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Analyzing a stochastic time series obeying a second-order differential equation
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The stochastic properties of a Langevin-type Markov process can be extracted from a given time series
by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can
be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N

dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is
extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be
calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for,
this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper
we will analyze these errors and we will propose an approach that correctly accounts for them. This approach
allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which
may be superimposed to a given time series.
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I. INTRODUCTION

Many dynamical systems can be modelled as continuous-
time Markov process Y(t) that is driven by Gaussian white
noise ξ (t) with 〈ξi(t)〉 = 0 and 〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′).
Such a process is commonly referred to as diffusion process. Its
temporal evolution obeys a Langevin equation—a first-order
ordinary differential equation (ODE) that is stochastically
forced,

Ẏ = a(Y) + b(Y) ξ (t). (1)

Here and in the following Itô’s definition of a stochastic
integral is used [1]. Furthermore, a stationary stochastic
process is looked at, whereas in general a and b may depend
on time.

The Kramers-Moyal coefficients of the Fokker-Planck
equation corresponding to Eq. (1) are denoted by D(1) and
D(2) and commonly referred to as drift and diffusion functions,
respectively [2]. These functions uniquely define the stochastic
process and are related to a and b by

D(1)(y) = a(y), D(2)(y) = b(y)bT (y). (2)

There are several approaches that allow us to estimate
these functions from experimental data. A method based on
spectral data is presented in [3,4]. Based on the spectrum
of the finite-increment transition probability matrix of a
given time series, a reference spectrum for the generator
of the diffusion process is calculated. An estimate for the
generator (and thus for the Kramers-Moyal coefficients) then
is obtained by minimizing an object function that measures
the distance between reference and generator spectrum. Other
approaches use Bayesian frameworks, where the process
parameters are estimated by maximizing their likelihood [5–8].
Such approaches also allow the analysis of partially observed
processes and processes that are spoilt by observation errors.

In the following an approach called Markov analysis will be
looked at. This technique, also denoted as the direct estimation
method, has been introduced in the late 1990s [9–12]. As
it provides a very simple and direct way to estimate the
process parameters from a given time series, it has found

widespread use since then. Reviews on Markov analysis and
its applications can be found, e.g., in [13,14].

The method is based on the fact that the moments M(k) of
the conditional process increments of Y can be expressed in
terms of the Kramers-Moyal coefficients,

M(k)(y,τ ) : = 〈[Y(t + τ ) − Y(t)]k〉|Y(t)=y

= τD(k)(y) + O(τ 2), k = 1,2. (3)

Here and in the following the kth power of a vector denotes
a k-fold dyadic product. The time argument t of M(k) is
suppressed here because a stationary process is assumed. This
assumption also allows a moment estimation from a single time
series—ensemble averages can be replaced by time averages
then (tacitly assuming ergodicity). For a nonstationary process
an ensemble of time series would be needed (alternatively
a windowing strategy could be applied, assuming a slowly
varying time dependence).

The moments M(k) [Eq. (3)] can be expressed in terms of
moments m(k) of the two-point probability density function
(PDF) of Y at times t and t + τ . These moments m(k) are
defined as

m(k)(y,τ ) :=
∫

s
(s − y)kp(y,t ; s,t + τ ) ds, (4)

where again the time argument t is suppressed because of
the assumption of stationarity. Using the well known relations
p(a; b) = p(b)p(a|b) and

∫
a
f (a)p(a|b) = 〈f (A)|b〉 leads to

m(k)(y,τ ) = p(y,t) M(k)(y,τ ). (5)

For k = 0, this yields m(0)(y) = p(y,t) (suppressing the
unneeded argument τ and taking into account the scalar nature
of m(0)). Consequently one can write M(k) = m(k)/m(0) and one
obtains

m(k)(y,τ )

m(0)(y)
= τD(k)(y) + O(τ 2), k = 1,2. (6)

The moments m(k)(y,τ ) can directly be estimated from a
given time series. In practice, this is usually done by applying
a binning approach. Estimating the moments for a number of
time increments τ then allows us to solve Eq. (6) for D(k)(y)
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in a least square sense. Usually a low order polynomial in τ is
used for a fit of the right hand side, as the higher order terms in
the above equation are known to be powers of τ [15,16]. This
strategy will be denoted as standard Markov analysis (SMA)
in the following.

