Eq. (4.3) must have an E = 0 state ϕ0(z) that
approaches a nonzero value at z = ∞. It satisfies

ϕ′′
0 (z) = v−(z)ϕ0 (z). (4.15)

This is precisely the equation for the order-parameter
profile 〈
( y,z)〉L=∞,m=−1 in the presence of an infinitesimal
magnetic field oriented along a fixed direction. The square of
the spontaneous bulk magnetization is known to be given by
|m|/4π [10]. Hence, if the eigenfunction ϕ0(z) is normalized
such that

lim
z→∞ϕ0(z) = 1, (4.16)

then the spontaneous order-parameter profile at L = ∞ is
given by

〈
( y,z)〉2
L=∞,m<0 = |m|

4π
ϕ2

0(|m|z). (4.17)

The small-z behavior ϕ0(z → 0) � const
√

z of ϕ0 is similar
to Eq. (4.9). At this stage we do not yet know that the
proportionality constant “const” is exactly 1 and that ϕ0 agrees
with the k → 0 limit of ϕ0(z,k), i.e.,

lim
k→0

ϕ(z,k) = ϕ0(z), (4.18)

so that ϕ0 indeed satisfies the boundary condition (4.9).
However, our inverse scattering analysis in Sec. IV C will
confirm the validity of both statements, i.e., that Eqs. (4.16)
and (4.18) hold and ϕ0 fulfills the boundary condition (4.9).

Owing to the limiting behavior (4.16), ϕ0 is not square
integrable. Such a zero-momentum state, which is finite at z =
∞ but does not decay sufficiently fast to be square integrable,
is called “half-bound state” [75]. It occurs in the semi-infinite
case we consider here because the lowest eigenvalue
E1(L,−1) of the strip tends exponentially to zero as its
thickness L → ∞; one has [32,33]

lim
L→∞

L−1 lnE1(L,m) = m. (4.19)

The half-bound state arises for m < 0 from the
eigenfunction f1(z;L,m) in the limit L → ∞. Since the
latter is orthonormalized and f1

√
L is dimensionless,

the normalization (4.16) of ϕ0 implies that

lim
L→∞

f1(z;L,m)
√
L = ϕ0(|m|z). (4.20)

The presence of an order-parameter profile for m < 0 and
L = ∞ entails an additional contribution to theL = ∞ analog

of the self-consistency Eq. (3.23). The latter reads∫ 0

−∞
dE

[
G±(z,z;E) + 1

2
√−E

]

= 1

2
δ(z)±1 + δ±1,−1 ϕ

2
0(z), (4.21a)

with

G±(z,z;E) ≡ G(z,z;E; ∞,± 1). (4.21b)

Equation (4.21a) is a well-suited starting point for applying
inverse scattering theory. To this end we proceed as follows.
Let v±(z) be the above-specified self-consistent potential
for m = ±1 and L = ∞, G± the associated Green’s func-
tion (4.21b), and ϕ0(z) ≡ ϕ0(z; −1) the solution to Eq. (4.15)
for m = −1, normalized according to Eq. (4.16). Hence,
Eqs. (4.21) hold for these quantities G± and ϕ0(z). We now
consider variations

v±(z) → v±(z) + δv(z). (4.22)

It is sufficient and convenient to restrict the variations δv to
functions with the properties

(i) δv(z) = regular for z > 0,

(ii) lim
z→∞ δv(z) = 0,

(4.23)
(iii) lim

z→0
δv(z) = δv0,

(iv)
∫ ∞

0
dz δv(z) = 0.

Equation (4.21a) simply corresponds to the continuum
limits of the self-consistency conditions (2.32) and (2.53).
Since the latter two are nothing else but stationarity conditions
such as ∂fN (t,V)/∂Vj = 0, Eq. (4.21a) may be read as
the stationarity condition δf [v]/δv(z) = 0 for a free-energy
functional f [v], which is the continuum analog of fN=∞(t,V).
Hence, the linear variation,

δf [v,δv] ≡
∫ ∞

0
dz
δf [v]

δv(z)
δv(z), (4.24)

of this functional must vanish when evaluated at the self-
consistent potential v∗(z), where here and below an asterisk is
used to mark potentials v∗ and Green’s functions G∗ that solve
the self-consistency equations. To express Eq. (4.24) in terms
of the Green’s function, we must simply multiply Eq. (4.21a)
by δv(z) and integrate z from 0 to ∞. We then proceed by
expressing the result in terms of scattering data.

To this end it is convenient to introduce the energy-
dependent scattering phase ηE by

ηE = η(k)|k=+
√
E−δ±1,1

, E ∈ (δ±1,1,∞), (4.25)

for the cases m = ±1. This is because both the Green’s
function and δv(z) can be eliminated in favor of ηE and its
variation δηE induced by δv(z) by exploiting the relations

dηE

dE
= −

∫ ∞

0
dz

[
ImG(z,z;E + i0) + 1

2
√
E

]
(4.26)
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and

δηE =
∫ ∞

0
dz δv(z) ImG±,∗(z,z;E + i0). (4.27)

The first relation, Eq. (4.26), may be viewed as a special
case of the Lifshitz-Krein trace formula [76,77],

Tr [h(H) − h(H(0))] = − 1

π

∫ ∞

−∞
dEηEh

′(E), (4.28)

for the trace of the difference due to a change of Hamiltonians
H(0) → H. In the original Lifshitz-Krein formula (4.28) h(E)
stands for an arbitrary function h(E). Remembering that
−Im tr[E + i0 − H]−1/π gives the density of states of H,
one sees that Eq. (4.26) follows formally from Eq. (4.28) if
we choose h(E) = δ(E − E′). In Appendix B we give a direct
proof of Eq. (4.26). The second relation, Eq. (4.27), is a direct
consequence of Eq. (4.26) and also derived in that appendix.

Use of the above relations enables us to derive from
Eq. (4.24) an equation involving ηE , δηE , and δv0. The first
two quantities can be expressed in a straightforward manner in
terms of the phase shift η(k) and its variation δη(k). Relating
δv0 to scattering data is more subtle but easily achieved with
the aid of the following corollary of a trace formula proved in
II [78].

Corollary 1. Let v(z) and ṽ(z) be two continuous potentials
on the half-line (0,∞) with the following properties:

(i) They vanish sufficiently fast for z → ∞ so that the
integral ∫ ∞

z0

dz |v(z)| < ∞ (4.29)

and its analog for ṽ(z) exist for all z0 > 0.
(ii) They have the same singular behavior at z = 0 speci-

fied in Eq. (4.5), with identical coefficients v−1 and ṽ−1, though
possibly different limiting values v0 and ṽ0 of their regular
parts.

(iii) The Schrödinger equation Hvψ(z) = εψ(z) subject
to the boundary condition ψ(z → 0) = O(

√
z) and its analog

with v → ṽ have no bound-state solutions.
Then the following relation holds between the difference of

the latter coefficients and σ (k), the logarithm of the scattering
amplitude introduced in Eq. (4.10):

v0 − ṽ0 = 4

π

∫ ∞

0
dk k2[e−2σ̃ (k) − e−2σ (k)]. (4.30)

We set ṽ = v + δv and σ̃ = σ + δσ in Eq. (4.30) and
linearize in δσ . Taking into account that σ (k) is an even
function of k, we thus arrive at the relation

δv0 = 4

π

∫ ∞

−∞
dk k2e−2σ (k)δσ (k). (4.31)

The implementation of the above strategy requires separate
considerations in the cases m = ±1. We begin with the m =
+1 case.

B. Scattering data for the half-space problem with m = +1

We choose the plus sign in Eq. (4.21a) and rewrite the
integral as a contour integral along the path C2 shown in Fig. 2,

Im E

Re E1

C2 C1

FIG. 2. (Color online) Integration paths in Eq. (4.32).

obtaining

δ(z)

2
=

∫ 0

−∞
dE

[
G+,∗(z,z,E) + 1

2
√

1 − E

]

=
∫
C2

dE

2πi
lnE

[
G+,∗(z,z,E) + 1

2
√

1 − E

]
. (4.32)

The contour C2 can be deformed into C1, which gives∫ ∞

1

dE

2π
lnE

[
ImG+,∗(z,z,E + i0)+ 1

2
√
E − 1

]
= −δ(z)

4
.

(4.33)

We then multiply by δv(z), integrate over z, use properties
(iii) and (iv) specified in Eq. (4.23), change the order of
integrations in the double integral over z and E, and make
use of Eq. (4.27) to perform the integration over z. Making the
change of integration variable E = k2 + 1, we then rewrite
the resulting integral

∫ ∞
0 dk2 as an integral

∫ ∞
−∞ dk, express

ηE and δηE in terms of the phase shifts η(k) and δη(k), and
take into account that the latter two quantities are odd in k.
One thus arrives at∫ ∞

−∞

dk
2π

k ln(k2 + 1) δη(k) + 1

4
δv0 = 0. (4.34)

For δv0 we can substitute Eq. (4.31). However, the
variations δη(k) and δσ (k) are not independent. To see this,
recall from Eq. (4.12) that σ (k) and −η(k) are the real and
imaginary parts, respectively, of the logarithm of the Jost
function, lnF (k). Since the Hamiltonian Hv+ has no discrete
spectrum, F (k) has no zeros in the upper half plane Im k > 0.
Therefore, lnF (k) and δ lnF (k) are analytic there. Moreover,
δ lnF (k) can be shown to vanish faster than |k|−1 as k → ∞
in the upper half plane: We show in Appendix C that [79]

δ lnF (k) =
k→∞
Imk>0

O(|k|−3); (4.35)

see Eq. (C19). It follows that δσ (k) and δη(k) are related via
the Kramers-Kronig relations

δη(k) = HT[δσ ](k) ≡ 1

π
P
∫ ∞

−∞
dk′ δσ (k′)

k′−k
(4.36a)

and

δσ (k) = HT−1[δη](k) = − 1

π
P
∫ ∞

−∞
dk′ δη(k′)

k′−k
, (4.36b)
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where P denotes the Cauchy principal value and HT[f ] is the
Hilbert transform of f (see, e.g., Sec. 4.2 of [80]).

Another consequence of Eq. (4.35) is the constraint∫ ∞

−∞
dk k δη(k) = 0. (4.37)

This follows from the fact that the integral on the left-hand
side can be written as −Im

∫ ∞
−∞ dk k δlnF (k), which vanishes

because the integration contour along the real axis can be
completed to a closed loop in the upper complex half plane by
a half circle of infinite radius.

We now insert Eq. (4.36a) into Eq. (4.31). Upon exploiting
the antisymmetry of δη(k) together with the constraint (4.37),
one sees that δv0 can be written as

δv0 = 4

π2

∫ ∞

−∞
dk k2δη(k)P

∫ ∞

−∞
dk′ e

−2σ (k′)

k′−k
. (4.38)

The result can be inserted into Eq. (4.34), but we must take
into account the constraint (4.37), which we do by means of a
Lagrange multiplier �/2π . Equating the coefficient of δη(k)
to zero then gives us an integral equation for σ+(k), namely,

ln(k2 + 1)

k
+ 2

π
P
∫ ∞

−∞
dk′ e

−2σ+(k′)

k′−k
+ �

k
= 0, (4.39)

where we have reintroduced the subscript + to remind us that
σ+(k) refers to the m = +1 case.

We claim that the solution to this equation is

σ+(k) = − 1
2 ln(k−1 arctan k), (4.40)

which implies the remarkably simple result

A+(k) =
√

k/ arctan k (4.41)

for the scattering amplitude.
To show this, let us define the functions

g≷(k) ≡ 1

2πi

∫ ∞

−∞
dk′ e

−2σ+(k′)

k′−k
for Im k ≷ 0. (4.42)

The functions g>(k) and g<(k) are analytical for Im k > 0 and
Im k < 0, respectively, and vanish as k → ∞ in the respective
upper or lower complex half plane. For real k one has

g>(k) − g<(k) = e−2σ+(k) (4.43)

and

2i[g>(k) + g<(k)] = 2

π
P
∫ ∞

−∞
dk′ e

−2σ+(k′)

k′−k
. (4.44)

Using the latter equation to eliminate the principal value
integral in Eq. (4.39), we are led to

ln(1 − ik)

k
+ 2ig>(k) + �

k
= − ln(1 + ik)

k
− 2ig<(k).

(4.45)
The left-hand and right-hand sides of this equation are

analytical in the upper and lower complex half plane, respec-
tively, and vanish there as k → ∞. Hence, both sides define a
bounded entire function which must be identical to zero, just
as � = 0. Hence,

g≷(k) = − ln(1 ∓ ik)

2ik
, (4.46)

from which the claimed solution (4.40) follows at once via
Eq. (4.43). As a consistency check, one can insert Eq. (4.43)
for σ+(k), set � = 0 in Eq. (4.39), and compute the principal
value integral to confirm that this equation is fulfilled.

Since the Kramers-Kronig relations (4.36) carry over to
η′

+(k) and σ ′
+(k), we can compute the derivative of the phase

shift η+(k) from the result (4.40). One finds

η′
+(k) = 1

2π
P
∫ ∞

−∞
dk′ 1

k′−k

[
1

k′ − 1

(k′2 + 1) arctan k′

]
.

(4.47)

The integral P
∫ ∞
−∞ · · · dk′ equals the real part of∫ ∞+i0

−∞+i0 · · · dk′. We now transform to the variable β =
arctan k′. Then the latter integral transforms into an integral
in the complex β plane along a path infinitesimally above
the real axis from −π/2 + i0 to −π/2 + i0. This path can be
deformed such that it becomes the sum of two integrals parallel
to the imaginary axis, one from (−π/2 + i0) to (−π/2 + i∞)
and another one from (−π/2 + i0) to (−π/2 + i∞), and a
vanishing contribution at infinity. It follows that

η′
+(k) = 1

2

∫ ∞

0

coth u

k2 + coth2 u

du

u2 + π2/4
, (4.48)

where u = Imβ.
Below we need the limiting behavior of η′(k) for k → ∞. In

order to determine this, we split off the analytically computable
term

I1(k) = 1

2

∫ ∞

0

1/u

k2 + 1/u2

du

u2 + π2/4
= 2 ln(kπ/2)

k2π2 − 4
(4.49)

from the integral on the right-hand side of Eq. (4.48). In the
remaining integral, one can expand the integrand in powers of
k−2. One thus obtains

η′
+(k → ∞) = 2

k2π2
ln

kπ
2

+ J+
2k2

+O(k−4 ln k), (4.50)

with

J+ =
∫ ∞

0
du

coth(u) − 1/u

u2 + π2/4
. (4.51)

The integral J+ can be shown to have the series representa-
tion [81]

J+ = 8

π2

∞∑
k=1

ln(2k)

4k2 − 1
. (4.52)

Its value

J+ = 0.474 572 605 201 526 198 964 . . . (4.53)

can be determined in a straightforward fashion by numerical
computation of either the series or the integral using Mathe-
matica [82].

In order to determine η+(k), we integrate its derivative given
in Eq. (4.48), using η+(0) = 0. Upon changing the order of
integrations and performing the integration over k, we are led
to

η+(k) =
∫ ∞

0
du

2 arctan(k tanh u)

4u2 + π2
. (4.54)
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k

η−(k)

η+(k)
π/4

FIG. 3. (Color online) The phase shifts η−(k) for m = −1 (red)
and η+(k) for m = 1 (blue). The dashed horizontal line shows the
momentum-independent phase shift η0(k) = π/4 for m = 0.

The remaining integral can be evaluated numerically. The
result is plotted in Fig. 3 together with the corresponding phase
shift η−(k) for m = −1, whose calculation we present in the
next section.

From the results for σ+(k) and η+(k), one can also derive a
helpful representation of the logarithm of the Jost function for
Im k > 0, namely,

lnF+(k) =
∫ ∞

0

dk′

iπ

[
1

k′ − 1

(k′2 + 1) arctan k′

]
arctanh

k
k′ .

(4.55)

We have benefited from it in our analysis of the asymptotic
x → +∞ behavior of the free-energy scaling function Y (x),
which is introduced and discussed in Sec. VII B.

To obtain this representation, we computed σ ′
+(k) from

Eq. (4.40), used the result forη′
+(k) given in Eq. (4.47), inserted

these expressions into d lnF+(k)/dk = σ ′
+(k) − iη′

+(k), and
combined both contributions into an integral of the form∫ ∞

0
dk′
2πi [· · · ]/(k′−k − i0). If one then chooses instead of the

wave vector K = k + i0 the purely imaginary one K = iq,
[lnF+(k)]′|k=iq becomes real valued and can be integrated
to obtain lnF+(K = iq). Equation (4.55) finally follows
by analytic continuation of the result to complex values
of K.

C. Scattering data for the half-space problem at m = −1

In the case of m = −1, we start again from Eq. (4.21a).
Now the spectrum of the Hamiltonian becomes gapless,
spec(Hv−) = [0,∞), and the contribution ∝ϕ2

0(z) must be
taken into account. The presence of the half-bound state ϕ0(z)
implies that the Jost function F (k) now has a zero at the origin,
F (0) = 0. To proceed, we rewrite the integral in Eq. (4.21a)
as limε→0+

∫ −ε
−∞ dz, transform it into

− lim
ε→0+

∫ ∞

ε

dE

π
lnE[ImG−(z,z;E + i0) + E−1/2/2],

and take the limit ε → 0+. We then multiply by δv(z) and
integrate over z. We thus arrive at∫ ∞

0
dz δv(z)

∫ ∞

0

dE

2π
lnE

[
ImG−(z,z;E + i0) + 1

2
√
E

]

= 1

2

∫ ∞

0
dz

[
1 − ϕ2

0(z)
]
δv(z) − 1

4
δv0. (4.56)

The function δv(z) is required to have the properties (i)–(iv)
known from the m = +1 case and specified in Eq. (4.23).
However, we also require that δv does not shift the eigenenergy
E1 = 0 associated with the half-bound state ϕ0(z) to linear
order in δv. This means that the expectation value 〈ϕ0|δv|ϕ0〉
must vanish i.e., the fifth property δv(z) must satisfy is

(v)
∫ ∞

0
dz δv(z)ϕ2

0(z) = 0. (4.57)

Thus, the integral on the right-hand side and the contribution
from 1/(2

√
E) on the left-hand side of Eq. (4.56) both vanish.

Setting E = k2 and using Eqs. (4.27) and (4.31) along with
the Kramers-Kronig relation (4.36a), we obtain∫ ∞

−∞

dk
2π
δη−(k) k ln k2

= −1

4
δv0 = 1

π2

∫ ∞

−∞
dk′k′2e−2σ−(k′)P

∫ ∞

−∞
dk
δη−(k)

k−k′ .

(4.58)

Just as in the m = +1 case, we could replace the factor k′2
by a factor k2 in the principal value integral. However, the
subsequent reasoning that either side of Eq. (4.45) equals an
entire function is not applicable here because the integrand
involves the function ln k2 rather than ln(k2 + 1), which is not
analytic at k = 0.

We assert that Eq. (4.58) has solutions of the simple form

e−2σ−(k) = �−
k2

+ π

2|k| , (4.59)

where �− ∈ R is a parameter that needs to be determined. In
order to show this, we substitute this equation into Eq. (4.58)
and replace

∫ ∞
−∞ dk′ with limK→∞

∫ K
−K dk′. Since δη−(k) =

O(k−3) as k → ∞ by Eq. (4.35), its Hilbert transform should
exist and behave such that the remaining k′ integral is
convergent. Our rewriting of the k′ integral as a principal value
was necessary to enable us to interchange the order of the two
integrations. This leads us to

−δv0

4
= lim
K→∞

∫ ∞

−∞

dk
π2
δη−(k) P

∫ K

−K
dk′ �− + π |k′|/2

k−k′ .

(4.60)

The second integral gives

P
∫ K

−K
dk′ �−+π |k′|/2

k−k′ = 2�− artanh
k
K

+ kπ
2

ln
k2

K2−k2

= −πk lnK+πk
2

ln k2+O(K−1).

(4.61)
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Owing to the constraint (4.37), the k lnK term does not
contribute to

∫ ∞
−∞ dk δη−(k) . . .. Hence, the limit K → ∞ of

Eq. (4.60) indeed yields the left-hand side of Eq. (4.58).
It remains to determine the constant �−. To do this, we

compare the solution (4.59) with the asymptotic form

e−2σ−(k) =
k→∞

π

2k
− π2

4k2
v−

−1 +O(1/k4). (4.62)

for large k derived in Appendix C. Insertion of the value of
v−

−1 given in Eq. (4.6) then yields

�− = 1. (4.63)

Hence, our results for σ−(k) become

e−2σ−(k) = 1

k2
+ π

2|k| ,

σ−(k) = 1

2
ln

k2

1 + π |k|/2 = lnA−(k), (4.64)

σ ′
−(k) = 1

k
− πsgn(k)

2π |k| + 4
.

To compute η−(k) we first determine η′
−(k) using the

Kramers-Kronig relation (4.36a). The Hilbert transform of
the contribution 1/k to σ ′

−(k), considered as a distribution,
gives HT[1/k](k) = π δ(k). For k �= 0, it has no support and
can be dropped. The Hilbert transform of the remaining term,
σ ′

−(k) − 1/k, can be computed in a straightforward fashion.
One gets

η′
−(k) = ln(π2k2/4)

4 − π2k2
. (4.65)

This can be integrated in a straightforward fashion. To fix
the integration constant, we use the fact that a variant of
Levinson’s theorem exists for the Sturm-Liouville problem
we are concerned with which predicts that η−(0±) = ±π/2
in the presence of the half-bound state ϕ0(z) (see Eq. (4.43)
of [75]). It follows that for real k

η−(k) = sgn(k)

{
π

2
+ 1

2π

[
Li2(−π |k|/2) − Li2(π |k|/2)

− ln

(
π |k|

2

)
ln

2 − π |k|
2 + π |k|

]}
, (4.66)

where Li2(k) is the dilogarithm [polylogarithm Lis(k) for s =
2] [83–85].

D. The phase shifts η±(k) for m = ±1 and
the scattering data for m = 0

Figure 3 shows our results for η±(k) given in Eqs. (4.54)
and (4.66). To plot η+(k), we evaluated the integral on the
right-hand side of Eq. (4.54) by numerical means using Math-
ematica [82]. We included the k-independent result η0(k) =
π/4 for the critical case m = 0. This follows from the fact
that the exactly known eigenfunctions ϕ(z,k;L = ∞,m = 0)
of the critical potential (3.13) for d = 3 [37] behave as

ϕ(z,k; ∞,0) = √
zJ0(kz) �

z→∞

√
2

πk
sin(kz+ π/4). (4.67)

Comparing with Eq. (4.10), we see that the associated
scattering amplitude and phase shift are given by

A0(k) = eσ0(k) =
√

2|k|
π
, η0(k) = π

4
sgn(k). (4.68)

E. The half-bound state

Using the above results, we can now also verify that the
half-bound stateϕ0 agrees with the k → 0+ limit of the regular
solution ϕ(z,k), as stated in Eq. (4.18). Using the analog of
Eq. (4.67) for the regular solution with m < 0 along with our
results for the scattering data given in Eq. (4.64), we arrive at

ϕ(z,k) �
z→∞

eσ−(k)

k
sin[kz + η−(k)]

= (1 + kπ/2)−1/2 sin[kz + η−(k)]. (4.69)

Since η−(k) = π/2 +O(k ln k), the sine function becomes
cos[kz +O(k ln k)] and approaches 1 in the limit k → 0+. It
follows that limk→0 ϕ(z,k) takes the value 1 at z = ∞, satisfies
the normalization condition (4.16) of ϕ0, and hence must be
identical to it.

F. Distinct behaviors of the Jost functions F±(k)
in the complex plane

When we determined above the scattering data for the
cases m > 0 and m < 0, we saw that the qualitatively distinct
spectra of the respective Hamiltonians Hv± entail qualita-
tively different behaviors of the Jost functions F±(k). While
F+(k = k/|m|) has no zeros in the upper half plane Im k > 0,
F−(k/|m|) has a zero at the origin, reflecting the presence of
the half-bound state discussed in the previous section. The
difference of the spectra for m > 0 and m < 0 manifests
itself also in the distinct analytical properties of the functions
F±(k/|m|). The gap of spec(Hv+ ) implies that F+(k/m) is
analytical in the complex k plane except for a branch cut from
−im to −i∞ along the negative Im k axis [see Fig. 4(a)].
The distance m of the end point of this branch cut from the
origin corresponds to the inverse of the bulk correlation length
1/m. When m < 0, the branch cut runs from k = 0 to −i∞
along the negative Im k axis. From Eqs. (4.64) and (4.66) one
can see that the Jost function F−(k/|m|) is analytical on the
first (physical) Riemann sheet but has successively poles and
zeros at ±2|m|/π on higher Riemann sheets, depending on the
number of 2π turns [see Fig. 4(b)]. The distance of the pole
at Re k > 0 from the origin sets the scale for the algebraic
decay of the bulk correlation function and corresponds to
the Josephson coherence length ∝1/|m|, as our results for
the two-point functions to be presented in the next section
explicitly show.

V. RESULTS FOR TWO-POINT CORRELATION
FUNCTIONS FROM SCATTERING DATA

A. Relation of two-point functions to scattering data

We now use the scattering data determined in the previous
section to calculate the scaling function of the L = ∞ two-
point function for m � 0. To this end we must express the
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(a)

Im k

Re k

F+(k/m)

−im

(b)

Im k

Re k

F−(k/|m|)

2|m|/π-2|m|/π

FIG. 4. (Color online) Branch cuts of the Jost functions
F±(k/|m|) form > 0 (a) andm < 0 (b). The red crosses in (b) indicate
the poles and zeros that occur successively on the higher Riemann
sheets.

scaling function in terms of scattering data. It will be helpful
to briefly return to the case of finite thickness L.

We define the two-point correlation function and cumulant
by

G(2)( y,z,z′;L,m) = lim
n→∞〈φ( y,z) · φ(0,z′)〉/n

= 〈
( y,z)
(0,z′)〉, (5.1)

and

G(2)
cum( y,z,z′;L,m)=G(2)( y,z,z′;L,m)−〈
( y,z)〉〈
(0,z′)〉,

(5.2)

where φ( y,z) and
( y,z) are the continuum analogs of φ j and

 j , respectively, and we have taken into account the translation
invariance parallel to the boundary planes. Since the O(n)
symmetry cannot be spontaneously broken at temperatures
T > 0 when L < ∞, the two-point function approaches zero

as the separation of the two points tends to infinity; i.e.,

lim
| y|→∞

G(2)( y,z,z′;L < ∞,m) = 0. (5.3)

On the other hand, if we first take the limit L → ∞ and
subsequently the limit | y| → ∞, then the correlation function
factorizes into a product of nonvanishing expectation values if
m < 0,

lim
| y|→∞

G(2)( y,z,z′; ∞,m) = 〈
(0,z)〉〈
(0,z′)〉, (5.4)

so that G(2)
cum( y,z,z′; ∞,m) vanishes in this limit.

Let us indicate Fourier transforms with respect to y with a
tilde, writing

f ( y) =
∫

d2p

(2π )2
f̃ ( p) ei p· y. (5.5)

Dimensional analysis implies the scaling behavior

G̃(2)
cum( p,z,z′; ∞,m) = 1

|m|G̃
(2)
cum( p/|m|,|m|z,|m|z′; ∞,±1)

(5.6)

form �= 0. The analog of this equation for 〈
(0,z)〉2
L=∞,m and

m < 0, given in Eq. (4.17), asserts that the half-bound state ϕ0

describes the dependence of this quantity on |m|z.
Before we address this issue, let us first consider the

L → ∞ limit in the simpler m > 0 case. To this end we
start from the analog of the spectral decomposition (3.10)
for G̃(2)( p; z,z′;L,m), expressing it in terms of eigenfunctions
that are normalized such that

lim
z→0+

z−1/2 ϕν(z;L,m) = 1, (5.7)

lim
z→L−

(L− z)−1/2 ϕν(z;L,m) = (−1)ν−1, (5.8)

and hence related to the orthonormalized ones, fμ, via

fν(z;L,m) = ϕν(z;L,m)√
�ν(L,m)

(5.9)

with

�ν(L,m) ≡ 〈ϕν |ϕν〉 =
∫ L

0
[ϕν(z;L,m)]2 dz. (5.10)

This gives

G̃(2)( p,z,z′;L,m) =
∞∑
ν=1

ϕν(z;L,m)ϕν(z′;L,m)

�ν(L,m) [p2 + Eν(L,m)]
. (5.11)

Using Eq. (5.10), we can now determine the limit L → ∞
of �ν/L. We can replace ϕν(z;L,m) with its asymptotic
form (4.10) in the integral L−1

∫ L
0 dz . . . for all layers z

that are sufficiently far from the boundary planes. Near the
boundary planes, this approximation is not justified. However,
the integral of the difference between the asymptotic form and
ϕν is restricted to two boundary layers of thickness ∼1/|m|.
Therefore, the error this approximation produces for �ν/L is
of order 1/L and we have

lim
L→∞

L−1�ν(L,m) = e2σ (k) 1

2k2
. (5.12)
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Since the spectrum is bounded away from zero whenm > 0,
i.e., Eν(L,m) � m for all ν, we can use Eq. (5.12) along with
L−1 ∑∞

ν=1 −−−→
L→∞

π−1
∫ ∞

0 dk and dimensional considerations

to conclude that the L = ∞ limit of Eq. (5.11) is given by

G̃(2)( p,z,z′; ∞,m � 0)

= 1

m

∫ ∞

0

dk
π

2k2e−2σ+(k) ϕ(mz,k; ∞,1)ϕ(mz′,k; ∞,1)

p2/m2 + 1 + k2
,

(5.13)

where k = k/m.
When m < 0, we must be more careful. Since E1 → 0 as

L → ∞ according to Eq. (4.19), the contribution from the
lowest-energy mode ν = 1 requires separate considerations,
even though the mode sum

∑∞
ν=2 of the remaining modes can

be treated as before.
Using Eq. (4.20), we see that the contribution of the ν = 1

mode to G(2)( y,z,z′;L,m) for large L can be written as

lim
L→∞

1

L

∫
d2p

(2π )2

ei p· y ϕ0(|m|z)ϕ0(|m|z′)
p2 + E1(L,m)

= lim
L→∞

ϕ0(|m|z)ϕ0(|m|z′)
2πL

K0
[| y|

√
E1(L,m)

]
= |m|

4π
ϕ0(|m|z)ϕ0(|m|z′). (5.14)

Here Eq. (4.19) for E1 and the asymptotic behavior K0(y →
0) � −γE − ln(y/2) of the Bessel function K0 were used,
where γE is the Euler-Macheroni constant. The derivation
nicely illustrates the emergence of the half-bound state ϕ0 as
L → ∞ and of the square of the spontaneous magnetization
in the (noncommuting) limits lim| y|→∞ limL→∞ of G(2). The
result confirms Eq. (4.17) for the spontaneous order-parameter
profile.

Combining it with the contribution from the mode sum∑∞
ν=2 then yields

G̃(2)( p,z,z′; ∞,m) − G̃(2)
cum( p,z,z′; ∞,m)

= |m|
4π
ϕ0(|m|z)ϕ0(|m|z′) δ( p), (5.15)

with

G̃(2)
cum( p,z,z′; ∞,m < 0)

= 1

|m|
∫ ∞

0

dk
π

[
2k2e−2σ−(k)

p2/m2 + k2

× ϕ(|m|z,k; ∞,−1)ϕ(|m|z′,k; ∞,−1)

]
. (5.16)

B. Critical two-point cumulant

As a useful first application of Eq. (5.13), let us verify that
Bray and Moore’s exact result [36,37] for the critical two-point
cumulant follows from it. Upon insertion of the scattering
amplitude eσ0 given in Eq. (4.68) together with the critical
eigenfunctions (4.67), we arrive at

G̃(2)( p,z,z′; ∞,0) = √
zz′

∫ ∞

0
dk
kJ0(kz)J0(kz′)
p2 + k2

= √
zz′I0(pz<)K0(pz>), (5.17)

in precise agreement with [36,37]. Transformed to position
space, the result

G(2)( y,z,z′; ∞,0) = 1

2π

√
zz′√

y2 + (z− z′)2
√
y2 + (z+ z′)2

= 1√
4zz′

G(2)

[
y2 + (z− z′)2

4zz′

]
(5.18a)

takes the form dictated by conformal invariance under con-
formal transformations that leave the boundary plane z = 0
invariant [86,87], where the scaling function G(2) is given by

G(2)(ρ) = 1

4π
√
ρ(1 + ρ)

. (5.18b)

These results mean that G(2) complies with the familiar
asymptotic large-distance behaviors of the form

G(2)( y,z,z′) ∼
⎧⎨
⎩[y2 + (z− z′)2]−

d−2+η‖
2 ,

[y2 + (z− z′)2]
− d−2+η⊥

2 ,

(5.19)

as |x| → ∞ along a direction parallel to the surface plane
or any nonparallel direction, respectively, where d = 3, η⊥ =
1/2, and η‖ = 1 in our case [88].

The above findings suggest the introduction of the surface
operator


s( y) = lim
z→0+

z−1/2
( y,z) (5.20)

and the associated correlation function

G(1,1)( y − y′,z) ≡ 〈
( y,z)
s( y′)〉. (5.21)

Equation (5.18) then yields

G(1,1)( y,z) =
√
z

2π (y2 + z2)
(5.22)

for this function and the related surface two-point function

G(0,2)( y) ≡ lim
z→0
y �=0

z−1/2G(1,1)( y,z) = 1

2πy2
. (5.23)

Here the condition y �= 0 in the definition (5.23)
is necessary. To see this, note that the Fourier trans-
form of Eq. (5.21) exists and agrees with the z′ → 0
limit of (z′)−1/2G̃(2)( p,z,z′) computed from Eq. (5.18),
namely,

G̃(1,1)( p,z) = √
zK0(pz). (5.24)

However, G(0,2)( y), when considered as an ordinary
function rather than a generalized one, does not have a
Fourier p transform. This is because in the derivation
of Eq. (5.23), we made use of the requirement y �= 0
and therefore ignored potential contributions ∝ δ( y). To
resolve the problem, we should regard the above Fourier
p transforms as those of generalized functions in y
space.

Generalized functions of the form yλ = (y2
1 + y2

2 )λ/2 with
negative integer exponents λ are discussed in detail in
Ref. [90]. Let us denote the generalized function associated
with y−2 as P2y

−2 [91], where the subscript 2 reminds us
that y ∈ R2, and introduce an arbitrary momentum scale μ to
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make the integration variables dimensionless. Then P2(μy)−2

is defined via its action on test functions υ(μ y),(
P2

μ2y2
,υ

)
≡

∫
| ŷ|<1

d2ŷ
υ( ŷ) − υ(0)

ŷ2
+

∫
| ŷ|>1

d2ŷ
υ( ŷ)

ŷ2
,

(5.25)

where ŷ = μ y. Its Fourier p transform is well defined and
given by

1

2π
FT

[
P2

μ2y2
, p

]
= −γE − ln

p

2μ
. (5.26)

To proceed, note that the limit z → 0 of

z−1/2G̃(1,1)( p,z) = z−1G̃(2)( p,z,z) = K0(pz) (5.27)

does not exist because

K0(pz) = −γE − ln(pz/2) +O(p2z2). (5.28)

To define a finite two-point surface correlation function, we
must first subtract the logarithmic singularity ∼ ln z before
taking the limit z → 0. We choose this subtraction as

S(μz) = −γE − ln(μz/2) (5.29)

and define

G̃(0,2)( p) ≡ lim
z→0

[
z−1/2G̃(1,1)( p,z) − S(μz)

]
= − ln(p/μ). (5.30)

From Eqs. (5.26) and (5.30) we see that the Fourier p transform
of this function is

G(0,2)( y) = P2

2πy2
+ (γE − ln 2) δ( y). (5.31)

C. Two-point cumulant in the disordered phase

We next consider the case of m > 0. To determine the
scaling function on the right-hand side of Eq. (5.6), we
substitute the result (4.59) for e−2σ+(k) in Eq. (5.13) and make
a change of variable k → k = km. This gives

G̃(2)( p,z,z′; ∞,m)

= 1

m

∫ ∞

0

dk

π

[
2k arctan(k/m)

p2 + k2 +m2
ϕ(mz,k/m; ∞,1)

×ϕ(mz′,k/m; ∞,1)

]
. (5.32)

Note, first, that our results for the critical case
are easily recovered from the right-hand side by
performing the limits limm→0 arctan(k/m) = π/2 and
limm→0m

−1/2 ϕ(mz,k/m; ∞,1) = √
z J0(kz).

Second, we can divide by
√
z′ and take the limit z′ → 0

using the normalization (4.9) of the regular solution to obtain

G̃(1,1)( p,z; ∞,m)

= 1√
m

∫ ∞

0

dk

π

2k arctan(k/m)ϕ(mz,k/m; ∞,1)

p2 + k2 +m2
. (5.33)

We next compute the m > 0 analog of G̃(0,2) defined as in
Eq. (5.30). To perform the required z → 0 limit, we represent

the subtraction term as

S(μz) =
∫ ∞

0
dk
kJ0(kz)

μ2 + k2
+O[(μz)2 ln(μz)], (5.34)

substitute arctan(k/m) with π/2 − arctan(m/k), use
limz→0(zm)−1/2ϕ(mz,k/m; ∞,1) = 1, and exchange the limit
z → 0 with the integration. This gives

G̃(0,2)( p; ∞,m � 0) =
∫ ∞

0
dk

[
k

p2 + k2 +m2
− k

μ2 + k2

]

− 2

π

∫ ∞

0
dkk

arctan(m/k)

p2 + k2 +m2

= ln

[
μ

m+
√
m2 + p2

]
. (5.35)

To determine the Fourier back transform, it is convenient
to consider the difference

G(0,2)( y; ∞,m � 0) −G(0,2)( y; ∞,0)

=
∫

d2p

(2π )2
ei p· y ln

[
p

m2 +
√
m2 + p2

]

=
∫ ∞

0

dp

2π
pJ0(py) ln

[
p

m+
√
m2 + p2

]

= 1

2πy2
(e−my − 1), (5.36)

where the last line follows from the integral listed as 6.775 in
Ref. [92]. Upon combining the result with Eq. (5.31), we obtain

G(0,2)( y; ∞,m � 0) = P2

2πy2
e−my + (γE − ln 2) δ( y).

(5.37)
If one assumes y �= 0, then G(0,2)( y; ∞,m � 0) can be
considered as an ordinary function and both the symbol P2 as
well as the contributions ∝ δ( y) be dropped.

D. Two-point cumulant in the ordered phase

Upon inserting the scattering amplitude from Eq. (4.64)
into Eq. (5.16), we arrive at

G̃(2)
cum( p,z,z′; ∞,m < 0)

= |m|−1
∫ ∞

0

dk

π

[
2k

p2 + k2

( |m|
k

+ π

2

)

×ϕ(mz,k/m; ∞,−1)ϕ(mz′,k/m; ∞,−1)

]
. (5.38)

Just as in the m > 0 case, we can multiply by (z′)−1/2 and
perform the limit z′ → 0 to obtain

G̃(1,1)
cum ( p,z; ∞,m < 0)

= 1√|m|
∫ ∞

0

dk

π

[
2k ϕ(mz,k/m; ∞,−1)

p2 + k2

( |m|
k

+π
2

)]
.

(5.39)

The calculation of the two-point surface cumulant, defined by
analogy with Eq. (5.30), is similarly straightforward. It yields

G̃(0,2)
cum ( p; ∞,m < 0) = |m|

p
− ln

p

μ
(5.40)
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TABLE I. Comparison of exact two-point correlation functions
G(2)( y,z,z′; ∞,m), G(0,2)( y; ∞,m), and bulk correlation function
G

(2)
b (x;m), where z± ≡ z± z′ and x = ( y,z).

G(2)( y,z,z′) G(0,2)( y) G
(2)
b (x)

m > 0 1
2πy2 e

−my 1
4πx e

−mx

m = 0
√
zz′

2π
√

(y2+z2+)(y2+z2−)

1
2πy2

1
4πx

m < 0 1
2πy2 + |m|

2πy + m2

4π
1

4πx + |m|
4π

and, hence,

G̃(0,2)( p; ∞,m < 0) = |m|
p

− ln
p

μ
+ δ( p)

m2

4π
. (5.41)

For the corresponding Fourier back transforms one finds

G(0,2)( y; ∞,m < 0) = G(0,2)
cum ( y; ∞,m < 0) + m2

4π

= P2

2πy2
+ |m|

2πy
+m

2

4π
+ (γE−ln 2) δ( y).

(5.42)

In Table I we compare our exact n = ∞ results for
the surface correlation function G(0,2)( y; ∞,m) with those
known forG(2)( y,z,z′; ∞,m) and the bulk correlation function
G

(2)
b (x;m) = 〈
(x)
(0)〉b.

VI. RESULTS FOR SOME POTENTIAL-RELATED
QUANTITIES

A. The potential coefficient v0

In order to compute the potential coefficient v±
0 , we

use the following variant of a trace formula derived in the
accompanying paper II.

Theorem 1: Trace formula. Let v(z) and ṽ(z) be two
potentials on the half line (0,∞) that vanish faster than z−1 as
z → ∞ and behave as

v(z → 0) = v(sg)(z) + v0 + o(1),
(6.1)

ṽ(z → 0) = v(sg)(z) + ṽ0 + o(1),

with the same singular part,

v(sg)(z) = − 1

4z2
+ v−1

z
. (6.2)

Let ϕν(z), ν = 1, . . . ,nb, be the regular solutions to the
Schrödinger equation Hvϕν(z) = ενϕν(z) subject to the
boundary conditions

ϕν(z) =
z→0

√
z[1 +O(z)] (6.3)

that correspond to bound states (wherenb may be zero). Denote
by

�ν =
∫ ∞

0
ϕ2
ν (z) dz (6.4)

the squares of the L2([0,∞)) norms of these (real-valued)
functions and by A(k) = eσ (k) the scattering amplitude for

k > 0. Furthermore, let ϕ̃ν̃ , ñb, �̃ν̃ , and Ã(k) = eσ̃ (k) be the
analogous quantities pertaining to the potential ṽ(z). Then the
following relation holds:

v0 − ṽ0 = 4

π

∫ ∞

0
dz k2[e−2σ̃ (k) − e−2σ (k)]

+
∑
bound
states ν̃

2

�̃ν̃
−

∑
bound
states ν

2

�ν
. (6.5)

We use this relation for the (m = ±1,L = ∞) choices
of self-consistent potentials v(z) ≡ v±

∞(z) − δ±1,1 with the
singular parts

v(sg)(z) ≡ vsg,± ≡ − 1

4z2
± 4

π2z
(6.6)

and ṽ(z) = vsg,±(z). The potentials vsg,±(z) weakly violate the
required z → ∞ behavior ṽ(z) = o(1/z), where the “little-
o symbol” f = o(g) means that limx→−∞ |f (x)/g(x)| = 0.
If fulfilled, the condition would ensure (together with the
presumed boundedness and smoothness of ṽ for z > 0) that∫ ∞

zl>0 |ṽ(z)|dz < ∞. The consequence of the slow O(1/z)
decay is known from the Coulomb potential: the phase shift
η̃(k) is not well-defined and gets replaced with z-dependent
quantity η̃(k,z) containing a contribution ∼ ln(zk), as we
explicitly confirm below. Since the scattering theory for
Coulomb potentials is mathematically well controlled, we may
trust that Eq. (6.5) carries over to the borderline case when
ṽ(z) = O(1/z), except for the mentioned replacement of the
phase shift by a logarithmically divergent η̃(k,z).