However, not every problem can be modelled by Eq. (1).
This applies, e.g., to the large class of physical and engineering
systems that are described by force equations. Such systems
can only be modelled by a first-order equation if they are
dominated by damping, i.e., when inertial forces can be
neglected. In general, they need to be modelled by a process
X(t) obeying a second-order ODE,

Ẍ = f(X,Ẋ) + g(X,Ẋ) ξ (t), X ∈ RN, (7)

where ξ (t) denotes Gaussian white noise again. Another
example would be a Langevin-like process X(t) that is not
driven by white noise but by an independent Langevin process,
say Z(t), which itself is driven by white noise. Due to the
continuity of Z the dynamic of X then can be captured by an
equation of the above form.

As Eq. (7) is a second-order ODE, such a process is not
Markovian, i.e., the statistics of its increments do not only
depend on the value of X but also on its derivative. In an
extended phase space, however, consisting of the values of X
and Ẋ, the dynamic becomes Markovian. With the definitions

Y1(t) := X(t), Y2(t) := Ẋ(t), (8)

Eq. (7) can be written as a system of first-order equations
that define a Langevin process YT (t) := [YT

1 (t),YT
2 (t)] in 2N

dimensions,

Ẏ =
[

Ẏ1

Ẏ2

]
=

[
Y2

f(Y) + g(Y) ξ (t)

]
. (9)

The Kramers-Moyal coefficients of the corresponding
Fokker-Planck equation are simpler than in the general 2N -
dimensional case, as they are given by

D(1)(y) =
[

y2

f(y)

]
, D(2)(y) =

[
0 0
0 ggT (y)

]
. (10)

Of course, these coefficients can be estimated from a given
time series of Y(t) by the above mentioned SMA. But for that
the values of X and Ẋ must be given [Eq. (8)]. For real word
data this will not always be the case. Frequently only a series
of “positions” Y1(t) ≡ X(t) will be given for a second-order
process obeying Eq. (7), while the corresponding “velocities”
Y2(t) ≡ Ẋ(t) are missing. It may, for example, be hard to
accurately measure the velocities in a given experimental
setup. Or it may not have been realized in advance that X(t)
needs to be modelled as a second-order process. Or it may
simply have been assumed that a highly resolved series of
position values will provide sufficiently accurate information
on the velocities.

If Ẋ is missing, these velocity values need to be estimated
numerically. The errors associated with this estimation will be
called “reconstruction errors” in the following (after all, we
try to reconstruct the missing series Ẋ). These errors seem to
impose no major problem as X(t) is a continuously differen-
tiable function. Its derivative can be estimated by a discrete
differencing scheme with arbitrary accuracy—provided the
step size of the scheme (here and in the following denoted

by θ ) can be chosen small enough. So for a “sufficiently”
fine sampled series of positions the reconstruction errors will
become negligible. The standard approach for an analysis,
therefore, goes like this: Choose some small step size θ and
estimate the series Y2 using the given series Y1. Then apply a
SMA to the resulting series Y. This strategy will be denoted
as the standard embedding approach (SEA) in the following.

This approach, however, has its flaws. For a Markov
analysis, the moments of process increments will be looked
at [see Eq. (3)]. For these quantities the reconstruction errors
will show to be of importance unless the step size θ (used for
velocity estimation) can be chosen much smaller than the time
increment τ (used for increment calculation). At the same time,
however, τ needs to be small compared to the characteristic
time scale T of the process under investigation. Otherwise the
higher order terms in Eq. (6) can no longer be approximated
by a low order polynomial. The requirement θ � τ � T will
only rarely be fulfilled in practice as it requires data with a
very high temporal resolution (compared to the characteristic
time scale T ). Further discussion on the effects of the choice
of τ in the presence of multiple time scales can, for example,
be found in [17].

Also another source of errors has to be considered for real
data: Virtually all experimental data will be superimposed by
additional observation errors, in the following referred to as
measurement noise. This is a well known problem and there
are several approaches to deal with it [18–23]. In the given
context, we face a special variant of this problem. We will
apply a differencing scheme to the given time series Y1. So
any measurement noise that afflicts the values of Y1 will lead to
an additional error in the estimation of Y2. For a differencing
scheme with step size θ , this error will be proportional to
θ−1, as will be seen later (assuming uncorrelated measurement
noise). So even if the measurement noise is very small, and
thus negligible for Y1 itself, it may become important in the
estimation of Y2 for small values of θ .

The above considerations imply that for real data neither
the values of Y1(t) nor that of Y2(t) are known accurately. The
values actually at hand will be denoted by Y∗(t) and referred
to as “noisy” values in the following. Here the term noisy does
not refer to the dynamic noise of the stochastic process but
to the errors caused by measurement noise and differencing
scheme.

The aim of this paper is to provide a modified embedding
approach (MEA) that accounts for these errors. As a by-
product also a quantitative description of the errors of the
SEA will be found. However, only weak measurement noise
can be accounted for. This restriction is a consequence of the
perturbative approach that will be used. The requirements on
the noise will be given later, but, roughly speaking, the noise
must be negligible for the position values and its effect on the
velocity increments may at most be of the same order as the
effects of the driving stochastic force ξ .