1. The case v = v+
∞ and ṽ = vsg,+

For the choices v(z) = v+
∞(z)−1 and ṽsg,+(z) the

Schrödinger equations have no bound states. The spectra are
continuous with ε = k2 ∈ (0,∞). The corresponding regular
solutions ϕ̃(z,k) are given by

ϕ̃(z,k; κ) = eiπ/4√
2k
M−iκ,0(−2ikz), κ = 2

π2k
, (6.7)

where M−iκ,0(z) is a Whittaker-M function [83–85]. Its
asymptotic behaviors at small and large z are [93]

ϕ̃(z,k; ±κ) =
z→0

√
z
[

1 ± 4z
π2

+
(

4

π2
− k2

4

)
z2 +O(z3)

]
(6.8)

and

ϕ̃(z,k; ±κ) �
z→∞

Ã(k)

k
sin[kz + η̃(k,z)], (6.9)

with

Ã(k) =
{

k
π

[
1 + exp

(
± 4

πk

)]}1/2

(6.10)

and

η̃(k,z) = π

4
+ arg�

(
1

2
± 2i

π2k

)
∓ 2

π2k
ln(2kz). (6.11)

Here the upper signs apply to the case of the regular solutions
specified in Eq. (6.7). The lower signs give the analogous
results which hold when the sign of κ is changed. They are
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needed in our analysis of the case v = v−
∞ and ṽ = vsg,−

presented below. Note that the results given in Eq. (6.11)
exhibit the above-mentioned logarithmic z dependence of
η̃(k,z).

We insert these results along with the scattering amplitude
A+(k) given in Eq. (4.41) into the trace formula (6.5). This
gives

v+
0 − 1 = + 4

π

∫ ∞

0
dk k2

[
π/k

1 + exp[4/(πk)]
− arctan k

k

]
.

(6.12)

Upon making a change of variable k → q = 1/k, the integral
on the right-hand side can be decomposed into a sum of two
finite integrals J1 and J2. The first can be rewritten as an
integral of a series, which can be integrated termwise and
subsequently summed to obtain

J1 = 4

π

∫ ∞

0

dq

q3

[
π

1 + e4q/π
− π

2
+ q

]

= 32

π3

∫ ∞

0
dq

∞∑
j=1

(2j − 1)−2

q2 + π4(2j − 1)2/16
= 56ζ (3)

π4
.

(6.13)

The second integral is

J2 = 4

π

∫ ∞

0

dq

q3

[
π

2
− q − arccot q

]
= −1. (6.14)

Its contribution to v+
0 is compensated by the −1 on the left-

hand side of Eq. (6.12). Hence, we arrive at the value of v+
0

given in Eq. (4.7).

2. The case v = v− and ṽ = vsg,−

For the potential v(z) = v−
∞(z), no bound states exists. The

spectrum is continuous with ε = k2 > 0. However, in the case
of the potential ṽ(z) = ṽ−

∞(z) infinitely many bound states
exist. To see this, note that the regular solutions satisfying
the boundary condition (6.3) are again given by Eq. (6.7)
except that κ must be replaced with −κ = −2π−2k−1. For
k/i = k′′ > 0, the requirement that ϕ(z,ik′′; −κ) decays ex-
ponentially as z → ∞ yields the discrete values and associated
eigenenergies εν = −(k′′

ν)
2, namely,

k′′
ν = 4

π2(2ν − 1)
, εν = −16

π4 (2ν − 1)2
, ν = 1,2, . . . ,∞.

(6.15)
The associated eigenstates simplify to

ϕ̃ν(z) = ϕ̃(z,ik′′; −κ)

= √
z exp

[
− 4z
π2(2ν − 1)

]
Lν−1

[
8z

π2(2ν − 1)

]
,

(6.16)

where the Lν−1(z) are Laguerre polynomials.
Using these results, one can compute the required norm

parameters �̃ν . One obtains

�̃ν = π4

64
(2ν − 1)3, ν = 1,2, . . . ,∞. (6.17)

The regular solutions associated with the continuous part
{ε = k2|0 < k < ∞} of the spectrum are given by ϕ̃(z,k; −κ)
in terms of the functions defined in Eq. (6.7).

Insertion of the above results and Eq. (4.64) for
exp[−2σ̃ (k)] into the trace formula (6.5) yields

v−
0 = 4

π

∫ ∞

0
dk

{
πk

1 + exp[−4/(πk)]
− 1 − πk

2

}

+ 128

π4

∞∑
ν=1

1

(2ν − 1)3

= −56 ζ (3)

π4
+ 112 ζ (3)

π4
= 56 ζ (3)

π4
. (6.18)

To compute the integral in the first line, we again transformed
to the variable q = 1/k, represented the resulting integrand
as the series

∑∞
μ=1,3,...(−8π−2μ−2)[q2 + (μπ2/4)2]−1, and

integrated termwise to obtain the first term in the last line
of Eq. (6.18). The series in the second line can be summed in
a straightforward fashion. Hence, we obtain the value of v−

0
given in Eq. (4.7).

B. The integrals α± and the universal
amplitude difference �A(s)

0

We next turn to the calculation of the integrals α± defined in
Eq. (3.53) and the related universal amplitude difference�A(s)

0 .
To this end we use the following strategy. We determine the
asymptotic large-k behavior of the Jost functionF (k) by means
of the semiclassical expansion. Details of this analysis can be
found in Appendix C. The asymptotic form of this function for
the half-line case of a potential with a singular part vsg of the
form specified in Eq. (6.2) involves v−1-dependent analogs of
the integrals α±. The corresponding results for the phase shifts
read

η±(k) = π

4
− 1

2k
[v±

−1(γE + ln 8k) + α±] +O(k−3). (6.19)

Upon inserting the known values (4.6) of v±
−1, we can

determine α± by matching the derivatives η′
±(k) of these

results with the large-k forms given in Eq. (4.50) or implied
by Eq. (4.65). One thus obtains

α+ = J+ − α− (6.20)

and

α− = 4

π2
[γE − 1 + ln(16/π )], (6.21)

where J+ was defined in Eq. (4.51).
The universal amplitude difference �A(s)

0 follows upon
insertion of these expressions for α± into Eq. (3.52) and use
of the numerical value J+ given in Eq. (4.53). One finds

�A
(s)
0 = α+ + α−

16π
= J+

16π
(6.22)

= 0.009 441 321 99 . . . . (6.23)

This exact value of �A(s)
0 derived here has recently been

confirmed quite accurately in Ref. [33] by numerical solutions
of the self-consistency equations for two microscopically
different O(n) φ4 models representing the same universality
class (called models A and B there).
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C. A surface excess quantity associated
with the squared order parameter

For local quantities of semi-infinite systems whose z-
dependent thermal average approaches the bulk value Qb =
Q(∞) sufficiently fast, one conventionally defines the associ-
ated surface excess as [42,43]

Qs =
∫ ∞

0
dz[Q(z) −Q(∞)]. (6.24)

We have already seen in Sec. III C that this definition entails
UV singularities in the continuum limit a → 0 in the case of
the excess energy density because of the behavior ∼z−2 of v∞
in the regime a � z � |m|. These singularities required the
subtractions made to define the integrals α± in Eq. (3.53).

In the case of the squared order-parameter density
(2)(z) =
〈
( y,z)〉2, no problems arise from the behavior in the near-
boundary regime z � |m| when a = 0. As we know from
Eq. (4.17), the scaling function associated with the density
4π 
(2)(z) is given by the square of the semibound state
ϕ0(|m|z). This vanishes linearly in z as z → 0 and hence
is integrable at the lower limit. However, problems arise at
the upper integration limit L = ∞ when m < 0 because the
existence of Goldstone modes in the ordered phase implies the
asymptotic behavior ∼z−(d−2) at distances much larger than
the Josephson coherence length |m|−1 [43]. At d = 3, this
decay � z−1 is too slow to ensure convergence at the upper
integration limit ∞. In order to define a finite surface excess

(2)

s , the definition (6.24) must be appropriately modified.
Let us begin by explicitly demonstrating the claimed slow

decay, showing that the regular solutionϕ0(z) function behaves
asymptotically as

ϕ0(z) �
z→∞ 1 − 1

4z
+ o(1/z). (6.25)

To determine this limiting behavior one can solve them = −1
variant of the Schrödinger Eq. (4.3) for z � 1. This requires
knowledge of the asymptotic form of the potential v−

∞(z).
In the next section, we determine the behavior of the self-
consistent potential v(z;L,m < 0) = L−2v(z/L; 1,x) in the
regime 1 � z|m| � |x|. The result, given in Eq. (7.17), means
that

v−
∞(z) �

z→∞ − 1

2z3
. (6.26)

Upon substituting this asymptotic form for the potential,
one can determine the two linearly independent solutions

ϕ0(z → ∞) � (2z)1/2J1
(√

2/z
)
,

ψ0(z → ∞) � −π (z/2)1/2Y1
(√

2/z
)
, (6.27)

of Eq. (4.3), where Jν(u) and Yν(u) are Bessel functions of the
first and second kind, respectively. We have normalized these
solutions such that ϕ0(∞) = 1 and the Wronskian satisfies
W [ϕ0(z),ψ0(z)] = 1. The first solution has the asymptotic

behavior (6.25); the second behaves as

ψ0(z → ∞) = z + ln z
2

+ C0 + o(1/z), (6.28)

with C0 = (1 − 2γE + ln 2)/2.
The result (6.25) tells us that a finite universal surface excess

quantity associated with 4π 
(2)(z)/|m| can be introduced as
the integral

Jϕ =
∫ ∞

0
dz

[
ϕ2

0(z) − 1 + θ (z − 1)

2z

]
. (6.29)

To compute it, we proceed as follows. We expand the regular
solution ϕ(z,k) of them = −1 Schrödinger Eq. (4.3) toO(k2),
writing

ϕ(z,k) = ϕ0(z) + k2 ϕ2(z) +O(k4). (6.30)

The function ϕ2(z) satisfies the differential equation

Hvϕ2(z) = [−∂2
z + v(z)

]
ϕ2(z) = ϕ0(z). (6.31)

A special solution is

ϕ2(z) = ϕ0(z)
∫ z

0
dζ ϕ0(ζ )ψ0(ζ ) − ψ0(z)

∫ z

0
dζ ϕ2

0(ζ ).

(6.32)

The general solution is the sum of this solution and
the general solution cϕ ϕ0(z) + cψψ0(z) of the homogeneous
equation. However, since ϕ2(z) = 1

2∂
2
kϕ(z,k = 0), it must

vanish faster than ϕ(z,k) for z → 0, namely be O(z5/2). Both
solutions ϕ0 and ψ0 of the homogeneous solution violate this
condition. Hence, cϕ = cψ = 0 and the correct solution must
be given by Eq. (6.32).

Integrating the asymptotic form of ϕ0(z)ψ0(z) implied by
Eqs. (6.25) and (6.28), one finds that the first integral on the
right-hand side of Eq. (6.32) behaves as∫ z

0
dζϕ0(ζ )ψ0(ζ ) =

z→∞
z2

2
+ z

[
ln z
2

+ C0 − 3

4

]
+O(ln2 z).

(6.33)

To determine the asymptotic behavior of the second integral,
we split off Jϕ and then compute the integrals for large z using
again the limiting form of ϕ0. This gives∫ z

0
dζϕ2

0(ζ ) = Jϕ −
∫ ∞

z
dζ

[
ϕ2

0(ζ ) − 1 + θ (ζ − 1)

2ζ

]

+
∫ z

0
dz

[
1 − θ (ζ − 1)

2ζ

]

=
z→∞ z − 1

2
ln z + Jϕ +O(1/z). (6.34)

Insertion of these results into Eq. (6.32) then leads us to

ϕ2(z) =
z→∞ −z2

2
+ z

2
ln z −

(
Jϕ + 7

8

)
z +O(ln2 z). (6.35)

Since the integral Jϕ appears in the asymptotic large-z form
of the regular solution’s k2 term, it should also appear in the
corresponding k2 term of the Jost function F (k). Hence, we
should be able to determine Jϕ by computing this function
and matching it with our exact scattering-data results of
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Sec. IV C given in Eqs. (4.64) and (4.65). To obtain F (k),
we first calculate the Jost solution f (z,k) for large z and
then use it together with the above results for the regular
solution to compute F (k) as the Wronskian (4.14) of these
functions.

The Jost solution f (z,k) can be determined at large z by
means of perturbation theory. We use the familiar equiva-
lence of the differential Eq. (4.3) with the integral equation
[35]

f (z,k) = eikz +
∫ ∞

z
dζv−

∞(ζ )
sin[k(ζ−z)]

k
f (ζ,k), (6.36)

which we iterate to first order in v−
∞, replacing f (ζ,k) and v−

∞
in the integral on the right-hand side by eikz and the asymptotic
form of v−

∞ given in Eq. (6.26), respectively. We thus arrive at
the expansion

f (z,k) =
(

1 − 1

4z

)
eikz + k

2
e−ikz[π + iEi(2ikz)] + · · · ,

(6.37)

where Ei(z) denotes a standard exponential-integral function.
For the contribution f (j ) of j th order in the potential, we have
the bound (cf. p. 9 of [35])

|f (j )(z,k)| � conste−Im(kz) 1

j !

[ ∫ ∞

z
dζ
ζ |v−

∞(ζ )|
1 + |k|ζ

]j
, (6.38)

where “const” is an appropriate (positive) numerical con-
stant. Using once more the asymptotic form of v−

∞,
we can determine the large-z behavior of the integral.
Since∫ ∞

z
dζ
ζ |v−

∞(ζ )|
1 + |k|ζ =

z→∞
1

2z
− |k| arccoth(1 + 2|k|z)

= 1

4|k|z2
+O(z−3), (6.39)

the contributions of second order in v−
∞ are smaller by a factor

of z−2 than the O(v−
∞) term. Note that the latter varies as

f (1)(z,k > 0) = −eikz
[

1

8kz2
+O(

z−3
)]

(6.40)

for large z, in accordance with the bound (6.38).
We now wish to compute the WronskianW [f (z,k),ϕ(z,k)],

expand it toO(k2), and take the limit z → ∞. To this end it is
sufficient to retain in f (z,k) only the contributions to O(v−

∞)
explicitly given on the right-hand side of Eq. (6.37) because the
foregoing considerations imply that the terms f (j ) with j � 2
do not contribute to this limit. Proceeding in this manner, we
find

lim
z→∞W [f (z,k),ϕ(z,k)]

= −ik + k2

[
iπ

4
− Jϕ − γE

2
− ln(2k)

2

]
+ o(k2). (6.41)

On the other hand, the exact Jost function F (k > 0) given by
Eqs. (4.12), (4.64), and (4.66) has the expansion

F (k) = −ik + k2

[
1

2
+ i π

4
− ln(πk/2)

2

]
+ o(k2). (6.42)

Matching these results finally yields the analytically exact and
numerical values

Jϕ = − 1
2 [1 + γE + ln(4/π )]

≈ −0.909 390 070 086 0 . . . . (6.43)

VII. ASYMPTOTIC BEHAVIOR IN THE
LOW-TEMPERATURE SCALING LIMIT x → −∞

A. Asymptotic behavior of eigenvalues and eigenfunctions

In Refs. [32,33] we showed that the eigenfunctions fν and
eigenvalues Eν of the self-consistent Schrödinger problem
defined by Eqs. (3.7), (3.11), (3.12), and (3.23) approach in
the limit x ≡ mL → −∞ those of a one-dimensional free
massless bosonic field theory on the strip (0,L) subject to
Neumann boundary conditions. This was achieved by gener-
alizing previous arguments for the semi-infinite case [94] to
map the low-temperature behavior of the model to a nonlinear
σ model (see Appendix B of [33]) and confirming the results
via numerical solutions of the self-consistency equations. The
aim of this section is to compute the leading corrections to
the limiting Neumann eigenvalues and eigenvectors for large
negative values of x.

To this end it is convenient to scale L to unity and use
the scaling properties of Eν and fν implied by dimensional
arguments to express them as

L2Eν(L,m) = Eν(1,mL) ≡ Eν(x),
(7.1)√

Lfν(z;L,m) = fν(z/L; 1,mL) ≡ fν(z,x),

in terms of the dimensionless variables x and z = z/L. Their
limiting large-x behavior stated above is

lim
x→−∞Eν(x) = Eν(−∞) = E̊ν,

(7.2)
lim

x→−∞ fν(z,x) = fν(z,−∞) = f̊ν(z),

where

E̊ν = k̊2
ν ≡ [π (ν − 1)]2, ν = 1,2, . . . ,∞,

(7.3)
f̊1(z) = 1, f̊ν�2 =

√
2 cos(kνz),

denote the familiar Neumann eigenvalues and eigenfunctions.
Perturbation theory about the x = −∞ limit is not standard

because it involves several unusual, though interesting and
challenging, features. First, since E̊1 = 0 and E1 vanishes
∼e−|x| as x → −∞, we must deal with an asymptotic zero-
energy mode. Second, perturbative corrections to the potential
must be determined self-consistently along with those of
the eigenvalues and eigenvectors. Third, the perturbation
expansions of z-dependent quantities differ, depending on
whether z belongs to the boundary regions of thickness
∼|x|−1 near the two surface planes at z = 0 and z = 1 or
else to the remaining inner region. Thus, the problem involves
aspects of singular perturbation theory and bears similarities
to boundary-layer theory in fluid dynamics [95].

To set up perturbation theory, we start from the scaled
analog of Eq. (3.23) corresponding to the replacements z →
z = z/L, m → x = tL, and L → 1, respectively, and choose
z ∈ (0,1) so that the δ distributions do not contribute. This
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gives

x =
∫ 0

−∞
dE

[
G(z,z;E) + 1

2
√−E

]
, z ∈ (0,1). (7.4)

Since the left-hand side diverges ∼x as x → −∞, so must
the right-hand side. The latter divergence arises due to the
behavior lnE1 ∼ −|x|. We therefore subtract from both sides
of the equation the term

f2
1(z,x) lim

ρ→0+

{∫ −ρ

−∞
dE

[
1

E − E1(x)
− 1

E

]
+ ln ρ

}

= f2
1(z,x) lnE1(x), (7.5)

obtaining

x − f2
1(z,x) lnE1(x) = P (z,x), (7.6)

with

P (z,x)

= lim
ρ→0+

{∫ −ρ

−∞
dE

[
G̃(z,z;E) + 1

2
√−E

]
− f2

1(z,x) ln ρ

}
,

(7.7)

where

G̃(z,z′;E) = f1(z)f1(z′)
E

+
∞∑
ν=2

fν(z)fν(z)

E − Eν . (7.8)

As x → −∞, the function f1(z,x) → 1 while G̃ approaches
the Green’s function GNN for Neumann boundary conditions
at z = 0 and z = 1. The latter function is given by

GNN(z,z′;E = −p2) = −cosh(pz<) cosh[p(1 − z>)]

p sinhp
. (7.9)

It can be determined by means of standard image methods,
which yield it as a sum of contributions from infinitely many
image charges. Using this representation, one finds that the
x → −∞ limit of the integrand on the right-hand side of
Eq. (7.7) becomes

GNN(z,z;E) + 1

2
√−E

= −
{
e−2pz

2p
+ 1

2p

∞∑
j=1

[
2 e−2pj

+ e−2p(j−z) + e−2p(j+z)
]}
p=√−E

. (7.10)

Upon substitution of this expression into Eq. (7.7), the inte-
gral and limitρ → 0+ thatP (z,x) involves can be computed in
a straightforward fashion using Mathematica [82]. One obtains

P (z,−∞) = γE + 2 ln 2 + 1
2 ψ(z) + 1

2 ψ(1 − z), (7.11)

where ψ(z) = d ln�(z)/dz is the digamma function. Hence,
we have shown that lnE1 =

x→−∞ −|x|[1 + o(1)].

Second, we can solve Eq. (7.6) for f1(z) and then use
Eq. (7.11) to conclude that

f1(z,x) =
√
x − P (z,x)

lnE1(x)
=

√
x

lnE1(x)
 (z,x), (7.12)

with

 (z,x) = 1 + ψ(z) + ψ(1 − z) + 2γE + 4 ln 2

4|x| + o(|x|−1).

(7.13)

The result tells us that for arbitrary z ∈ (0,1), the eigen-
function f1 becomes a constant in the limit x → −∞, so that
f1(z,−∞) ≡ 1 indeed, as stated in Eq. (7.3).

In order for this perturbation expansion to be valid,
the O(1/|x|) must be small compared to the leading O(1)
contribution. Expanding in z gives

 (z,x) = 1 − 1

4|x|
[

1

z
− 4 ln 2 +O(z2)

]
+ o(1/|x|).

(7.14)

Owing to the symmetry z → 1 − z, a corresponding
expansion holds about z = 1. Hence, for the perturbation
expansion (7.13) to hold, z must not belong to boundary layers
of thickness ∼1/|x| near either one of the two surface planes
at z = 0 and z = 1. In fact, very close to the surfaces we know
from Eq. (5.7) that f1(z,x) ∝ ϕ1(z,x) vary ∼√

z and ∼√
1 − z,

respectively.
The crossover between the behavior in the boundary layers

and the remaining “inner region” is expected to occur at a
distance b/|x| away from the surface planes, where b should
be of order unity. In terms of the unscaled variable z this
means that for givenm andLwith b/|m| � L/2, the crossover
from the near-boundary behavior to the behavior in the inner
region occurs at z ≈ b/|m| and 1 − z ≈ b/|m|. The length
b/|m| agrees up to a factor of order 1 with the Josephson
coherence length [96].

The perturbative result for f1 given by Eqs. (7.13) and (7.14)
can be used to obtain the expansion of the potential in the inner
region. To this end, we solve the differential equation for f1,
obtaining

v(z,x) = ∂2
z f1(z,x)

f1(z,x)
+ E1(x), (7.15)

and then substitute the above result for f1. This gives

v(z,x) = ψ ′′(z) + ψ ′′(1 − z)

4|x| + o(1/|x|) (7.16)

for b/|x| � z � 1 − b/|x| (inner region) and

v(z,x) = − 1

|x|
[

1

2z3
+ ζ (3) +O(z2)

]
+ o(1/|x|) (7.17)

for b/|x| � z � 1/2. By contrast, in the near-boundary
regime z = z|m| � 1, the asymptotic behavior of the potential
v(z,x) = v(1 − z,x) must be in conformity with that of the
semi-infinite case, i.e., with Eqs. (4.5)–(4.7).

We next turn to the determination of the asymptotic
behavior of the lowest eigenvalue E1(x) for x → −∞. To
this end we write the orthonormality relation for f1(z,x) as

1 = 2
∫ 1/2

0
dz f2

1(z,x) = I<(b̃,x) + I>(b̃,x), (7.18)
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with

I<(b̃,x) = 2
∫ b̃/|x|

0
dz f2

1(z,x) (7.19)

and

I>(b̃,x) = 2
∫ 1/2

b̃/|x|
dz f2

1(z,x), (7.20)

where b̃ � 1, but b̃/|x| < 1/2. To compute I> we can
substitute our perturbation results, Eqs. (7.13) and (7.14), for
f1. This yields

I>(b̃,x) = 2x

lnE1(x)

∫ 1/2

b̃/|x|
dz

×
[

1+ψ(z)+ψ(1−z)+2γE + 4 ln 2

2|x|
]

+ o(1/|x|)

= −1

lnE1(x)

[
|x| + γE − 2b̃ + ln

4b̃

|x| + o(|x|0)

]
.

(7.21)

In order to evaluate I<(b̃,x) for large negative
x, note that according to Eq. (4.20) f1(z/L;mL) =√|m|L f1(|m|z; |m|L,−1) approaches the half-bound state
ϕ0(|m|z) in the limit L → ∞. Hence, f1(z,x) must behave
as

f1(z,x) =
x→−∞ ϕ0(z) + o(|x|0) (7.22)

and I<(b̃,x) becomes

I<(b̃,x) = 2

|x|
∫ b̃

0
dzϕ2

0(z) + o(1/|x|). (7.23)

The integral on the right-hand side has been considered in
Eq. (6.33). Its behavior for large b̃ is given by the last line of
this equation with the replacement z → b̃:∫ b̃

0
dzϕ2

0(z) = Jϕ + b̃ − 1

2
ln b̃ + o(1/b̃). (7.24)

Upon inserting the above results for I>(b̃,x) and I<(b̃,x)
into Eq. (7.18), one sees that the O(1/|x|) terms that diverge
linearly or logarithmically as b̃ → ∞ cancel. Hence, we can
take the limit b̃ → ∞ [97]. Matching the terms of order |x|,
ln|x|, and |x|0 then yields

lnE1(x) =
x→−∞ −|x| + ln|x| − γE − 2Jϕ − ln 4 + o(1).

(7.25)
With the aid of Eq. (6.43) our result for E1(x) thus becomes

lnE1(x) =
x→−∞ −|x| + ln|x| + ln

e

π
+ o(1/|x|0),

(7.26)
E1(x) =

x→−∞
e

π
|x| e−|x|+o(1/|x|0).

In order to determine the leading shifts �Eν of the
eigenvalues Eν>1(x) from their x = −∞ values E̊ν given in
Eq. (7.3), it is natural to use Rayleigh-Schrödinger perturbation
theory in v(z,x). Since we know from Eq. (7.26) that E1(x)

remains exponentially small at large negative x, the shift

�Eν = −2
∫ 1/2

0
dz v(z,x)[f̊ν(z)]

2 (7.27)

must vanish when ν = 1. Upon subtracting 0 = 2�E1 from
�Eν>1 and remembering that f̊1 ≡ 1, we obtain

�Eν>1(x) = −2
∫ 1/2

0
dz v(z,x){2 − [f̊ν(z)]

2}

= − 4
∫ 1/2

b/|x|
dz v(z,x) sin2[π (ν − 1)z] +O(1/|x|)

= 2[π (ν − 1)]2 ln|x|
|x| +O(1/|x|), (7.28)

where we used the fact that the contribution from the omitted
integral

∫ b/|x|
0 dz is O(1/|x|). To compute the remaining

integral, we inserted Eq. (7.17) for v(z,x) and kept only the
terms ∼|x|−1ln|x|. The result given in the last line means
that the eigenvalues Eν>1(x) behave in the limit x → −∞
as [98]

Eν>1(x) = π2(ν − 1)2

[
1 + 2ln|x|

|x|
]

+O(1/|x|). (7.29)

The result has a simple interpretation: The eigenvaluesEν>1

agree to the given order with those of the free (v = 0) system
with Neumann boundary conditions up to a reduction

L → L[1 + 2|x|−1ln|x| +O(1/|x|)]−1/2

= L[1 − |x|−1ln|x| +O(1/|x|)] (7.30)

of the thickness of the slab.

B. Free-energy functional for the slab in the continuum limit

In Sec. III A we considered the continuum limit of the
self-consistency equation for the potential in detail. In order to
investigate the scaling function �(x) of the residual free en-
ergy, it is useful to integrate the corresponding self-consistency
Eq. (3.23) to obtain a free-energy functional whose extremum
yields the residual free energy.

Since the bulk free energy and the surface free energy
involve UV singularities, appropriate subtractions must be
made to eliminate these singularities. In the translation-
invariant case of pbc, this can be done by subtracting the
Taylor expansion in the mass parameterm2 to the lowest order
required to yield UV finite expressions [61]. In our case of
fbc, this procedure is impractical because the self-consistent
potential has a nontrivial dependence on the temperature
variable m. This entails a nontrivial m dependence of the
eigenenergies Eν , which is not known in analytic closed form.
We therefore use an alternative, more feasible approach.

Starting from the self-consistency equation for the contin-
uum theory, Eq. (3.23), we construct a free-energy functional
whose value at the maximizing potential v∗(z) yields the free
energy per area of the slab up to regular background terms.
To achieve this, we multiply Eq. (3.23) by a “test function”
δv(z) with support on [0,L], integrate z over this interval, and
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interchange the order of integrations. We thus arrive at

mLδv + δv(0) + δv(L)

2
=

∫ ∞

0
dω

[
Lδv

2
√
ω

+ δχ (ω)

]
,

(7.31)

where

δχ (ω) =
∫ L

0
dz δv(z)G(z,z; −ω), (7.32)

while δv denotes the average

δv =
∫ L

0

dz

L
δv(z). (7.33)

At this stage, it is sufficient to presume continuity of δv(z) on
the closed interval [0,L]. Since this implies boundedness and
integrability, the average (7.33) exists.

Let us show that δχ (y) is indeed the variation of a function
χ (ω) caused by a modification δv(z) of the potential. Note,
first, that the Green’s function G(z,z′;E) can be written
in terms of the left and right regular solutions ϕl,r of the
Schrödinger equation,

−∂2
z ϕl,r (z;E) + [v(z) − E]ϕl,r (z,E) = 0, (7.34)

on [0,L], which are fixed by the boundary conditions

ϕl(z;E) =
z→0+

√
z [1 +O(z)],

(7.35)
ϕr (z;E) =

z→L−
√
L− z [1 +O(L− z)].

The Wronskian of these functions,

�(E) ≡ W [ϕr (z;E),ϕl(z;E)], (7.36)

is called characteristic function of the Sturm-Liouville prob-
lem defined by Eqs. (7.34) and (7.35). It is an entire function
of the complex variableE with simple zeros at the eigenvalues
{Eν}∞ν=1 of this problem. Further, for any complexE not in the
spectrum {Eν} one has

G(z,z′;E) = −ϕl(z<;E)ϕr (z>;E)

�(E)
. (7.37)

This should be obvious because the right-hand side of
Eq. (7.37) is a solution to Eq. (7.34) for z �= z′ and the jump
condition ∂zG(z,z′;E)|z=z′+0

z=z′−0 = 1 as well as the boundary
conditions (7.35) are satisfied.

The above-mentioned properties of �(E) imply that

ln[const�(E)] = tr ln(E − Hv) = tr lnG−1(E). (7.38)

Noting that δG−1 = −δH = −δv, we see that the variation of
the left-hand side yields the negative of the expression on the
right-hand side of Eq. (7.32). Equation (7.32) can therefore be
interpreted as the variation of the function

χ (ω) ≡ − ln[π�(−ω)], (7.39)

where the prefactor π was chosen to simplify subsequent
relations.

We wish to consider potentials v(z) that are even with
respect to reflections at the midplane z = L/2 and have

a Laurent expansion about z = 0 with a fixed pole part.
Accordingly, we require that

v(z) = v(L− z) (7.40)

and that v(z) can be expanded about z = 0 as

v(z) = − 1

4z2
+ 4m

π2z
+ u0 + u1z+ · · · , (7.41)

where the principal part of the Laurent series (pole terms)
is fixed while the remaining nonsingular expansion terms
including u0 may vary. Note that we use the notation uj for the
coefficients of the varying Taylor series part of the potentials
considered to avoid confusion with coefficients such as v0

of the self-consistent potentials for m = ±1. Variations δv(z)
therefore satisfy the relations

δv(L) = δv(0) = δu0 (7.42)

and do not involve pole terms. Furthermore, the function�(E)
simplifies to

�(E) = ∂zϕ
2
l (z;E)|z=L/2. (7.43)

In order to integrate χ (ω) with respect to ω to determine a
free-energy functional that yields Eq. (7.31) as a stationarity
condition, we must know the behavior of χ (ω) at large and
small ω. The leading asymptotic behavior of χ (ω) for large
ω is a bulk property and easily determined. Setting m = 0
and subtracting the bulk term at ω = 0 to eliminate UV sin-
gularities, we obtain χ (ω → ∞) � −(L/π )

∫ ∞
0 dk ln[(k2 +

ω)/k2] = −L√
ω. Since

∫
dz v(z) has momentum dimension

1, we can conclude that the next-to-leading terms are of order
ω−1/2 mod lnω. Furthermore, χ (ω) can be expressed in terms
of its derivative as

χ (ω) = −L√
ω −

∫ ∞

ω

dω′
[
χ ′(ω′) + L

2
√
ω′

]
. (7.44)

In Appendix D we extend the above asymptotic expansion
of χ (ω) by computing the two next-to-leading terms by means
of the semiclassical expansion, obtaining

χ (ω) =
ω→∞ −L√

ω − 1

2
√
ω

[
LR([v];L,m) + 4m

π2
ln(ωL2)

]

+ 2m2

π2ω
+O(ω−3/2), (7.45)

where R([v];L,m) denotes the functional

R([v];L,m) ≡ 1

L2
+ 8m

π2L
(γE + ln 4) + vns, (7.46)

while

vns ≡ 2

L

∫ L/2

0
dz

[
v(z) + 1

4z2
− 4m

π2z

]
(7.47)

is the average of the nonsingular part of the potential.
In the limitω → 0, the functionχ (ω) approaches a constant

χ (0), whose bulk contribution −Lm follows from a calculation
analogous to the one performed above. The value χ∗(0) at the
extremal point v∗(z;L,m) that maximizes the functional Fμ
can be computed in a straightforward manner. To this end, we
integrate the self-consistency equation (3.23) over the interval
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(0,L), interchange the integrations over z and ω, and use

χ ′(ω) =
∫ L

0
dzG(z,z; −ω) (7.48)

to conclude that

mL+ 1 =
∫ ∞

0
dω

[
L

2
√
ω

+ χ ′
∗(ω)

]
= −χ∗(0). (7.49)

Here the contribution from the upper integration limit vanishes
by Eq. (7.44), and the asterisk indicates evaluation at the
maximizing potential v∗(z;L,m).

We are now ready to introduce a free-energy func-
tional whose variation subject to the constraints specified
in Eqs. (7.40)–(7.42) is in conformity with the stationarity
condition (3.23) and gives back the implied Eq. (7.31). To
integrateχ (ω), we subtract from it a contribution with the same
large-ω behavior as specified in Eq. (7.45), so that the integral
of the difference

∫ ∞
0 dω converges at the upper integration

limit. To avoid convergence problems at the lower integration
limit, we make the replacement ω → μ2 + ω in the last one
of the terms explicitly displayed in Eq. (7.45), where μ > 0
is an arbitrary momentum scale, and introduce the free-energy
functional

Fμ([v];L,m) = F (1)([v];L,m) + F (2)
μ ([v];L,m), (7.50a)

with

F (1)([v];L,m) = mLR([v];L,m) + u0

8π
(7.50b)

and

F (2)
μ ([v];L,m)

= −
∫ ∞

0

dω

8π

[
χ ([v],ω) + L√

ω + 2m ln(ωL2)

π2
√
ω

+ L

2
√
ω
R([v];L,m) − 2m2

π2(μ2 + ω)

]
, (7.50c)

where we have explicitly indicated the functional dependence
of χ on the potential v.

Since δR([v];L,m) = δv, the stationarity condition
δFμ([v],L,m)|v=v∗ = 0 is satisfied as a consequence of
Eq. (7.31), where it should be remembered that only the
nonsingular part of v(z) (including the parameter u0) is to
be varied while the singular one is fixed at vsg

∗ (z), as indicated
in Eq. (7.41).

The logarithmic derivative of Fμ with respect to μ at fixed
v, L, and m is given by

μ∂μ|v,L,mFμ([v];L,m) = − m2

2π3
. (7.51)

Under a change μ → μ#, it transforms as

Fμ#([v];L,m) = Fμ([v];L,m) − m2

2π3
ln #

= μ2#2F1([μ−2#−2v];μ#L,mμ−1#−1),

(7.52)

where the last line follows from dimensional considerations.
We denote the value of this functional at the maximizing

potential v∗ as

fμ(L,m) ≡ max
vns=v−vsg

∗
Fμ([v];L,m) = Fμ([v∗];L,m). (7.53)

Choosing # = (μL)−1 in Eq. (7.52) then gives us the relation

fμ(L,m) = L−2Y (mL) − m2

2π3
ln(μL), (7.54)

with

Y (x) ≡ f1(1,x). (7.55)

To relate the scaling function �(x) of the residual free
energy to fμ(L,m), we must determine the bulk and sur-
face free-energy contributions Lfb(m) and 2fs(m;μ) con-
tained in this free energy. The former is readily deter-
mined using R([v∗];L,m) = m2θ (m) + o(1/L) and χ (ω) =
−L

√
ω +m2θ (m) + o(L). One obtains

fb(m) = lim
L→∞

L−1f (L,m)

= θ (m)

[
m3

8π
+

∫ ∞

0

dω

8π

(√
ω +m2 − √

ω − m2

2
√
ω

)]

= m3

24π
θ (m) (7.56)

in accordance with Eq. (2.38).
To determine the surface contribution to Fμ([v∗];L,m), we

must compute the limit

2fs(m;μ) = lim
L→∞

{
Fμ([v∗];L,m) − Lfb(m) + m2

π3
ln(μL)

}
.

(7.57)

In Appendix E we show that

Fμ([v∗];L,m) = θ (m)

[
L
m3

24π
+ 2m2�A

(s)
0

]

+ m2

π3

[
3

4
+ 7ζ (3)

π2

]
− m2

2π3
ln

2L|m|
π

− m2

2π3
ln(μL) +O(1/L). (7.58)

This yields

fs(m;μ) = m2

2π3

[
3

4
+ 7ζ (3)

π2
− 1

2
ln

2|m|
πμ

]
+m2�A

(s)
0 θ (m).

(7.59)

The above results enable us to identify those parts of the
scaling function Y (x) that correspond to bulk and surface
contributions to the free energy per area. It follows that the
scaling function �(x) of the residual free energy is related to
Y (x) via

Y (x) =
[
x

48π
+�A(s)

0

]
2x2θ (x)

+ x2

π3

[
3

4
+ 7ζ (3)

π2
− 1

2
ln

2|x|
π

]
+�(x). (7.60)

We are now ready to turn to a discussion of exact properties
of the scaling functions �(x) and ϑ(x) of the residual
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free energy and the Casimir force. In the next section, we
recapitulate the qualitatively distinct asymptotic behaviors
of these functions in the high-temperature, low-temperature,
and critical-temperature limits x → +∞, x → −∞, and x →
0±, respectively, recall their known exact properties, and then
focus on the derivation of their limiting forms for x → −∞.
For the latter purpose we need the following property of the
free energy introduced in Eq. (7.53):

∂fμ(L,m)

∂m
= LR([v∗];L,m) + 2v0m

8π
− m

π3
ln(μL). (7.61)

This relation may be viewed as the continuum analog of
Eq. (2.33). Since the termLR([v∗];L,m) agrees withLvns, the
“trace” of vns, up to anL-dependent constant, its form (7.61) is
plausible. However, its derivation is not entirely trivial because
of the singular parts of the full self-consistent potential v∗.
From Eq. (7.54) we see that what needs to be proven to
establish Eq. (7.61) is the implied relation for the scaling
function Y (x), namely,

Y ′(x) = 1

8π
R([v∗]; 1,x) + C1x, (7.62)

with

C1 = v0

4π
= 14ζ (3)

π5
= 0.054 992 529 830 367 . . . . (7.63)

In Appendix F we give a direct derivation of Eq. (7.62)
from the free-energy functional (7.50). For the constant C1 we
obtain the result

C1 = γE + ln 8

π3
+ 4

π5

∫ ∞

0
dz

{
1√
2z
K0(z)

∂Mκ,0(2z)

∂κ

∣∣∣∣
κ=0

+ I0(z)

[
K0(z)(γE+ ln 4)+

√
π

2z

∂Wκ,0(2z)

∂κ

∣∣∣∣
κ=0

]}
ln z,

(7.64)

where ∂κMκ,0(z) and ∂κWκ,0(z) are derivatives of WhittakerM
andW functions.

We have not been able to evaluate the integral on the
right-hand side analytically. However, upon computing the
corresponding expression for C1 by numerical integration via
Mathematica [82], we verified that the analytical value given in
Eq. (7.63) is reproduced to 13 digits. Moreover, we have shown
by independent arguments that C1 has the exact analytical
value given in Eq. (7.63): We have determined the asymptotic
x → −∞ behavior of Y (x) in two different ways, one that uses
Eq. (7.62) with an unspecified constant C1, and a second one
based on inverse scattering results, which involves the potential
parameter v0 (see Appendix G). Matching the corresponding
results yields the analytical value C1 = v0/4π .

Let us also note the following useful relation between
the scaling function Y (x) and the value of the functional
F (2)

1 ([v]; 1,x) at the self-consistent potential v∗(z; 1,x),

x
dY (x)

dx
− Y (x) = −F (2)

1 ([v∗]; 1,x) + 7ζ (3)x2

π5
, (7.65)

which follows immediately from Eqs. (7.50), (7.55), (7.62),
and (7.63).

C. Asymptotic behaviors of the scaling functions �(x) and ϑ(x)

The scaling functions�(x) and ϑ(x) are known in numeri-
cal form from the results of Refs. [32,33]. They exhibit quali-
tatively distinct asymptotic behaviors in the high-temperature,
low-temperature, and critical limits x → +∞, x → −∞, and
x → 0±, respectively. Although some discussion of these
issues can be found in Refs. [32,33,38] and elsewhere (e.g., in
Refs. [12,21,24] for general values of d), it is helpful to recall
the necessary background and some known results.

For x > 0, we are dealing with a massive theory confined
to a film with free surfaces. Therefore, both scaling functions
must vanish exponentially; one has

�(x → ∞)

ϑ(x → ∞)

}
∼ e−2x+O(ln x), (7.66)

where the factor 2 in the exponential is specific to fbc [99].
In the critical limit x → 0, �(x) approaches the Casimir

amplitude �C [cf. Eq. (2.13)], whose exact analytical value is
not known but for which the numerically precise result

�C = −0.010 773 406 850 247 82(1) (7.67)

was obtained in Ref. [33].
Since the free energy must be regular in m when L < ∞,

the singular bulk and surface free-energy contributions must
be canceled by corresponding contributions ∼x3, ∼x2, and
∼x2ln|x| of �(x). As discussed in Ref. [38], this implies the
limiting behavior

�(x) =
x→0±

�C −
[
�A

(s)
0 + x

48π

]
2x2θ (x)

+ 1

2π3
x2ln|x|+�1x+�2x

2 +�3x
3 + o(x3),

(7.68)

where�A(s)
0 is the universal amplitude difference (6.22). Here∑3

j=1�jx
j are regular contributions and the o(x3) terms

involve regular contributions of orders x4 and higher. Setting
d = 3 in Eq. (2.12) to determine the consequences for ϑ(x)
yields

ϑ(x) =
x→0±

2�C +�1x − x2

2π3
+ x3

24π
θ (x) −�3x

3 + o(x3),

(7.69)

from which one recovers the previously mentioned result [38]

ϑ ′′(0) = −1/π3. (7.70)

In the low-temperature limit x → −∞, �(x) approaches
the exactly known Casimir amplitude −ζ (3)/(16π ) of a free
field theory subject to Neumann boundary conditions [16], as
follows from the mapping to the nonlinear σ model [32,33,94].

The results given in Eqs. (7.29) and (7.26) can be com-
bined in a straightforward fashion with the known result
−ζ (3)/(16πL2) for the residual free energy of a massless
free field theory subject to Neumann boundary conditions to
gain information about the asymptotic behavior of the scaling
function �(x) for x → −∞. The reduction of L specified
in Eq. (7.30) gives us the leading correction ∼|x|−1ln|x| to
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the limiting value �(−∞). Upon including also the next-to-
leading term ∼d1/|x|, we arrive at the limiting form

�(x) =
x→−∞ −ζ (3)

16π

[
1 + d1 + 2ln|x|

|x| + o(1/|x|)
]
. (7.71)

This limiting behavior has previously been stated in
Refs. [32,33]. The exact value of 2 of the coefficient in
front of the |x|−1ln|x|—here obtained as a consequence of
Eqs. (7.29) and (7.30)—was derived there by matching the
low-temperature behavior of our model to that of a nonlinear
σ model. Unfortunately, the latter analysis left the exact value
of the universal coefficient d1 undetermined.

We now turn to the direct derivation of the asymptotic
form (7.71) within the framework of the n → ∞ analysis of
our O(n) φ4 model. For this purpose we must extend our
results for the free energy and its scaling function Y (x) given
in Eqs. (7.58) and (7.60) by working out their asymptotic
contributions in the limit x → −∞ up to O(1/|x|). Let
us start by determining those of these contributions that
originate from the free-energy term F (1)

1 ([v∗]; 1,x). We need
the asymptotic x → −∞ behavior ofR∗(1,x) to o(1/|x|). This
can most easily be computed via Eq. (7.62). Upon inserting the
x → −∞ form (7.71) of�(x) into Eq. (7.60), we can compute
Y ′(x) and solve for R∗(1,x). Taking into account Eq. (7.63),
we find

R∗(1,x) = −8|x|
π2

[1 − ln(2|x|/π )]

+ ζ (3)
1 − d1/2 − ln|x|

|x|2 + o(1/|x|2); (7.72)

i.e., no terms of order 1/|x| appear in the asymptotic x → −∞
form of this quantity.