We want to emphasize that our direct approach does not
focus on any smoothing methods (like, for example, different
denoising methods do, which average out different noise
contributions). Instead, we use the unprocessed, noisy data
and try to extract from these directly the spoiling measurement
noise, the involved dynamical Langevin noise, and finally the
underlying deterministic dynamics.
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This paper is organized as follows: In Sec. II the observable
moments m∗(k) of the noisy time series will be expressed in
terms of moments of the noisy values Y∗(t) and Y∗(t + τ )
conditioned on the true value Y(t). Subsequently, based on
a Taylor-Itô expansion, these conditional noisy values will
be expressed in terms of process parameters, measurement
noise, and stochastic integrals of ξ in Sec. III. The resulting
expressions, together with an assumption on the magnitude of
the measurement noise, will lead to an explicit description
of m∗(k) in Sec. IV then. This description will serve two
purposes. First, the effects of the reconstruction errors of a SEA
can be quantified (Sec. V). Second, a MEA can be specified
that allows an accurate estimation of the Kramers-Moyal
coefficients and the properties of the measurement noise
(Sec. VI). Subsequently a numerical test case will be specified
in Sec. VII, which will be used to compare the results of SEA
and MEA with and without measurement noise (Secs. VIII
and IX).

II. MOMENTS OF THE NOISY VALUES

For a series of noisy values Y∗ only the noisy counterparts
m∗(k) of the moments m(k) can be estimated. In analogy to
Eq. (4) they can be defined as

m∗(k)(y∗) :=
∫

s
(s − y∗)kp(Y∗ = y∗; Y∗

τ = s) ds. (11)

Here and in the following, the time arguments t and τ are
omitted to allow for a more compact notation. Stochastic
variables implicitly refer to time t now, and the shortcut Y∗

τ is
used to denote Y∗(t + τ ).

Next the moments m∗(k) need to be related to the process
parameters and the properties of the measurement noise. As
outlined in Sec. I, the first step will be to express the moments
m∗(k) in terms of moments of the conditional noisy values
Y∗|Y=y and Y∗

τ |Y=y. This can be done as follows: First, the
PDF in Eq. (11) is rewritten as

p(Y∗ = y∗; Y∗
τ = s)

≡
∫

y
ρ(y)p(Y∗ = y∗; Y∗

τ = s|Y = y) dy, (12)

where ρ(y) := p(Y = y) denotes the PDF of Y. Inserting
Eq. (12) and interchanging the order of integration thus allows
us to write the moments m∗(k) in the form

m∗(k)(y∗) =
∫

y
ρ(y) F(k)(y∗,y) dy (13)

with

F(k)(y∗,y) =
∫

s
(s − y∗)kp(Y∗ = y∗; Y∗

τ = s|Y = y) ds.

(14)

Expressing the integral in Eq. (13) by a moment expansion
yields (using summation convention)

m
∗(k)
i1,...,ik

(y∗) =
∞∑

ν=0

(−1)ν

ν!

∂

∂y∗
j1

· · · ∂

∂y∗
jν

× [
ρ(y∗)M (k,ν)

i1,...,ik ,j1,...,jν
(y∗)

]
, (15)

where the moments are defined as

M(k,ν)(y∗) :=
∫

z
F(k)(z,y∗) ⊗ (z − y∗)ν dz. (16)

Here ⊗ denotes a dyadic product. Inserting the definition of
F(k) first leads to

M(k,ν)(y∗) =
∫

s,z
(s − z)k ⊗ (z − y∗)ν

×p(Y∗ = z; Y∗
τ = s|Y = y∗) ds dz. (17)

Using the relation
∫
a
f (a)p(a|b) = 〈f (A)|b〉 then gives

M(k,ν)(y∗) = 〈(Y∗
τ − Y∗)k ⊗ (Y∗ − Y)ν〉|Y=y∗ . (18)

The general form of the observable moments m∗(k) therefore
reads (dropping the asterisk on the parameter y)

m
∗(k)
i1,...,ik

(y) =
∞∑

ν=0

(−1)ν

ν!

∂

∂yj1

· · · ∂

∂yjν

× {
ρ(y)

〈
[Ak(y)]i1,...,ik [B

ν(y)]j1,...,jν

〉}
(19)

with

A(y) : = Y∗
τ |Y=y − Y∗|Y=y , (20a)

B(y) : = Y∗|Y=y − y. (20b)

This is a quite general result—no information on how Y∗(t)
and Y(t) are related is used so far. This will be done in the
next section, where the conditional values of Y∗ and Y∗

τ will
be expressed explicitly.