The calculation of F (2)
1 ([v∗]; 1,x) to o(1/|x|) is more in-

volved and relegated to Appendix G. It confirms the asymptotic
form of�(x) given in Eq. (7.68) and yields for the coefficient
d1 the result

d1 = 2

[
γE + ln

4

π

]
− 1 − 2

ζ ′(3)

ζ (3)

= 0.967 205 644 660 601 09 . . . . (7.73)

This value is consistent with the result d1 = 1.0(1) obtained
in Ref. [33] by numerical solutions of the self-consistency
equations.

The x → −∞ behavior of the Casimir force scaling
function implied by Eq. (2.12) is, of course, the same as given
in Ref. [33], namely,

ϑ(x) =
x→−∞ −ζ (3)

8π

[
1 + 3d1/2 − 1 + 3ln|x|

|x| + o(1/|x|)
]
,

(7.74)

except that we now have the exact analytical value (7.73)
for d1.

VIII. SUMMARY AND CONCLUSIONS

In this paper we explored the potential of inverse scattering
theory to gain exact information about the n = ∞ solution
of the O(n) φ4 on a three-dimensional film of size ∞2 × L

bounded by a pair of free surfaces. A wealth of exact
results could be determined. Since their derivation required
a combination of various tools and lengthy calculations (most
of which are presented in the appendixes), it will be helpful to
briefly summarize them.

The essence of our strategy was to eliminate the potential
v(z) of the self-consistent Schrödinger problem that the exact
n = ∞ solution involves in favor of scattering data. This
enabled us to reformulate the self-consistency equation in
terms of scattering data.

For the semi-infinite case L = ∞ we succeeded in the
exact determination of the scattering data pertaining to the
self-consistent potential v(z;L = ∞,m) for all values of
the temperature variable m at, above, and below criticality
(m = 0). The corresponding results are presented in Secs. IV B
and IV C; see Eqs. (4.68), (4.41) and (4.54), and (4.64)
and (4.66) for the cases m = 0, m > 0, and m < 0, respec-
tively. The obtained phase shifts η0(k) and η±(k) are depicted
in Fig. 3.

The knowledge of these scattering data enabled us to obtain
exact results for the two-point boundary correlation function
for all m � 0. The results are described in Secs. V B–V D and
summarized in Table I.

We then exploited these scattering data in conjunction with
information about the potential obtained via BOEs on the one
hand and various semiclassical expansions and a trace formula
on the other hand to derive a variety of exact results for the case
of a film of finite thickness L. In Sec. VI we computed several
quantities related to the self-consistent potential, among them
the potential coefficient v0 = m−2 limz→0 v

ns(z; ∞,m), the
universal amplitude difference �A(s)

0 , and an excess quantity
associated with the squared order-parameter density. The
results are given in Eqs. (4.7), (6.22), and (6.43), respectively.

A major issue to which we then turned was the asymptotic
behavior of the spectrum and the scaling functions of the
residual free energy and the Casimir force in the low-
temperature scaling limit x → −∞. Our findings for the
asymptotic behavior of the spectrum in this limit are presented
in Sec. VII A. Our result for the exponential vanishing of the
lowest eigenvalue E1 is given in Eq. (7.26). The remaining
energy levels Eν>1 approach their limiting values associated
with a free massless theory subject to Neumann boundary
conditions algebraically modulo logarithmic corrections; see
Eq. (7.29) and [97]. We also obtained the asymptotic behavior
of the self-consistent potential in the inner region of the
film; our results for the scaled potential v(z/L; 1,x < 0) are
presented in Eqs. (7.16) and (7.17).

To derive the asymptotic behavior of the scaling functions
�(x) and ϑ(x), we extended our analysis by constructing
a free-energy functional (cf. Sec. VII B) whose stationarity
condition yields the self-consistent Schrödinger equation
involving the potential (see Sec. VII B). This enabled us
to obtain an integral representation for the scaling function
Y (x) of the free-energy density in terms of the Green’s
function of the continuum theory and the self-consistent
potential.

Using semiclassical expansions in conjunction with theL =
∞ scattering data and our other results, we then determined
the asymptotic x → −∞ behavior of this function Y (x), from
which those of �(x) and ϑ(x) follow directly. Our results
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for the latter are given in Eqs. (7.71) and (7.74). They agree
with the asymptotic forms obtained in Refs. [32,33] and
corroborated there by numerical results.

The analytic results of the present work for the asymptotic
x → −∞ behavior of the scaling functions go in several ways
beyond those of Refs. [32,33]: In the latter two papers, both
the asymptotic forms (7.71) and (7.74) and the exact values
of the amplitudes of the logarithmic anomalies ∼|x|−1ln|x| of
�(x) and ϑ(x) were obtained via the mapping to a nonlinear
σ model. Here we derived these results directly from our
O(n → ∞) φ4 model in the scaling limit. In addition, we
calculated the exact analytical value of the coefficient d1

which governs the amplitudes of the x → −∞ contributions
∝ |x|−1 of �(x) and ϑ(x). This value, given in Eq. (7.73), is
in conformity with the numerical estimate of [33].

Note that in our analysis in this paper we started from
a lattice model to avoid UV singularities, but then focused
quickly on its continuum scaling limit (specified at the
beginning of Sec. III A). The rationale of this approach is easily
understood: Of primary interest are the universal features
encoded in the scaling functions �(x) and ϑ(x). Focusing
on the scaling limit is a convenient way to eliminate the less
important microscopic details associated with the behavior
on microscopic scales. If one determines the self-consistent
potential and the free energy of the n → ∞ solution of a given
O(n) lattice model representing the universality class of our
model by numerical means, as was done in Refs. [32,33] for
two families of such models, care must be exercised when
extracting the universal scaling functions�(x) and ϑ(x) from
the numerical data. The latter include the full information
about the nonuniversal behavior of the model on microscopic
scales. The determination of the scaling functions requires
the elimination of such nonuniversal small-scale features. To
this end, the appropriate scaling limit m → 0 and L → ∞
at fixed x = mL must be investigated, where corrections to
scaling should be properly taken into account. As x takes on
large negative values, it becomes increasingly more difficult
to determine reliable results from the numerical data. Never-
theless, sufficiently large values of −x could be reached in
Ref. [33] to see the asymptotic x → −∞ behavior. Moreover,
the numerical results of [33] for the scaling functions�(x) and
ϑ(x) are consistent with all exactly known results, including
the value of the coefficient d1 obtained here. The precision with
which the latter has been numerically checked is admittedly
still modest. However, other exactly known properties such
as ϑ ′′(0), the universal amplitude difference �A(s)

0 , or the
amplitude of the |x|−1ln|x| contribution to the asymptotic
x → ∞ behavior of �(x) have been confirmed with much
greater numerical accuracy.

In a recent paper [100], Dantchev et al. (DBR) studied the
exact solution of a mean spherical lattice model on a film
of size ∞2 × L bounded by two free surfaces with separate
constraints imposed on the average of the squares on the spins
in each layer z. This model is known to describe the n → ∞
limit of a fixed-length spin O(n) spin model [101]. DBR
investigated, on the one hand, its exact solution by numerical
means and derived, on the other hand, a low-temperature
expansion for finiteL. A discussion of how their work relates to
the one of Diehl et al. (DGHHRS), presented first in the earlier

letter [32] and subsequently in more details in Ref. [33], has
already been given in Ref. [102]. Hence, we restrict ourselves
here to a few clarifying remarks.

DBR overlooked the fact that O(n) φ4 models with
quadratic and quartic interaction constants τ and g turn into
fixed spin-length models in the limit g → ∞ at fixed τ/g.
Therefore, they did not realize that DGHHRS’s work includes
the exact solution of their mean spherical model as a special
case and that the numerical data DGHHRS presented for the
g → ∞ limit of DGHHRS’s φ4 model B directly apply to this
mean spherical model.

DBR’s numerical data appear to be in conformity with those
of DGHHRS. However, differences occur in the analysis of
the numerical data. In the near-critical regime (small m) DBR
recovered the scaling behavior reported by DGHHRS. On the
other hand, they had problems with observing scaling for larger
values of −x = −mL. As is discussed in Ref. [102], this may
be attributed to their inclusion of data well outside the scaling
regime in attempted scaling plots and an insufficient study
of the scaling limit. In their low-temperature analysis, DBR
focused on the behavior for low temperatures at fixed L rather
than on a proper determination of the scaling functions for large
values of −x. They found that their low-temperature data at
fixed L are well described by the analytical low-temperature
expansion they determined.

Note that the asymptotic x → −∞ behavior of the
scaling functions �(x) must, of course, comply with the
low-temperature expansion. Inspection of this expansion by
DBR shows indeed that the limiting value �(−∞) and the
coefficient of the |x|−1ln|x| contribution [cf. Eq. (7.71) and the
related one for ϑ(x), Eq. (7.74)] may be recovered from it. On
the other hand, the coefficient d1 of the correction term ∝|x|−1

cannot be derived from it. Unfortunately, the information that
can be extracted from the low-temperature expansion is rather
limited. The reasons are twofold. First of all, the expansion
is not in inverse powers of the scaling variable x (modulo
logarithms). Second, nonuniversal microscopic contributions
are still contained in this expansion.

As can be seen from the lengthy and, in part, tedious
calculations we had to perform, the precise determination of
the asymptotic x → −∞ forms of the scaling functions to the
given order in 1/|x| is a quite demanding task. By taking
the continuum limit, we could eliminate the nonuniversal
behavior at microscopic distances from the boundaries. For
local densities such as the energy and magnetization densities,
distinct nontrivial behaviors in the near-boundary regimes of
distances L− z and z � 1/|m| � L from the surfaces and the
inner regime 1/|m| � z,L− z � L/2 occur, both of which
generally contribute to quantities involving integrals over the
film such as the free energy or the Casimir force.

Although we have not been able to determine the desired
scaling functions �(x) and ϑ(x) exactly in closed analytic
form, the wealth of exact analytic results we have been able
to obtain by means of inverse scattering theory indicates
that the strategy we have pursued—eliminating the potential
from the self-consistency equation in favor of scattering
data—has considerable potential for successful applications to
analogous self-consistency problems. Interesting examples of
such problems where similar strategies might prove fruitful are
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studies of stochastic dynamic models and quantum quenches
in the large-n limit.
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APPENDIX A: PROPERTIES OF THE FUNCTIONS
W2 AND U2

In this appendix we give the explicit analytic expressions
for the functionsW2(λ) andU2(λ) in terms of special functions
and briefly discuss some of their properties.

The functionW2(λ) can be expressed exactly as

W2(λ) = 2

π (λ+ 4)
K

(
4

λ+ 4

)
(A1)

in terms of the complete elliptic integral of the first kind,

K(λ) =
∫ 1

0

dx√
(1 − x2)(1 − λ2 x2)

= π

2
2F1

(
1

2
,
1

2
; 1; λ2

)
, (A2)

where pFq denotes the generalized hypergeometric function.
Its antiderivative U2(λ) defined in Eq. (2.25) can be

determined in closed form by integrating Eq. (A2). This gives
(cf. Eq. (48) of [58,59])

U2(λ) = −2

(λ+ 4)2 4F3

[
1,1,

3

2
,
3

2
; 2,2,2;

(
4

λ+ 4

)2]
+ ln(λ+ 4). (A3)

From the definition ofW2(λ) in Eq. (2.17) one can read off
that it can be analytically continued into the complex λ plane
except for the branch cut [−8,0]. To determine the form of
W2(λ) for small λ, we use the expansion

K(k) =
∞∑
j=0

k
2j

(j !)2

[(
1

2

)
j

]2

[ln(1/k) + d(j )] (A4)

of K(k) near the singularity at k = 1 (see Eq. 19.12.1 in
Refs. [84,85]), where

k =
√

1 − k2 (A5)

is the complementary modulus, while

(a)j = a(a − 1)(a − 2) · · · (a − j + 1) (A6)

denotes the Pochhammer symbol and d(j ) can be expressed
in terms of the digamma function ψ(z) as

d(j ) = ψ(1 + j ) − ψ(
1
2 + j). (A7)

This expansion converges for 0 < |k| < 1 [84,85]. Upon
substituting it into Eq. (A1) and expanding in λ, we conclude

thatW2(λ) can be written as

W2(λ) = −w2(λ) ln λ+ R2(λ), (A8)

where w2(λ) and R2(λ) are both analytic for sufficiently small
|λ|. The former function, which for λ ∈ (−8,0) measures the
discontinuity across the branch cut, is the spectral function
introduced in Eq. (2.40). It can be computed for real values
of λ in a straightforward fashion either from Eq. (A1) or the
integral representation for w2 implied by Eq. (2.17), namely,

w2(λ ∈ R) =
∫ π

−π

dp1

2π

∫ π

−π

dp2

2π

× δ[λ+ 4 sin2 (p1/2) + 4 sin2 (p2/2)]. (A9)

One finds that

w2(λ ∈ R) = 1

2π2
K

[√−λ(λ+ 8)/16
]
θ (8 + λ) θ (−λ),

(A10)

where K(k) is the elliptic function (A2).
Integration of Eq. (A8) implies that U2(λ) can be written as

U2(λ) = λ(1 − ln λ)

4π
[1 + λA(λ)] + B(λ), (A11)

whereA(λ) and B(λ) are analytic for sufficiently small |λ| and
related to the functions w2(λ) and R2(λ) via

w2(λ) = 1

4π
[1 + 2λA(λ) + λ2A′(λ)] (A12)

and

R2(λ) = λ

4π
[A(λ) + λA′(λ)] + B ′(λ). (A13)

Their power series expansions

A(λ) = − 1

16
+ 5λ

768
− 7λ2

8192
+ 169λ3

1 310 720
+O(λ4) (A14)

and

B(λ) = 4G

π
+ 5λ ln 2

4π
+ λ2(3 − 10 ln 2)

128π
+O(λ3) (A15)

can be determined in a straightforward fashion. Here

G ≡
∞∑
k=0

(−1)k

(2k + 1)2
= 0.915 965 594 2 . . . (A16)

is Catalan’s constant. The value 4G/π of B(0) = U2(0)
follows directly from Eq. (A3) by evaluating the right-hand
side of this equation at λ = 0.

APPENDIX B: DERIVATION OF EQUATIONS FOR THE
SCATTERING PHASE η(E)

We start by giving a direct proof of Eq. (4.26) for the
derivative dηE/dE of the scattering phase.

LetG±(z,z′;E) = 〈z|(E − Hv±)−1|z′〉 be the Green’s func-
tion introduced in Eq. (4.21b) for the cases m = ±1. It is
defined for all complex values of E that do not belong to
the spectrum spec(Hv± ) = [δ±1,1,∞) and has a branch cut
along the positive real axis starting at δ±,1. For energies
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E + i0 = δ±1,1 + k2 + i0 on the upper rim of the branch cut,
it can be represented as

G±(z,z′;E + i0) = −ϕ(z,k)f (z′,k)

F (k)
for z′ � z, (B1)

where ϕ(z,k) and f (z,k) denote, respectively, the regular and
Jost solutions of the Schrödinger Eq. (4.3), while F (k) is the
Jost function introduced in Eqs. (4.11) and (4.12). Note that
Eq. (4.14) for F (k) has been used.

To relate the numerator of the expression for the diagonal
element of the Green’s function given on the right-hand side
of Eq. (B1) to a Wronskian, we consider these regular and
Jost solutions for two different positive values k and k′. We
multiply the differential Eq. (4.3) for ϕ(z,k′) by f (z,k), that
for f (z,k) by ϕ(z,k′), and then subtract the results from each
other, obtaining

(k′2−k2)ϕ(z,k′)f (z,k) = ∂zW [ϕ(z,k′),f (z,k)]. (B2)

This can be integrated to yield∫ zu

0
dzϕ(z,k′)f (z,k) = W [ϕ(z,k′),f (z,k)]|zu0

k′2−k2
, (B3)

where zu > 0 is a finite upper integration limit whose limit
zu → ∞ we intend to take.

We first evaluate the Wronskian at the lower limit 0+.
In addition to the regular solution ϕ(z,k), the Schrödinger
Eq. (4.3) has a linearly independent second solution, which we
denote as $(z,k). Unlike the small-z behavior (4.9) of ϕ(z,k),
the latter function varies as $(z,k) ∼ z1/2 ln z for z → 0. More
precisely, insertion of the ansatz

$(z,k) = ϕ(z,k) ln z + ρ(z,k) (B4)

into the differential Eq. (4.3) shows that

[−∂2
z + v±−k2

]
ρ(z,k) =

[
2

z
∂z − 1

z2

]
ϕ(z,k) = O(z−1/2),

(B5)

which in turn implies that

$(z,k) =
z→0

ϕ(z,k) ln z +O(z3/2). (B6)

We can now expand the Jost solution as

f (z,k) = Ak ϕ(z,k) + Bk $(z,k) (B7)

and compute the limit

lim
z→0+

W [ϕ(z,k′),f (z,k)]

= Bk lim
z→0+

W [ϕ(z,k′),$(z,k)]

= Bk lim
z→0+

W [
√

z,
√

z ln z] = Bk = −F (k), (B8)

where the last equality follows from the fact that the result is
independent of k′ and Eq. (4.14).

To compute the Wronskian for large zu, we use Eq. (4.11)
for ϕ(z,k′), substitute the Jost solutions f (z,±k′) and f (z,k)
by their asymptotic forms (4.8), insert the resulting value of
the Wronskian at zu together with Eq. (B8) into the right-hand
side of Eq. (B3), and then take the limit k′ → k. We thus arrive

at ∫ zu

0
dzG±(z,z;E + i0)

= 1

4k2

[
2kF ′(k) + F (−k) e2ikzu

F (k)
− 1 − 2ikzu)

]
. (B9)

The (oscillating) term ∝ e2ikzu vanishes as zu → ∞ owing
to the positive imaginary part of k implied by the i0 of the
energy. Proceeding to the limit zu → ∞ yields∫ ∞

0
dz

[
G±(z,z;E + i0) + i

2k

]
= 1

2k
d

dk

[
lnF (k)

k1/2

]
.

(B10)

For real positive k, the term ∝(lnF )′(k) becomes [σ ′(k) −
iη′(k)]/(2k). Taking the imaginary part of the above relation
finally gives

Im
∫ ∞

0
dz

[
G±(z,z;E + i0) + 1

2k

]
= −η

′(k)

2k
, (B11)

which is Eq. (4.26).
We next turn to the proof of Eq. (4.27). Let us consider

changes of the potential v±(z) → v±(z) + δv(z) in Eq. (4.26),
where the variation δv(z) has the properties (i)–(iv) specified in
Eq. (4.23). For the implied linear variation δηE of the scattering
phase we obtain from Eq. (4.27)

dδηE

dE
= −

∫ ∞

0
dz Im δG(z,z;E + i0)

= −Im tr[(E + i0 − Hv± )−1δv(E + i0 − Hv±)−1]

= d

dE
Im tr[δv(E + i0 − Hv±)−1]. (B12)

This can be integrated with respect to E from 0 to E to obtain
Eq. (4.27). The integration constant δη|E=0 is zero because
condition (iv) of Eq. (4.23) ensures that the values ηE|E=0 = 0
and ηE|E=0+ = π/2 for the cases m = 1 and m = −1 are not
changed by δv(z).

Note that the above analysis can be extended to all complex
k in the upper half plane. In particular, Eq. (B10) holds for all
complex k with 0 < arg k < π .

APPENDIX C: SEMICLASSICAL EXPANSIONS

1. Half-line case

Here we use semiclassical expansions to gain information
about the asymptotic k → ∞ behaviors of the Jost solution,
the regular solution, and the Jost function of the Schrödinger
problem on the half-line specified in Theorem 1.

Following a standard procedure (described on pages 35ff
of [103]), we make the ansätze

f (z,k) = eikz+iY(z,k),
(C1)

ϕ(z,k) = A(k) eikz+iY(z,k) + c.c.,

for the Jost and regular solutions, where “c.c.” means complex
conjugate. They lead to a Riccati equation for i∂zY(z,k),
namely,

2k∂zY(z,k) + [∂zY(z,k)]2 − i∂2
zY(z,k) + v(z) = 0. (C2)
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The function Y(z,k) has for k → ∞ the asymptotic expansion

Y(z,k) =
∞∑
j=1

Yj (z)k−j . (C3)

The coefficients Yj (z) follow from the equations that result
upon iteration of Eq. (C2). For Y1 and Y2 one finds the dif-
ferential equations Y ′

1(z) = −v(z)/2 and Y ′
2(z) = iY ′′

1 (z)/2,
respectively. Solving these with the boundary conditions
Y1(∞) = Y2(∞) = 0 gives

Y1(z) = 1

2

∫ ∞

z
dsv(s), (C4)

Y2(z) = − i v(z)

4
. (C5)

The large-k expansion (C3) holds in the regime z � 1/k,
but cannot be used in the narrow boundary layer 0 < z � 1/k.
For the latter, we give an alternative large-k expansion below.
Before we turn to it, let us first investigate the behavior of
Y1(z) for z � 1.

Owing to the singular near-boundary behavior of the
potential [see Eqs. (6.1) and (6.2)], divergences linear in 1/z
and logarithmic divergences appear in the asymptotic form of
Y1(z) for z → 0. To uncover these divergences, we add and
subtract appropriate contributions to Y1(z), rewriting it as

Y1(z) = α

2
− 1

2

∫ z

0
dζ

[
v(ζ ) + 1

4ζ 2
− v−1

ζ

]

− 1

8z
− v−1

2
ln z

= −1

8z
− 1

2
v−1 ln z + α

2
− v0z

2
+O(z2), (C6)

with

α =
∫ ∞

0
dz

[
v(z) + 1

4z2
− v−1

z
θ (1−z)

]
. (C7)

We thus arrive at a two-parameter asymptotic expansion,

ln f (z,k) = ikz − i

2k

[
1

4z
+ v−1 ln z − α + v0 z +O(z2)

]

− 1

4k2

[
1

4z2
− v−1

z
− v0 +O(z)

]
+O(k−3),

(C8)

which holds for k → ∞ with 1/k � z � 1.
In order to develop an alternative large-k expansion that

holds in the near-surface regime, we express the regular
solution in terms of the variable ς = zk, defining

ϕ̃(ς,k) =
√

kϕ(ς/k,k), (C9)

and expand v(ς/k) in inverse powers of k. We thus arrive at
the differential equation[

−∂2
ς − 1

4ς2
− 1 + v−1

ςk
+ v0

k2
+O(k−3)

]
ϕ̃(ς,k) = 0,

(C10)

which is to be solved subject to the boundary condition

ϕ̃(ς → 0,k) = √
ς [1 +O(ς )].

By analogy with Eq. (6.7), the solution is again given by a
WhittakerM function; one has

ϕ̃(ς,k) = exp(iπ/4)√
2rk

M−iμk,0(−2irkς )[1 +O(k−3)], (C11)

with

rk =
√

1 − v0/k2 (C12)

and

μk = v−1

2krk
. (C13)

Using the asymptotic expansion of the Whittaker M
function given in Eq. (13.19.2) of [84] yields

ϕ̃(ς,k) = 1√
2π
eW̃ (ς,k) + c.c., (C14)

where W̃ (ς,k) behaves as

W̃ (ς,k) = − ln rk
2

− ln
�
[

1
2 − iμk

]
�(1/2)

− iμk ln ς + iς

2

− iπ
4

+ πμk

2
− 1

4
(1 + i 2μk)

2

×
[
i

ς
+ (1 + iμk) 1

ς2
+O(

ς−3
)]

(C15)

for 2rkς � 1. The result can be expanded in inverse powers
of k. This gives

W̃ (ς,k) = iς − iπ

4
− i

8ς
− 1

16ς2
+O(

ς−3
)

+ v−1

k

[
π

4
− iγE

2
− i ln(8ς )

2
+ 1

4ς
− 5i

32ς2

+O(
ς−3

)] + 1

k2

[
− iv0

2
ς + v0

4
+ π2v2

−1

16

+ i

16ς

(
2v2

−1 − v0
) + 1

ς2

(
1

8
v2

−1 − v0

16

)

+O(
ς−3)] +O(k−3). (C16)

Returning to the variable z = ςk and the function ϕ(z,k), we
arrive at the result

ϕ(z,k) = 1√
πk/2

Re eW (z,k), (C17)

with

W (z,k) ≡ W̃ (zk,k)

= ikz − iπ

4
+ 1

k

{−i
8z

− v−1

[
iγE

2
− π

4
+ i ln(8zk)

2

]

− izv0

2

}
+ 1

4k2

{−1

4z2
+ v−1

z
+ v0 + π2v2

−1

4

}

+O(k−3 ln k). (C18)

In the regime 1/k � z � 1 (i.e., 1 � ς � k) both this
expansion as well as the one implied by Eqs. (C8) and (C1) for
the regular solution hold. Hence, we can match them using
Eq. (4.11). Upon substituting our result (C8) for the Jost
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solution into this equation and equating it to Eq. (C17) with
W (z,k) given by Eq. (C18), one can determine the functions
F (k) and σ (k) and the phase shift η(k) in a straightforward
fashion. One obtains

F (k) =
√

2k
π

exp

{
− iπ

4
+ iv−1

2k
[γE + ln(8k)]

+ iα

2k
+ v−1π

4k
+ v2

−1π
2

16k2
+O(

k−3
)}
, (C19)

σ (k) = 1

2
ln(2k/π ) + v−1π

4k
+ v2

−1π
2

16k2
+O(

k−3
)
, (C20)

η(k) = π

4
− α

2k
− v−1

2k
[γE + ln(8k)] +O(

k−3
)
, (C21)

and

e−2σ (k) = π

2k
− π2v−1

4k2
+O(

k−4
)
. (C22)

In the m = −1 case, where σ (k) = σ−(k) and v−1 = v−
−1, the

last equation becomes Eq. (4.62).

2. The finite interval case

An analogous calculation can be made for the singular
Sturm-Liouville problem,

−∂2
zϕ(z,kν) + v(z)ϕ(z,kν) = k2

ν ϕ(z,kν), ν ∈ N,

on the finite interval 0 < z < |m|L with an even potential
v(z) = v(L|m|−z) that has a Laurent expansion of the form

v(z) = − 1

4z2
+ v−1

z
+ v0 + · · · ,

near the boundary plane z = 0. The usual boundary conditions
for the eigenfunctions ϕ(z,kν) are implied:

ϕ(z,kν)

=
{√

z [1 +O(z)] for z → 0,

(−1)ν+1√L|m|−z [1 +O(L|m|−z)] for z → L|m|.
(C23)

While the result (C5) for Y2(z) remains valid except that z
now is restricted to [0,L|m|], the analog of Eqs. (C4) and (C6)
becomes

Y1(z) = 1

2

∫ L|m|/2

z
dzv(z)

= L|m|
4
vns + 1

4L|m| − 1

8z
− v−1

2
ln

2z
L|m| − v0z

2

+O(
z2

)
, (C24)

where

vns = 2

L|m|
∫ L|m|/2

0
dz

[
v(z) + 1

4z2
− v−1

z

]
.

Instead of Eq. (C8), we now have

ln f (z,k) = ikz + iL|m|
4k

vns − i

2k

[
1

4z
− 1

2L|m|

+ v−1 ln
2z
L|m| + v0z +O(

z2
)]

− 1

4k2

[
1

4z2
− v−1

z
− v0 +O(z)

]
+O(

k−3
)

(C25)

for the logarithm of the Jost solution.
Proceeding as in the previous section, one finds that the

result for the regular solution in the region 1/k � z � L|m|/2
can be written as

ϕ(z,k) =
√

2

πk
exp[P (z,k)] cos[Q(z,k)], (C26)

with

P (z,k) = v(z)

4k2
+ πv−1

4k
+ π2v2

−1

16k2
+O(

k−3
)
, (C27)

Q(z,k) = kz − π

4
− 1

4k

(
1

L|m| + L|m| vns

)

− v−1

2k
[γE + ln(4kL|m|)]

+ 1

2k

∫ L|m|/2

z
dζv(ζ ) +O(

k−3 ln k
)
. (C28)

The discrete values of kν corresponding to the eigenenergies
εν = k2

ν follow from the Neumann and Dirichlet boundary
conditions that hold at the midplane z = L|m|/2 for odd
and even values of ν = 1,2, . . . ,∞, respectively. Noting that
v′(L|m|/2) = 0, one concludes that the kν for all ν ∈ N are
given by the solutions to the equation

Q(L|m|/2,kν) = π (ν − 1)/2. (C29)

Solving this in an iterative manner yields

kν = k̊ν + 1

2k̊ν

{
1

(L|m|)2
+ vns + 2v−1

L|m| [ln(k̊νL|m|)

+ γE + ln 4]

}
+O(

k̊−3
ν ln k̊ν

)
, (C30)

where k̊ν = π (ν − 1/2)/(L|m|).

APPENDIX D: ASYMPTOTIC BEHAVIOR OF χ (ω)

In order to derive the asymptotic large-ω behavior of
χ (ω) asserted in Eq. (7.45), we use again the semiclassical
expansion, proceeding along lines analogous to those followed
in Appendix C. Since we are now dealing with the case of
negative energy E, we write q ≡ √−E and make the ansatz

ϕl(z,q) = Aqe
qz+Z(z,q) (D1)

for the left regular solution, analogous to Eq. (C1). The implied
Riccati equation for ∂zZ(z,q) becomes

−2q∂zZ(z,q) − [∂zZ(z,q)]2 − ∂2
zZ(z,q) + v(z) = 0. (D2)
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We expand Z(z,q) in inverse powers of q and separate the
contributions from even and odd powers, writing

Z(z,q) = Zo(z,q) + Ze(z,q), (D3)

with

Zo(z,q) =
∞∑
j=0

b2j+1(z) q−(2j+1),

(D4)

Ze(z,q) =
∞∑
j=1

b2j (z) q
−2j .

For the two lowest-order coefficients one finds

b1(z) = −1

2

∫ L/2

z

dz′v(z′) (D5)

and

b2(z) = −v(z)/4. (D6)

The function Ze(z,q) must satisfy the equation

2∂zZe(z,q)[q + ∂zZo(z,q)] = −∂2
zZo(z,q). (D7)

This can be integrated in a straightforward fashion to obtain

Ze(z,q) = − 1
2 ln[1 + ∂zZo(z,q)/q], (D8)

where the integration constant has been chosen such that
the consistency of the result with the expansions (D4) and
Eqs. (D5) and (D6) is ensured.

Inserting Eq. (D8) into Eq. (D3) and the resulting expression
in turn into the ansatz (D1) then gives

ϕl(z,q) = Aq q
1/2[q + ∂zZo(z,q)]−1/2 eqz+Zo(z,q). (D9)

To determine the consequences for the functions�(E = −q2)
and χ (q2), we use Eq. (7.43), taking into account that
Z1(L/2,q) and ∂2

zZ1(z,q)|z=L/2 vanish since Z1(z,q) is an
odd function with respect to reflections about the midpoint
L/2, i.e., Z1(z,q) = −Z1(L− z,q). We thus arrive at

�(E) = 2qA2
q e

qL|E=−q2 , (D10)

χ (q2) = −qL− ln
[
2πqA2

q

]
. (D11)

Hence, the problem is reduced to the calculation of the large-
q asymptotics of the amplitude Aq , which is fixed by the
boundary condition (7.35) at z = 0 for the left regular solution
ϕl .

As before, the above semiclassical expansion cannot be
used in the near-boundary region with 0 < z � 1/q because
of the singularity of the potential at z = 0. By analogy with
the analysis in Appendix C, the remedy is to go over to the
rescaled variable ς = zq, to introduce

ϕ̃l(ς,q) = √
q ϕl(z,q), (D12)

expand v(ς/q) in inverse powers of q, and solve the resulting
differential equation[

−∂2
ς − 1

4ς2
+1+ 4m

π2qς
+ v0m

2

q2
+O(

q−3
)]
ϕ̃l(ς,q) = 0,

(D13)

subject to the boundary condition

ϕ̃l(ς,q) =
ς→0

√
ς [1 +O(ς )]. (D14)

The solution is

ϕ̃l(ς,q) = 2−1/2M−2mπ−2κ−1
q ,0(2ςκq/q)

[
1 +O(

q−3)],
(D15)

with

κq =
√
q2 + v0m2. (D16)

Using the asymptotic expansion (Eq. 13.9.1 of [84])

Mκ,0(x) �
x→∞

e−xx−κ

�(1/2 − κ)

∞∑
j=0

(1/2 − κ)j (1/2 + κ)j
j ! xj

(D17)

of the Whittaker function, where (a)j is the Pochhammer
symbol introduced in Eq. (A6), and expanding subsequently
κ = −2mπ−2/κq in powers of 1/q, one is led to the following
two-parameter expansion for large ς and q:

ln[ϕ̃l(ς,q)] = −1

2
ln(2π ) + ς + 1

8ς
+ 1

16ς2
+O(

ς−3
)

+ 2m

π2q

[
ln(2ς ) + γE + ln 4 − 1

2ς
+O(

ς−2
)]

+ 1

q2

[
v0m

2(2ς − 1)

4
− m2

π2
+O(1/ς )

]

+O(
q−3

)
. (D18)

In the crossover regime 1/q � z � 1 both Eq. (D18) and
the original semiclassical expansion are valid. In this regime,
the coefficient b1(z) is given by

b1(z) = 1

8z
− 1

4L
+ 2m

π2
ln(2z/L) − 1

2

∫ L/2

0
dz′vns(z′)

+ 1

2

∫ z

0
dz′vns(z′)

= v0m
2z

2
− 1

2

∫ L/2

0
dz′vns(z′) + 1

8z
− 1

4L

+ 2m

π2
ln(2z/L) +O(

z2
)
. (D19)

Upon substituting this small-z expansion along with that of
b2(z) into Eq. (D18), we arrive at the expansion

ln[ϕl(ς/q,q)]

= ln
[
q−1/2ϕ̃l(ς,q)

]
= ln(Aq) +

[
ς + 1

8ς
+ 1

16ς2
+O(

ς−3
)]

+ 1

2q

[
− 1

2L
− 2m

π2ς
+ 4m

π2
ln

2ς

qL
−

∫ L/2

0
dz′vns(z′)

+O(
ς−2

)] + 1

q2

[
v0m

2(2ς − 1)

4
+O(

ς−1
)]+O(

q−3
)

(D20)
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in the crossover regime. This can be matched with the two-
parameter expansion (D18) to conclude that

lnAq = − 1

2
ln(2πq) + 1

4q

{
LR([v∗];L,m) + 8m

π2
ln(qL)

}

− m2

π2q2
+O(

q−3), (D21)

where R([v∗];L,m) is given by Eq. (7.46). Substitution of this
result into Eq. (D11) finally yields the asymptotic form stated
in Eq. (7.45).

APPENDIX E: CALCULATION OF fs(m; μ)

In this appendix we compute the surface free energy
fs(m;μ) from the free-energy functional (7.50). We begin
by computing the contribution F (1)([v∗];L,m) defined in
Eq. (7.50b). Upon adding and subtracting to the nonsingular
part vns

∗ of the self-consistent potential v∗ the bulk potential
vb(m) = m2θ (m) and inserting u0∗(L,m) = v0m

2, we arrive
at

F (1)([v∗];L,m) = mL

8π
vb(m) + m2

π3
(γE + ln 4)

+ mL

8π
vns∗ − vb + v0m

2

8π
+O(1/L). (E1)

The integral Lvns∗ − vb can be decomposed as

Lvns∗ − vb = 2|m|α± − 2|m|
∫ |m|L/2

1
dz

4sgn(m)

π2z

− 2|m|
∫ ∞

|m|L/2
dz

{
v[z; ∞,sgn(m)]

− vb[sgn(m)] + 1

4z2

}
+O(1/L). (E2)

In the second integral, we can replace v[z; ∞,sgn(m)] −
vb(sgnm) with the limiting forms ∼e−2z and −(2z3)−1 form >
0 and m < 0, respectively, to see that it yields contributions
∼e−mL/2 and ∼L−2. Dropping these, we arrive at

Lvns∗ − vb = 2|m|[α± ∓ 4π−2 ln(|m|L/2)] +O(1/L),

(E3)

which upon addition of the remaining contributions to
F (1)([v∗];L,m) and insertion of our results for α± given in
Eqs. (6.20) and (6.21) yields

F (1)([v∗];L,m) = θ (m)m2

[
L
m

8π
+ 4�A(s)

0

]
+ v0m

2

8π

+ m2

π3

[
1 − ln

2L|m|
π

]
+O(1/L).

(E4)

Turning to the calculation of F (2)
μ ([v∗];L,m), we first

consider the case m < 0. In this case one has vb = 0, together
with the relation

LR∗(L,m) = 8m

π2

(
1 − ln

2|m|L
π

)
+O(1/L), (E5)

following directly from the above analysis. After substitution
of (E5) into (7.50c) and transformation of the integration
variable ω = m2y, one obtains

F (2)
μ ([v∗];L,m) = −m2

8π

∫ ∞

0
dyI (y;mL)

− m2

2π3
ln
μ

|m| +O(1/L), (E6)

where

I (y; x) = χ (y;L = |x|,m = −1) + |x|√y

− 4

π2√y
(

1 + ln
π

√
y

2

)
− 2

π2(y + 1)
. (E7)

To obtain the contribution of χ (y; |x|,−1) = χ (ω;L,m)
to I (y; x), we have set L = ∞ in the regular solution
ϕ(z|m|,k/|m|;L,−1) and used its relation

ϕ(z,k; ∞,−1) =
z�1

F−(k = i
√
y)

2
√
y

ez
√
y[1 +O(1/z)] (E8)

to the Jost function for large z, obtaining

χ (y; |x|,−1) =
x→−∞ −|x|√y + ln(2

√
y/π )

− 2 lnF−(i
√
y) + o(|x|0). (E9)

To compute the integral over I (y; x) in Eq. (E6), one can
integrate by parts, using the fact that the boundary terms vanish
since I (y; x) = O(y−3/2 ln y) for y → ∞. For the required
derivative of the analytically continued logarithm of the Jost
function one finds

d lnF (i
√
y)

dy
= 1

2y
+ 1

2(4 + π2y)

[
ln(π2y/4)√

y
− π2

2

]
.

(E10)

Substituting this, one can compute the integral in a
straightforward manner using Mathematica [82]. One obtains∫ ∞

0
dy I (y; x) = −

∫ ∞

0
dy y

∂

∂y
I (y; x)

= 2π−2[1 − 2 ln(2/π )], (E11)

which yields

F (2)
μ ([v∗];L,m) = m2

4π3

(
−1 + 2 ln

2|m|
πμ

)
+O(1/L).

(E12)
The right-hand sides of Eqs. (E4) and (E12) can now be

added and inserted into Eq. (7.50a) to arrive at

fμ(L,m) ≡ Fμ([v∗];L,m) = 3m2

4π3
− m2

2π3
ln

2|m|L
π

+ m2v0

8π
− m2

2π3
ln(μL) +O(1/L). (E13)

As a consequence of Eq. (6.18), the result (E13) is identical
with Eq. (7.58) when m < 0.

At the end of Sec. VII B, we had announced a check of the
asymptotic behavior of the scaling function Y (x) for x → −∞
by an independent calculation. The foregoing result provides
such a check. It enables us to prove that the coefficient C1 has
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the analytic value given in Eq. (7.63). In fact, straightforward
differentiation of Eq. (E13) gives

∂fμ(L,m)

∂m
= m

π3
− m

π3
ln

2|m|L
π

+mv0

4π
−m ln(μL)

π3
+O(1/L)

= LR([v∗];L,m)

8π
+mv0

4π
−m ln(μL)

π3
+O(1/L),

(E14)

where the second equality follows via Eq. (E5). Setting μ = 1
in the latter and comparing it with Eq. (7.62) yields the analytic
value of C1 given in Eq. (7.63).

To obtain the result (7.58) for m > 0, one must simply add
the bulk contribution ∝m3 θ (m) along with the term m2θ (m)
involving the universal amplitude difference. Note that this
m > 0 result means that the scaling function Y (x) for x > 0
can be written as

Y (x > 0) = x3

24π
+

[
7ζ (3)

π5
+ 3 − 2 ln(2x/π )

4π3
+ J+

8π

]
x2

+�(x), (E15)

where �(x) vanishes ∼e−2x for x → ∞ [cf. Eq. (7.66)].
We checked that the two terms in the first line of Eq. (E15)

can be derived directly from the free-energy functional (7.50b)
by showing that Y (x) agrees asymptotically for x → +∞
with these terms to O(x). In this calculation, we used the
representation of the logarithm lnF+(k) of the Jost function
given in Eq. (4.55). As a by-product, we obtained the following
alternative representation of the integral defined in Eq. (4.51):

J+ = −4 ln(π/2)

π2
+

∫ ∞

0

dt

π

1

1 + t
[

1

arctan
√
t

− 2

π

]
.

(E16)

We also verified by numerical integrations that the integrals
on the right-hand side of this equation and in the original
definition (4.51) yield the same values up to an error �10−22,
even though we did not work out an analytical proof of their
equality.

APPENDIX F: DERIVATION OF THE RELATION (7.62)

To prove the relation (7.62) from which Eq. (7.61) follows
by means of Eq. (7.54), we set μ = L = 1 and m = x and
consider the derivative d/dx of the free-energy functional
F1([v∗]; 1,x),

F1([v∗]; 1,x) = xR([v∗]; 1,x)

8π
+ u0

8π

−
∫ ∞

0

dω

8π

[
χ∗(ω; 1,x) + √

ω + 2x lnω

π2
√
ω

+R([v∗]; 1,x)

2
√
ω

− 2x2

π2(1 + ω)

]
. (F1)

The latter has an explicit dependence on x and an implicit
one through the x dependence of the maximizing potential

v∗(z) ≡ v∗(z; 1,x). Hence,

d

dx
F1([v∗]; 1,x) = 2

∫ 1/2

0
dz
δF1([v∗]; 1,x)

δv∗(z)

∂v∗(z; 1,x)

∂x

+ ∂F1([v∗]; 1,x)

∂x
. (F2)

Since [∂vns
∗ /∂x]dx is a variation δv that does not modify the

singular part of v∗ and we have shown that δF1([v∗]; 1,x) = 0
for such variations, the nonsingular part vns

∗ of v∗ does not
contribute to the first term on the right-hand side. The only
contribution to this term originates from the x-dependent
singular part 4xπ−2z−1 of v∗. Moreover, we can decompose
this part into a sum of a component that is singular at
z = 0, namely, 4xπ−2z−1θ (z0 − z), and the nonsingular one
4xπ−2z−1θ (z− z0), where z0 ∈ (0,1/2) can be taken to be
arbitrarily small. Since the latter corresponds to the derivative
of a nonsingular variation δv, it also does not contribute
to the first term on the right-hand side of Eq. (F2). This
decomposition of the term ∝ z−1 of v must be consistently
made also in other v-dependent terms such as R([v∗]; 1,x) to
determine those of their contributions to dF1([v∗]; 1,x)/dx
that must be kept. In the case of R([v∗]; 1,x), we may
replace v∗ with 4xπ−2z−1θ (z0 − z). In conjunction with the
subtracted 1/z term in vns

∗ , a contribution 4xπ−2z−1θ (z− z0)
results whose implied contribution to dR([v∗]; 1,x)/dx must
be retained. One thus obtains

d

dx
F1([v∗]; 1,x) = R∗

8π
+ x(γE + ln 4)

π3

− x

π3

∫ 1/2

z0

dz

z
− 1

8π
lim
&→∞

I&, (F3)

where R∗ ≡ R([v∗]; 1,x), while I& denotes the integral

I& =
∫ &

0
dω

{∫ z0

0
dz

[
δχ∗
δv∗(z)

8

π2z

]

+ 4

π2
√
ω

(
γE + ln 4 −

∫ 1/2

z0

dz

z

)
+ 2 lnω

π2
√
ω

− 4x

π2(1 + ω)

}
, (F4)

with χ∗ ≡ χ ([v∗];ω). From Eqs. (7.38) and (7.40) one sees
that the functional derivative δχ∗/δv∗(z) yields the Green’s
function G(z,z; −ω), i.e.,

δχ∗
δv∗(z)

= G(z,z; −ω; 1,x) = −〈z|(ω + Hv∗ )−1|z〉. (F5)

Since z0 is arbitrarily small, we need the behavior of this
function asymptotically close to the boundary plane z = 0.
For such values of z, we can safely replace the Green’s func-
tion G(z,z; −ω; 1,x) with its semi-infinite (L = ∞) analog
G(z,z; −ω; ∞,x) and omit o(z) contributions to v∗. This gives

δχ∗
δv∗(z)

�
z�1

−〈z|(ω + Hv
sg
∗ +v0x2

)−1|z〉L=∞

= −ϕ(z,p,�)μ(z,p,�), (F6)

where p =
√
ω + v0x2, � = 4x/π2, and ϕ(z,p,�) and

μ(z,p,�) denote the two linearly independent solutions of

062114-37



SERGEI B. RUTKEVICH AND H. W. DIEHL PHYSICAL REVIEW E 91, 062114 (2015)

the differential equation

−∂2
z ψ(z) +

(
− 1

4z2
+ �

z
+ p2

)
ψ(z) = 0 (F7)

on the half-line 0 < z < ∞ that are fixed by the boundary
conditions

ϕ(z → 0 + ,p,�) = √
z [1 +O(z)],

μ(z → 0 + ,p,�) = −√
z [ln z+O(1)], (F8)

μ(z → ∞,p,�) → 0.

Explicitly, these two solutions read

ϕ(z,p,�) = 1√
2p
M−�/(2p),0(2pz), (F9)

μ(z,p,�) =
�
(

1
2 + �

2p

)
√

2p
W−�/(2p),0(2pz), (F10)

where Mκ,ν(x) and Wκ,ν(x) denote Whittaker functions
[83–85]. We expand these solutions at fixed pz to the first
order in �z,

ϕ(z,p,�) = √
z [I0(pz) + �z h1(pz) +O(�2z2)],

(F11)
μ(z,p,�) = √

z [K0(pz) + �z h2(pz) +O(�2z2)],

and introduce the two functions

h1(z) = −(2z)−3/2∂κMκ,0(2z)|κ=0 (F12)

and

h2(z) = −K0(z)
γE + ln 4

2z
− (2z)−3/2√π ∂κWκ,0(2z)

∣∣∣∣
κ=0

.

(F13)

Substitution of the expansions (F11) into (F6) then yields

δχ∗
δv∗(z)

�
z�1

−zI0(pz)K0(pz) − 4x

π2
z2[K0(pz)h1(pz)

+ I0(pz)h2(pz)] + · · · . (F14)

We can now compute the contribution of the first term on the
right-hand side of Eq. (F14) to the first term on the right-hand
side of Eq. (F4) for & → ∞ and small z0 > 0:

− 8

π2

∫ &

0
dω

∫ z0

0

dz

z
zI0(pz)K0(pz)

= 8

π2
&1/2

[
1 − γE − ln(8z0) − 1

2
ln&

]
+O(

&−1/2)

= −
∫ &

0
dω

[
4

π2
√
ω

(
γE + ln 4 −

∫ 1/2

z0

dz

z

)
+ 2 lnω

π2
√
ω

]

+O(
&−1/2

)
. (F15)

The result shows that this contribution is canceled by the sum
of terms in the second line of Eq. (F4). It follows that

lim
&→∞

I& = −4x

π2
lim
&→∞

∫ &

0
dω

{
1

1 + ω

+ 8

π2

∫ z0

0
dz z[K0(pz)h1(pz) + I0(pz)h2(pz)]

}

= −4x

π2
lim
&→∞

{∫ z0
√
&

0
du

16u

π2
[K0(u)h1(u)

+ I0(u)h2(u)] ln
(
z0

√
&/u

) + ln&

}
+O(z0).

(F16)

One of the required integrals can be computed exactly,
namely,∫ ∞

0
du u[K0(u)h1(u) + I0(u)h2(u)] = −π

2

8
. (F17)

One way to obtain this result is to express the integral in terms
of the hypergeometric function 2F3 and the MeijerG function
G

4,0
2,4, thereby showing that it agrees with the negative of the

integrand of the integral denoted H3(0) in Ref. [38], whose
value π2/8 was computed there.

Inserting the above results into Eq. (F3) finally yields the
desired relation (7.62) with C1 given by Eq. (7.64).

APPENDIX G: ASYMPTOTIC BEHAVIOR OF F (2)
1 ([v]∗; 1,x)

FOR x → −∞ AND COMPUTATION OF d1

The results for the free-energy functional F1([v]∗; 1,x)
derived in Sec. VII B and Appendix E yield the contributions
to the scaling function Y (x) that do not vanish as |x| → ∞.
Upon exploiting the relationship of F (1)([v∗]; 1,x) to Y ′(x)
along with the asymptotic x → −∞ form (7.71), we have also
been able to obtain the asymptotic behavior of F (1)([v∗]; 1,x)
for x → −∞ to order 1/|x|, expressed in terms of the still
unknown coefficient d1. What remains to be done is the
calculation of F (2)

1 ([v∗]; 1,x) for x → −∞ to O(1/|x|).
The contributions of order |x|−1ln|x| and 1/|x| arise from

two sources. First, the self-consistent potential v∗(z; |x|,−1)
differs from the asymptotic one v∗(z; ∞,−1) by a distant-wall
correction. As becomes clear below, the latter affects the Jost
function in a nontrivial fashion. Second, the limiting x → −∞
form given in Eq. (E9) cannot be used for values y � |x|−1

because contributions from the second Jost solution ∼e−z
√
y

are not negligible.
In order to separate these two types of corrections, we split

the integral
∫ ∞

0 dω on the right-hand side of Eq. (7.50c) as∫ &
0 dω + ∫ ∞

&
dω, where & is an arbitrary number such that

1 � x2(2π/b̃)2 � & � x2. (G1)

Thus, F (2)
1 ([v∗]; 1,x) becomes

F (2)
1 ([v∗]; 1,x) = J<,1(x;&) + J<,2(x;&) + J>(x;&),

(G2)
where the first two integrals are given by

J<,1(x;&) = −
∫ &

0

dω

8π

[
χ (ω; 1,x) + √

ω
]

(G3)

and

J<,2(x;&) = −
∫ &

0

dω

8π

[R∗(1,x)

2
√
ω

+ 2x lnω

π2
√
ω

− 2x2

π2(1 + ω)

]
,

(G4)
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respectively. The third integral, J>(x;&), stands for
− ∫ ∞

&
dω
8π · · · of the sum of the integrands of J<,1(x;&) and

J<,2(x;&).
The calculation of J<,2 to the required order is easy. Using

Eq. (7.72), one can conclude that it is sufficient to substitute
the contributions ∼|x| for R∗(1,x) since the remaining terms
yield contributions of order O(x−2ln|x|). The integration can
be done in a straightforward fashion, giving

J<,2(x;&) = x2

4π3
ln(1 +&) + |x|√&

π3
ln
π

√
&

2|x|
+O(x−2ln|x|). (G5)

We next turn to the calculation of J<,1(x;&). To determine
its x → −∞ asymptotics, we need the regular solution
ϕ(z,k; 1,x) of the differential equation[−∂2

z + v(z; 1,x) + ω]ϕ(z,k; 1,x) = 0, ω = k2, (G6)

in both the inner region b̃/|x| � z < 1/2 and the boundary
region 0 < z � b̃/|x| (cf. Sec. VII A).

In the inner region, v∗ is small ∼1/|x| and, according to
Eq. (7.16), can be written as

v∗(z; 1,x) = w′′′(z)
4|x| +O(|x|−2), (G7)

where w(z) is defined as

w(z) ≡ ln�(z) − ln�(1 − z) − ψ(1/2) (2z−1). (G8)

We treat v∗ as a perturbation and subtract from the integrand
of the resulting integral its Taylor expansion to O(z′2) about
z′ = 0 to ensure its convergence at the lower integration limit
z′ = 0. We thus obtain

ϕ(z,k; 1,x) = cosh(zk)

|x|1/2 + 1

4|x|3/2
{∫ z

1/2
dz′w′′′(z′)P2(z′,z,k)

+
∫ z

0
dz′w′′′(z′)

[
sin[(z − z′)k] cosh(z′k)

k

− P2(z′,z,k)
]

+ 4A1 cosh(zk) + 4B1 sinh(zk)

}

+ o(|x|−3/2), (G9)

with

P2(z′,z,k) = k−1 sinh(zk) − z′ cosh(zk) + k z′2 sinh(zk),

(G10)

where the coefficients A1 and B1 still need to be determined.
Before doing this, we first integrate by parts to rewrite

Eq. (G9) as

ϕ(z,k; 1,x)

= cosh(zk)

|x|1/2 + 1

4|x|3/2
{
w′(z) cosh(zk) − 2w(z) sinh(zk)k

+ 4ω
∫ z

0
dz′w(z′) cosh[(z − 2z′)k] + 4A1 cosh(zk)

+ 4B1 sinh(zk)

}
+ o(|x|−3/2). (G11)

This can be inserted into Eq. (7.43) to compute �(−ω; 1,x).
From the latter, χ (ω; 1,x) follows via Eq. (7.39). We thus
arrive at

χ (k2; 1,x)

= −k − ln
πk

2|x| − ln(1 − e−2k) − 2
A1 + B1 coth k

|x|

− 2k2

|x|
∫ 1/2

0
dz′w(z′)

[
e−2z′k + (1 − coth k) sinh(2z′k)

]
+O(|x|−2). (G12)

In order to determine A1 and B1, we compute the regular
solution in the boundary region and match the result with the
one for the inner region given in Eq. (G11) at the matching
point (mp) zmp = b̃/|x|. For z ≈ zmp � 1, Eq. (G11) simplifies
to

|x|1/2ϕ(z,k; 1,x) = 1 + k2z2

2
− 1

4|x|z + A1 + ln 2

|x|

+ zk

|x|
{
B1 + k

2

[
7

4
− γE − ln(4z)

]}

+ z2

2|x| [(A1 + ln 2)k2 − ζ (3)]

+O(z3) +O(x−2). (G13)

In the boundary region, the potential v∗ cannot be treated
by perturbation theory. To determine the regular solution in
this region, we use the scaling properties v∗(z; |x|,−1) =
v∗(z; 1,x)/x2 and

ϕ(z,k = k/|x|; |x|,−1) =
√

|x|ϕ(z,k; 1,x), (G14)

where z = |x|z, to draw from Eqs. (7.17), (3.37), and (G7) the
following conclusions.

(1) The potential v∗(z; |x|,−1) can be expanded about x =
−∞ as

v∗(z; |x|,−1) = v∗(z; ∞,−1) + u3(z)

|x|3 +O(|x|−4), (G15)

where u3(z) behaves asymptotically as

u3(0) =
z→0

0, (G16)

u3(z) =
z→∞ −ζ (3) − β2 z−1 +O(1/z2), (G17)

by consistency with Eqs. (3.36) and (3.37).
Since this remains to be proven, we do not make use of it here,
taking β2 to be an unknown number.

(2) The function ϕ(z,k; |x|,−1) is the solution to[−∂2
z + v∗(z; ∞,−1)

]
ϕ(z,k; |x|,−1)

= −
[
k2 + u3(z)

|x|3 +O(x−4)

]
ϕ(z,k; |x|,−1) (G18)

subject to the boundary condition (6.3).
The contributions to the potential describing the deviation

from v∗(z; ∞,−1), which are given on the right-hand side,
can be treated perturbatively because k2 = O(x−2). The term
u3(z)/|x|3 can be replaced by its value at z = ∞, namely,
−ζ (3)/|x|3. The reason is that the difference u3(z) − u3(∞)
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should be expandable in inverse powers of |x| (modulo
eventual logarithms) and hence vary for z → ∞ as z−κ with
κ � 1. In fact, κ is exactly unity since we show below that the
potential coefficient β2 is given by Eq. (3.38) and hence does
not vanish.

Once u3(z) has been replaced by its limiting value, it can be
absorbed by introducing the shifted wave number kx through

k2
x ≡ k2 − ζ (3)/|x|3. (G19)

To determine the coefficients A1 and B1, we match the
perturbative result for ϕ(z,k; |x|,−1) obtained from Eq. (G18)
at the right edge of the boundary region, namely for z = |x|z ≈
b̃ � 1, with the result given in Eq. (G13). For such values of z
the term ∝ u3(z) is smaller than the second one by a factor of
b̃−κ . It does not contribute at the order of the terms involving
the coefficients A1 and B1, vanishes in the limit b̃ → ∞, and
hence may be ignored here.

The associated perturbative solution of Eq. (G18) can be
read off from previous ones derived in Sec. VI C. Noting
that the quantity k2 in Eq. (6.30) corresponds here to
k2 − ζ (3)|x|−3, we can conclude from Eqs. (6.25) and (6.35)
that the regular solution at z = |x|z ≈ b̃ � 1 can be written as

ϕ(z,k; |x|,−1) ≈ 1 − 1

4z
+

[
k2 − ζ (3)

|x|3
]

×
[

z2

2
+ z

2

(
3

4
− γE − ln

4z
π

)]
. (G20)

Matching this with Eq. (G13) at z = |x|z then shows that the
coefficients A1 and B1 are given by

A1 = − ln 2,
(G21)

B1 = − 1
2 [1 + ln(|x|/π )]

√
ω.

We can now insert Eq. (G12) into Eq. (G3). For those parts
of the integrand of the integral

∫ &
0 dω that are exponentially

decaying, such as the ones proportional to ln(1 − e−2
√
ω),

1 − coth
√
ω, and e−2

√
ω, we can safely replace the upper

integration limit with ∞. Using

− ζ (3) = 2
∫ ∞

0
dω ln(1 − e−2

√
ω)

=
∫ ∞

0
dω

√
ω(1 − coth

√
ω), (G22)

one arrives at

J<,1(x;&) = &

8π

(
− 1

2
+ ln

π
√
&

2|x|
)

− &3/2

12π |x|
(

1 + ln
|x|
π

)

− 1

4π |x|& ln 2 − ζ (3)

8π

[
1

2
+ 1 + ln(|x|/π )

|x|
]

+ J<,3(x;&) + J<,4(x) +O(x−2), (G23)

with

J<,3(x;&) = 1

4π |x|
∫ &

0
dωω

∫ 1/2

0
dzw(z) e−2z

√
ω

= 1

2π |x|
∫ 1/2

0
dzw(z)R(z;&) (G24)

and

J<,4(x) = 1

4π |x|
∫ 1/2

0
dzw(z)

∫ ∞

0
dω

×ω[1 − coth(
√
ω)] sinh(2z

√
ω) = − d1,1

8π |x| .

(G25)

Here

R(z;&) = 3 − e−2z&1/2
(3 + 6z&1/2 + 6z2&+ 4z3&3/2)

8z4

(G26)
and

d1,1 = 3

2

∫ 1/2

0
dzw(z)

[
z−4 − w(4)(z)/6

]
, (G27)

where w(z) denotes the function

w(z) ≡ ln�(z) − ln�(1 − z) − (2z−1)ψ(1/2), (G28)

which varies as

w(z) =
z→0

was(z) +O(z5), (G29)

with

was(z) ≡ −γE − ln(4z) + 4z ln 2 − 2
3 ζ (3) z3. (G30)

To further evaluate J<,3(x;&), we divide up w(z) into its
asymptotic contribution was(z) introduced in Eq. (G30) and a
remainder, writing

J<,3(x;&) = − 1

8π

[
J

(1)
<,3(x;&) + J (2)

<,3(x;&)
]
, (G31)

with

J
(1)
<,3(x;&) = − 4

|x|
∫ 1/2

0
dzwas(z)R(z;&) (G32)

and

J
(2)
<,3(x;&) = − 4

|x|
∫ 1/2

0
dz [w(z) − was(z)]R(z;&). (G33)

In the last integral, we can replace R(z;&) with its
asymptotic large-z form 3/(8z4) to obtain

J
(2)
<,3(x;&) = |x|−1

[
d1,2 +O(

&−1/2
)]
, (G34)

with

d1,2 = −3

2

∫ 1/2

0
dz z−4[w(z) − was(z)]. (G35)
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The large-& asymptotics of the remaining integral J (1)
<,3(x;&)

can be determined in a straightforward fashion. One finds

|x| J (1)
<,3(x;&)

= &3/2

[
2

9
+ 2

3
ln(2/

√
&)

]
− 2& ln 2

− 4

3
− 4γE + 8 ln 2 + ζ (3)

(
γE − 11

6
+ ln

√
&

)

+O(
&3/2e−

√
&
)
. (G36)

The combination of Eqs. (G23)–(G36) then yields

J<,1(x;&)

= − 1

8π

{
ζ (3)

2
+ &3/2

|x|
[

8

9
− 2

3
ln
π&1/2

2|x|
]

+&
[

1

2
− ln

π&1/2

2|x|
]
+ 1

|x|
[
d1,1+d1,2−4

3
− 4γE+8 ln 2

]

+ ζ (3)

|x|
[
γE − 5

6
+ ln

&1/2|x|
π

]}
+O(x−2ln|x|). (G37)

It remains to calculate the x → −∞ asymptotics of integral
J>(x;&) in Eq. (G2) to the order ∼|x|−1. Upon making a
change of variable ω → y = x−2ω, it becomes

J>(x;&) = −x2
∫ ∞

&/x2

dy

8π

[
χ (y; |x|,−1) + |x|√y

+ R∗(1,x)

2|x|√y − 2 ln(y x2)

π2√y − 2

π2(y + x−2)

]
,

(G38)

where R∗(1,x) can be read from Eq. (7.72). The integrand in
the square brackets is the (rescaled) analog of the one we en-
countered in Appendix E in our calculation of F (2)

1 ([v∗];L,m)
to o(L). There we could express the asymptotic from of
the function χ (ym2;L,m) for large L in terms of the Jost
function F (i

√
y) for the semi-infinite case L = ∞. Here we

must take into account the effects of the finite film thickness.
The differential equation from which the regular solution
ϕ(z,k; |x|,−1) is to be determined is Eq. (G18). Since we
need the value of the potential coefficient β2 introduced in
Eq. (G17), we begin by proving our result stated in Eq. (3.38).

To this end, we compute the contributions of R∗(1,x) pro-
portional to x−2 mod ln|x| directly from the definition (7.46)
of R([v∗]; 1,x) and match them with those in Eq. (7.72). These
terms originate from the contribution vns∗ . Setting L = 1 and
m = x, we therefore split the corresponding integral into a
sum of contributions from the boundary and inner region.
Making the change of integration variables z → z = |x|z in
the near-boundary integral, we arrive at

vns∗ = |x|
∫ b̃

0
dz

[
v∗(z; |x|,−1) + 1

4z2
+ 4

π2z

]

+
∫ 1/2

b̃/|x|
dz

[
v∗(z; 1,x) + 1

4z2
+ 4|x|
π2z

]
. (G39)

In the first integral, we insert the large-x expansion (G15)
of v∗(z; |x|,−1). For the potential in the second integral we

can substitute the corresponding expansion

v∗(z; 1,x) = t1(z)

|x| + t2(z)

|x|2 + · · · , (G40)

where

t1(z) = w′′′(z)
4

= ψ ′′(z) + ψ ′′(1 − z)

4
(G41)

for b̃/|x| � z < 1/2 according to Eqs. (7.16) and (G8).
Furthermore, consistency with Eqs. (3.36), (3.37), and (G17)
requires that

t2(z → 0) = −α2 z−4 − β2 z−1 +O(1). (G42)

The contributions linear in |x| or proportional to |x|ln|x| of
the first term in Eq. (G39) originate from the leading x = −∞
term of the integrand. Their b̃-dependent part is canceled by
analogous ones produced by the antiderivatives of the last two
terms of the second integral’s integrand at the lower integration
limit. All contributions linear in |x| and proportional to |x|ln|x|
must add up to produce the contribution to R∗(1,x) given in
the first line of Eq. (7.72). Since the latter equation is already
established, there is no need to check this contribution again.

The contributions to R∗(1,x) of order x−2 mod ln|x| arise
from the sum of the integrals

T1 = 2|x|−1
∫ 1/2

b̃/|x|
dz t1(z) = (2|x|)−1w′′(z)|1/2

b̃/|x|

= |x|
2b̃

+ 2b̃ ζ (3)

|x|2 +O(|x|−4),

T2 = 2|x|−2
∫ 1/2

b̃/|x|
dz t2(z),

T3 = 2|x|−2
∫ b̃

0
dzu3(z). (G43)

Assuming that b̃ > 1 and defining

L2(z) =
∫ 1/2

z

dz′
[
t2(z′) + α2

z′4 + β2

z′

]
,

L3(z) =
∫ z

0
dz′[u3(z′) + ζ (3) + β2 θ (z′−1)/z′], (G44)

we can rewrite T2 + T3 as

T2 + T3 = 2

|x|2
{
L3(b̃) + L2(b̃/|x|) − β2 ln

|x|
2

+ α2

3

(
8 − |x|3

b̃

)
− b̃ζ (3)

}
(G45)

by adding and subtracting appropriate terms to their integrands.
We can now let b̃ → ∞ and x → −∞ such that b̃/|x| → 0,
i.e., we set b̃ = const |x|κ with 0 < κ < 1 and let x → −∞.
Since the contributions ∝ b̃|x|−2 of T1 and T2 + T3 cancel each
other, no contribution ∼|x|κ−2 to R∗ results and we obtain

R∗(1,x) = −8|x|
π2

[
1 − ln

2|x|
π

]
+ 2

x2

[
L2(0) + L3(∞)

− β2 ln(|x|/2) + 8

3
α2

]
+ o(1/|x|2). (G46)
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Comparison of this result with (7.72) yields, besides the value
of β2 given in Eq. (3.38), the following relation

ζ (3)
2 − d1 − ln 4

4
= L2(0) + L3(∞) + 8

3
α2. (G47)

Until now we have not taken into account the far-boundary
correction ∝ u3(z) of Eq. (G15) other than through its
asymptotic value u3(∞). In our calculation of J>(x;&) we
must be more careful and include also its correction ∝ z−1

specified in Eq. (G17).
To this end, we express k in the Schrödinger equation (G18)

again in terms of the shifted wave number kx defined in
Eq. (G19). As a result, the potential term u3(z) gets replaced
with the shifted one,

�u3(z) = u3(z) + ζ (3) �
z→∞ −β2 z−1, (G48)

which vanishes at z = ∞. Let us introduce the notations

f+(z,kx ; x) = f (z,− ikx),
(G49)

F+(kx) = F (ikx),

for the Jost solution and Jost function on the right-hand sides.
Exploiting Eq. (4.11), we can express the regular solution
introduced in Eq. (G14) as

ϕ(z,k; |x|,−1)

= F+(kx) f+(z,kx ; x) − F+(−kx) f+(z,−kx ; x)

2kx
. (G50)

Here f+(z; |x|,−1) is a solution to[
−∂2

z + v(z; ∞,−1) + �u3(z)

|x|3 + k2
x

]
f+(z,kx ; x) = 0

(G51)
that behaves asymptotically as

f+(z,kx ; x) ∼
z→∞ exp

[
kxz − β2

2kx |x|3 ln z
]
, (G52)

where the ln z in the exponent is due to the slow Coulomb-like
decay of �u3(z) [104].

To determine f+(z,k; x) in the boundary region for 1 �
z < b̃, we replace v∗(z; |x|,−1) and �u3(z) in Eq. (G51)
by their large-z expansions −(2z)−3 − α2z−4 +O(z−5)
and (G48), respectively, and use the ansatz

f+(z,kx ; x) = A(kx,x) exp

{
kxz

[
1+

4∑
j=2

fj (kx,x)

zj
+O(z−5)

]

− β2

2kx |x|3 ln z
}
. (G53)

Solving for f2, . . . ,f4 yields

f2(kx,x) = β2

4k3
x |x|3

+ β2
2

8k4
x |x|6

, (G54)

f3(kx,x) = 1

8k2
x

+ β2

8k4
x |x|3

+ β2
2

8k5
x |x|6

+ β3
2

32k6
x |x|9

, (G55)

and

f4(kx,x) = 1

8k3
x

+ α2

6k2
x

+ β2
1 +O(1/kx)

24k4
x |x|3

+O(|x|−6).

(G56)

We now express the exponent of the exponential of
f+(z,kx,x) in terms of k, expand in powers of 1/|x| and 1/k,
dropping the terms of higher than the orders k−2, |x|−3, and
z−3, and insert the result into Eq. (G50). The contribution from
f+(z,−kx,x) can be omitted because it is exponentially small.
We thus obtain

ϕ(z,k; |x|,−1)

= F+(kx,x)

2kx
exp

[
kz + 1

8kz2
+ α2

6kz3
− β2 ln z

2k|x|3 + 1

8k2z3

+ β2

4k2|x|3z
− z ζ (3)

2k|x|3 + · · ·
]
. (G57)

Having determined the regular solution in the boundary
region, we now turn to its calculation in the inner region. Since
we need the asymptotic behavior ofχ (ω; 1,x) for largeω = k2,
we can again use the semiclassical expansion to determine the
behavior of ϕ(z,k; 1,x) in the inner regime. We start from the
analogs of Eqs. (D3)–(D6),

ϕ(z,k; 1,x)

= A(k,x) exp

{
kz − 1

2k

∫ 1/2

z

dz′
[
t1(z′)
|x| + t2(z′)

|x|2
]

− 1

4k2

[
t1(z)

|x| + t2(z)

|x|2
]

+O(k−3)

}
, (G58)

perform the integral involving t1(z′) using Eq. (G41), make a
Laurent expansion in z, and express the integral of t2(z′) in
terms of L2(z). This gives

ϕ(z,k; 1,x)

A(k,x)
= exp

{
kz + 1

k

[
1

8|x|z2
− ζ (3)z

2|x| +O(z2)

− L2(z) + β2 ln(2z)

2|x|2 − α2

6|x|2
(

8 − 1

z3

)]

+ 1

k2

[
1

8|x|z3
+ ζ (3)

4|x| + β2

4|x|2z

+ α2

4|x|2z4
+O(z2)

]
+O(k−3)

}
. (G59)

Matching this with Eq. (G57) at zmp ≡ zmp|x| = b̃/|x| then
yields for the amplitude the result

A(k,x) = F+(kx,x)
√|x|

2k
exp

{
ζ (3)

4k2|x| + 4α2

3k|x|2

− ζ (3)

4k|x|2 ln
|x|
2

+ L2(0)

2k|x|2 + o(x−2)

}
, (G60)

where 1/kx = k−1 exp[ζ (3)/(2k2|x|3) +O(|x|−6)] was used.
The result must be inserted into the analog of Eq. (D11),

namely,

χ (k2; 1,x) = −k − ln[2πkA(k,x)2]. (G61)
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To this end, we expand lnF+(kx,x) in its second argument
about lnF+(k,∞) and subsequently its first argument to linear
order in kx−k = O(|x|−3), obtaining

lnF+(kx,x) = lnF+(kx,∞) + X3(kx)
|x|3 +O(|x|−6)

= lnF+(k,∞) − ζ (3)

2k|x|3
∂ lnF+(k,∞)

∂k

+ X3(k)

|x|3 + o(|x|−3), (G62)

where the term ∝X3(kx) accounts for the change ∝|x|−3

induced by the far-boundary correction�u3(z) to v∗(z; ∞,−1)
[cf. Eq. (G15)].

We can now substitute these results into J>(x,&), change
to the integration variable y = ω/x2, and use the fact that
the contributions to the integrand resulting from the first term
inside the curly brackets in Eq. (G60) and the term involving
∂kF+(k,∞) add up to a derivative ∂y of a function that vanishes
at y = ∞. It follows that J>(x,&) can be decomposed as

J>(x,&) = J>,1(x,&/x2,∞) + J>,2(x,&) + Q(&/x2)

|x| ,

(G63)
where J>,1(x,y1,y2) denotes the integral

J>,1(x,y1,y2)

= x2

8π

∫ y2

y1

dy

{
2 lnF+(

√
y,∞) − ln

2
√
y

π

+ 4

π2√y
[

1 + ln
π

√
y

2

]
+ 2

π2(y + |x|−2)

}
, (G64)

while

J>,2(x,&) = − ζ (3)

4π |x|
∫ ∞

&/x2
dy
∂

∂y
ln
F+(y1/2,∞)

y1/4

= ζ (3)

4π |x| ln
F+(y1/2,∞)

(2/π )1/2y1/4

∣∣∣∣
y=&/|x|2

(G65)

and

Q(y0) ≡ 1

8π

∫ ∞

y0

dy[2X3(
√
y) − L3(∞)y−1/2]. (G66)

The integral J>,1(x,&/x2,∞) can be decomposed into
the &-independent term J>,1(x,0,∞) and the remainder
−J>,1(x,0,&/x2). The value of the former can be gleaned
from Eq. (E11),

J>,1(x,0,∞) = x2

4π3

[
−1 + 2 ln

2|x|
π

]
. (G67)

Since the upper integration limit of the latter integral
J>,1(x,0,&/x2) is small, &/x2 � 1, we can replace the
logarithm of the Jost function in its integrand by the asymptotic
small-y form,

lnF+(
√
y,∞) = ln

√
y −

√
y

2

[
1 − ln

π
√
y

2

]
+O(y ln y),

(G68)

which follows by integrating the analog of Eq. (E10) for
F+(

√
y,∞) with respect to y and expanding the result for

small y. One obtains

J>,1(x,0,&/x2) = x2

4π3
ln(1 +&) + |x|&1/2

π3
ln
π&1/2

2|x|

− &

8π

[
1

2
− ln

π&1/2

2|x|
]

− &3/2

|x|π
[

1

9
− 1

12
ln
π&1/2

2|x|
]

+O(x−2ln|x|), (G69)

and substitution of Eq. (G68) into Eq. (G65) yields

J>,2(x,&) = ζ (3)

16π |x| ln
π2&

4|x|2 +O(x−2ln|x|). (G70)

For large negative x, the last term on the right-hand side
of (G63) behaves as

Q(&/x2)

|x| = Q(0)

|x| +O(|x|−3). (G71)

Hence, to the required order in 1/|x|, all&-dependent terms of
J>(x,&) are contained in J>,1(x,&) + J>,2(x,&). Substitution
of our results for this sum along with Q(0) and those for
J<,1(x,&) and J<,2(x,&) into Eq. (G2) yields

F (2)
1 ([v∗]; 1,x) = x2

4π3

(
−1 + 2 ln

2|x|
π

)

+ ζ (3)

8π

[
−1

2
− d1 + 2ln|x|

|x|
]

+ o(|x|−1),

(G72)

with

d1 = 1

ζ (3)

(
d1,1 + d1,2 − 4

3
− 4γE + 8 ln 2

)

+ 1

6
+ γE + ln

2

π2
− 8π

ζ (3)
Q(0). (G73)

As one should expect, all &-dependent terms cancel in (G72).
Insertion of Eq. (G72) into Eq. (7.65) then gives a differ-

ential equation for Y (x), which can be solved to determine
the asymptotic large-x form of this function. The result is
[cf. (7.59)]

Y (x) = x2

π3

[
3

4
+ 7ζ (3)

π2
− 1

2
ln

2|x|
π

]
+�(x), (G74)

where �(x) has the asymptotic series expansion (7.71).
To establish the result for d1 given in Eqs. (7.73), we first

prove that

Q(0) = 0, (G75)

ifβ2 andα2 take their self-consistent values, given in Eq. (3.38)
and unknown, respectively. Subsequently, we complete the
derivation of d1 by computing the sum of integrals appearing
in d1,1 + d1,2.
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The first step of the proof is to show that

L3(∞)

2k
−X3(k) =

∫ ∞

0
dz

[
G∞(z,z; −k2) + 1

2k

]
�u3(z),

(G76)

where G∞(z,z′; −k2) = −[k2 + Hv∗ ]−1 is the Green’s func-
tion for L = ∞ and m = −1. To do this, we can pro-
ceed along lines similar to those followed in Appendix B.
Let f±(z,k) be the Jost solutions associated with the
Schrödinger equation Hv∗f± = 0 on the half-line that vary
∼e±kz as z → ∞. By analogy with Eqs. (B7) and (B8),
one finds that f−(z → 0,k) � −F+(k,∞)

√
z ln z. Using

the analog of Eq. (B2), namely, (k′2−k2)ϕ(z,k) f−(z,k′) =
∂zW [ϕ(z,k),f−(z,k′)], one can derive∫ ∞

0
dz

[
lim
k′→k

ϕ(z,k) f−(z,k′)
F+(k,∞)

− 1

2k

]

= ∂k2 ln

[
F+(k,∞)√

k

]
= −

∫ ∞

0
dz

[
G∞(z,z; −k2) + 1

2k

]
(G77)

in a straightforward manner, where the last result follows both
from Eq. (B10) or else from the fact that the limit in square
brackets is nothing other than −G∞(z,z; −k2) [cf. Eq. (B1)].
We now replace v∗ with v∗ + δv and denote the implied change
of lnF+(k,∞) as δ lnF+(k). A calculation analogous to the
one in Eq. (B12) yields −∂k2 tr(G∞ δv) for the variation of the
Green’s function term on the right-hand side of Eq. (G77). If
δv(z) decayed faster than z−1 as z → ∞, we could integrate
with respect to k2, taking into account that the integration
constant must be zero, to conclude that

δ lnF+(k) = −
∫ ∞

0
dzG∞(z,z; −k2) δv(z). (G78)

However, we are interested in the variation δv(z) =
�u3(z)/|x|3, which has the slower Coulombic decay (G48).
We therefore replace u3(z) with uR(z) = θ (R−z) u3(z) in
δv. The associated regular solution varies as ϕR(z,k) ∼
exp[kz − β2(2k|x|3)−1 ln z] and ∼ekz for 1 � z < R and
1 � R < z, respectively. Taking into account that ϕR
and its z derivative must both be continuous at z = R,
one sees that the corresponding Jost function must be-
have as F+,R(k,x) = F+(k,x) exp[−β2(2k|x|3)−1 lnR]. Using
Eq. (G78) for δ lnF+,R , we get

δ lnF+(k,x) = lim
R→∞

[
δ lnF+,R(k,x) + β2

2k|x|3 lnR

]

= lim
R→∞

{
−

∫ R

0
dz

[
G∞(z,z; −k2)+ 1

2k

]
�u3(z)

|x|3

+ 1

2k|x|3
∫ R

0
dz[�u3(z) + β2 θ (z−1)/z]

}
.

(G79)

The limit R → ∞ of the second integral is L3(∞), and the
left-hand side is X3(k)/|x|3 according to Eq. (G62). Thus,
Eq. (G76) is established.

To proceed, we multiply the self-consistency Eq. (4.21) by
�u3(z) and integrate it over the half line. The result enables

us to express the right-hand side of Eq. (G77) in terms of
the square of the semibound state ϕ0(z). In conjunction with
Eq. (G66), it yields

Q(0) = −1

4

{
ζ (3)

2
+

∫ ∞

0
dz�u3(z)

[
ϕ2

0(z)−1
]}
, (G80)

with

J3 ≡
∫ ∞

0
dz�u3(z)

[
ϕ2

0(z)−1
]
, (G81)

where �u3(0) = ζ (3) was used. Hence, we must show that

J3 = −ζ (3)/2. (G82)

By adding and subtracting appropriate terms to the inte-
grand and choosing a finite value R of the upper integration
limit whose limitR → ∞ must be considered, one can rewrite
J3 as

J3 = ζ (3) Jϕ − L3(∞)+ lim
R→∞

{
ζ (3)R+

∫ R

0
dzu3(z)ϕ2

0(z)

}
.

(G83)

To evaluate the integral on the right-hand side, we can ex-
ploit the exponential decrease (7.26) of the lowest eigenvalue
E1(x)/L2 in the limit x → −∞ [cf. Eq. (7.1)]. This means
that [Hv∗ f1(z,x)]/f1(z,x) = O(|x|e−|x|) as x → −∞. From
Eqs. (4.20) and (4.16), we know that the associated eigen-
function f1(z/|x|,x) approaches the semibound state ϕ0(z)
when x → −∞ at fixed z so that f1(z,−∞) = ϕ0(∞) = 1.
The leading large-|x| corrections to the latter limiting value
result from the potential terms given on the right-hand side
of Eq. (G40) and hence are of the same orders |x|−1 and
|x|−2. Allowing for a change of the normalization of the
eigenfunction, we therefore make the ansatz

f̂1(z,x) = [1 + b1/|x| +O(|x|−2)]f1(z,x)

= 1 + g1(z)

|x| + g2(z)

|x|2 + · · · (G84)

for the modified eigenfunction f̂1(z,x). For convenience, we
choose b1 such that

g1(z) = [ψ(z) + ψ(1 − z) + 2γe]. (G85)

This choice implies that

g1(z) �
z→0

− 1

4z
− ζ (3)

2
z2 +O(z4), (G86)

ensuring the absence of a z0 term in this expansion.
Substituting of the ansatz (G84) and the large-|x|

form (G40) of v∗ into the differential equation Hv∗ f̂1(z,x) =
O(|x|e−|x|), we can solve for g′′

1 and g′′
2 to obtain

g′′
1 (z) = t1(z), (G87)

g′′
2 (z) = t1(z) g1(z) + t2(z). (G88)

We now integrate Eq. (G88) over the inner region [b̃/|x|,1/2]
and add and subtract terms to the integrand to obtain finite
integrals over [0,1/2]. This gives

g′
1(b̃/|x|) =

(
1

8
− α2

)(
8

3
− |x|3

3b̃3

)
− L2(0) − d1,3, (G89)
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with

d1,3 =
∫ 1/2

0
dz

[
g′′

1 (z) g1(z) − 1

8z4
− ζ (3)

2z

]
. (G90)

The latter integral can be written in terms of the parameters d1,1

and d1,2 introduced in Eqs. (G27) and (G35). Upon expressing
the integrand of the combination d1,3 + (d1,1 + d1,2)/4 in
terms of the function w(z) and its derivatives, one can
determine its antiderivative and compute the integral. The
result yields the relation

d1,3 = d1,1 + d1,2

4
− γE + ln 4 − ζ (3)

4

(
1

3
+ γE + ln 2

)
.

(G91)

Turning to the rescaled analog of f̂1,

f̃1(z,x) = f̂1(z/|x|,x), (G92)

we note that the leading large-|x| correction to its x → −∞
limit is due to the |x|−3 term of v∗(z; |x|,−1) in Eq. (G16). We
therefore write

f̃1(z,x) = ϕ0(z) + h1(z)

|x|3 + · · · (G93)

and substitute this ansatz into the differential equation for
f̃1. Taking into account the large-z behavior v∗(z,∞,x) �
−(2z3)−1 − α2z−4 implied by Eq. (3.36)] and that of u3 given
in Eq. (G17), one concludes that h1(z) behaves as

h1(z) �
z→∞ −ζ (3)

2
z2 + a1z +O(ln2 z), (G94)

where the absence of a contribution ∝z ln z requires that β2

takes its self-consistent value (3.38).
To determine a1, we match the limiting behavior of

the derivative ∂z f̃1(b̃,x) for large b̃ that follows from
Eqs. (G93), (6.25), and (G94) with the behavior of f̂1(z,x)
at the mp zmp = b̃/|x|. One finds that the x-independent term
∝ b̃−2 and b̃−3 as well as the ones ∝ b̃|x|3 of both expressions
are consistent and that the coefficient of the b̃-independent
|x|−3 term is given by

a1 = 1
3 (1 − 8α2) − L2(0) − d1,3. (G95)

We are now ready to express the integral in Eq. (G83) in
terms of this coefficient. To this end we equate the |x|−3 terms
of Hv∗ f̃1(z,x) to zero. This yields u3(z)ϕ0(z) = −Hv∞h1(z).
Multiplying the result by ϕ0, integrating by parts, one is led to∫ R

0
dzu3(z)ϕ2

0(z) = [ϕ0(z)h′
1(z) − ϕ′

0(z)h1(z)]R0

= ζ (3)

[
3

8
− R

]
+ a1 +O(1/R),

(G96)

where we have again used Eqs. (6.25) and (G94). Note
that the contribution from the lower integration limit z = 0
vanishes because ϕ0(z) ∼ √

z and h1(z) ∼ z5/2 as z → 0,
respectively. To see the latter, note that u3(z → 0) = o(1) and
hence does not contribute to the pole part of v∗. However,
inserting the ansatz f1(z,x) = √

z[1 + r1z + r2z2 + · · · ] into
the differential equation for f1, one finds that the regular parts

of v∗ do not effect r1, which implies the stated small-z behavior
of h1.

Combining Eqs. (G83), (G95), and (G96) gives

J3 = ζ (3)

[
Jϕ + 3

8

]
− L2(0) − L3(∞) − d1,3 + 1 − 8α2

3

= ζ (3)

[
Jϕ − 1

8
+ d1

4
+ 1

2
ln 2

]
− d1,3 + 1

3
. (G97)

To obtain the second line, we eliminated L2(0) + L3(0) +
8α2/3 by exploiting the relation (G47).

We can now use Eqs. (G80) and (G81) to eliminate Q(0)
on the right-hand side of Eq. (G73) in favor of J3. This
gives us d1 expressed in terms of d1,1, d1,2, and J3. Upon
inserting the result into Eq. (G97) and using the exact result
for Jϕ given in Eq. (6.43) and Eq. (G91), we can solve for
J3. All contributions involving d1,1 and d1,2 cancel out. One
obtains the result for J3 given in Eq. (G82), which implies that
Q(0) = 0. Inserting this result into Eq. (G73), we combine
the integrals that the coefficients d1,2 and d1,2 involve into
a single integral and integrate by parts using [f (z)f ′′′(z) −
f ′(z)f ′′(z)]′ = f (z)f (4)(z) − [f ′′(z)]2, with f (z) = ln�(z) −
ln�(1 − z). This gives [105]

d1 = 2

3ζ (3)
+ 2[γE + ln(2/π )] − J4

4ζ (3)
, (G98)

with

J4 ≡
∫ 1/2

0
dz{[ψ ′(z) − ψ ′(1 − z)]2 − s(z)}, (G99)

where

s(z) = 1

z4
− 8 ζ (3)

z
. (G100)

The square of the difference of ψ ′ functions in the integrand
of J4 can be decomposed into the square of the sum of these
functions, which reduces to π4/ sin4(πz), and a remainder. As
a consequence, we arrive at

J4 =
∫ 1/2

0
dz

[
π4

sin4(πz)
− 1

z4
− 2π2

3z2

]
− 2J5

= 4

3
(2 + π2) − 2 J5, (G101)

where

J5 = 2
∫ 1/2

0
dz[ψ ′(z)ψ ′(1 − z) − s1(z)], (G102)

with

s1(z) = π2

6z2
+ 2

z
ζ (3). (G103)

It is straightforward to rewrite the last integral as

J5 = J6 + π2

3
+ 4 ζ (3) ln 2, (G104)

062114-45



SERGEI B. RUTKEVICH AND H. W. DIEHL PHYSICAL REVIEW E 91, 062114 (2015)

where

J6 =
∫ 1

0
dz[ψ ′(z)ψ ′(1 − z) − s1(z) − s1(1 − z)]. (G105)

The integral J6, in turn, can be represented as the limit ε → 0+
of the contour integral

J6 = − lim
ε→0+

J7(ε)

2πiε
, (G106)

with

J7(ε) =
∮
C

dz

(
z

1 − z
)ε
ψ ′(z)ψ ′(1 − z), (G107)

where the integration contour C runs around the branch cut
[0,1] of the integrand in the clockwise direction. Recasting
the integral J7(ε) into the sum of residua of the integrand at
the poles located in the exterior of the integration path C, one

obtains

J7(ε)

2πi
= eiπε

∞∑
n=2

{(
n

n−1

)ε [
ψ ′′(n)+ε ψ ′(n)

(
1

n
− 1

n− 1

)]

+
(
n− 1

n

)ε [
−ψ ′′(n) + ε ψ ′(n)

(
1

n
− 1

n−1

)]}
.

(G108)

After substitution of this result into (G106) and proceeding to
the limit ε → 0+, one finds

J6 = 2ψ ′(2) + 2
∞∑
n=3

−1 + 2 ln(n− 1)

(n− 1)3

= π2

3
− 2 ζ (3) − 4 ζ ′(3). (G109)

In deriving the first line of Eq. (G109) we have rearranged
the summation on the right-hand side of Eq. (G108), and used
the first and the second derivatives of the well-known relation
ψ(z) − ψ(z− 1) = 1/(z− 1). Substitution of this result into
Eqs. (G104), (G101), and (G98) finally leads to the result given
in Eq. (7.73).
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[21] D. Grüneberg and H. W. Diehl, Phys. Rev. B 77, 115409
(2008).

[22] F. M. Schmidt and H. W. Diehl, Phys. Rev. Lett. 101, 100601
(2008).
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