III. CONDITIONAL VALUES OF Y∗

In this section we will specify the assumptions on the
measurement noise together with the details of the differencing
scheme. This will allow us to express the conditional values
of Y∗ and Y∗

τ in terms of measurement noise and conditional
values of Y1. Based on a Taylor-Itô expansion, these condi-
tional values Y1 can then be expressed in terms of the driving
stochastic force and process parameters.

To avoid confusion, time arguments will be given explicitly
again in the following. However, the shortcut (· · · )|y will be
used to indicate conditioning on Y(t) = y.

The given values Y∗
1(t) are assumed to be spoilt by

additive, Gaussian distributed, and temporally uncorrelated
measurement noise �(t) with an expectation value of zero and
covariance matrix V

Y∗
1(t) := Y1(t) + �(t), (21)

with

〈�(t)〉 = 0, (22a)

〈�(t)�T (t ′)〉 = δt,t ′V, δt,t ′ :=
{

1 , t = t ′
0 , t �= t ′ . (22b)

The noise is also assumed to be independent of ξ and Y
[implying �(t)|y ≡ �(t)]. The conditional values Y∗

1|y are thus
given by

Y∗
1(t + 	)|y := Y1(t + 	)|y + �(t + 	). (23)
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Here the symbol 	 is used to denote some arbitrary, non-
negative time increment. For the reconstruction of Y2 a
first-order forward differencing scheme with a step size of
θ , applied to the observable values Y∗

1, will be used in the
following:

Y∗
2(t + 	,θ ) := 1

θ
[Y∗

1(t + 	 + θ ) − Y∗
1(t + 	)]. (24)

The conditional values Y∗
2|y therefore are given by

Y∗
2(t + 	,θ )|y := 1

θ
[Y1(t + 	 + θ )|y − Y1(t + 	)

∣∣
y]

+ 1

θ
[�(t + 	 + θ ) − �(t + 	)]. (25)

The values Y1|y at time t + 	 can be expressed by a Taylor-Itô
expansion (see Appendix A)

Y1(t + 	)|y = y1 + y2 	 + f(y)
	2

2
+ g(y)It,	 + Rt,	(y).

(26)

Here It,	 denotes a vector of stochastic integrals that only
depend on the realization of ξ in the interval [t,t + 	). The
components of this vector are of magnitude O(	3/2) and have
an expectation value of zero. All other expansion terms are
summarized in the remainder Rt,	(y) with a magnitude of
O(	2) and an expectation value of O(	3).

In summary, the above results lead to the following
expressions for Y∗|y:

Y∗
1(t)|y = y1 + �(t), (27a)

Y∗
1(t + τ )|y = y1 + y2 τ + f(y)

τ 2

2
+ g(y)It,τ

+�(t + τ ) + Rt,τ (y), (27b)

Y∗
2(t,θ )|y = y2 + f(y)

θ

2
+ g(y)

It,θ

θ

+ �(t + θ ) − �(t)

θ
+ Rt,θ (y)

θ
, (27c)

Y∗
2(t + τ,θ )|y = y2 + f(y)

(
τ + θ

2

)
+ g(y)

It,τ+θ − It,τ

θ

+ �(t + τ + θ ) − �(t + τ )

θ

+ Rt,τ+θ (y) − Rt,τ (y)

θ
. (27d)

IV. MOMENTS M(k,ν)

Now the moments M(k,ν) can be attacked. For a calculation
of M(k,ν) explicit expressions for the vectors A and B, as
defined in Eq. (20), are needed. Using the results from the
previous section [Eq. (27)] one finds

A(y,τ,θ ) =
[

y2 τ + g(y)It,τ + �(t + τ ) − �(t) + f(y) τ 2

2 + Rt,τ (y)

f(y)τ + g(y) It,τ+θ −It,τ −It,θ

θ
+ �(t+τ+θ)−�(t+τ )−�(t+θ)+�(t)

θ
+ Rt,τ+θ (y)−Rt,τ (y)−Rt,θ (y)

θ

]
, (28a)

B(y,τ,θ ) =
[

�(t)
f(y) θ

2 + g(y) It,θ

θ
+ �(t+θ)−�(t)

θ
+ Rt,θ (y)

θ

]
. (28b)

These expressions contain infinitely many terms, summarized
in the remainders R. To allow for a series truncation, a quantity
denoted by ε is introduced now. This quantity is assumed to
be small and its only purpose is to express the magnitude of
terms [it is tacitly assumed here that the problem is described
in dimensionless form with f and g being of order O(1)]. It will
be assumed that τ and θ are of the same order of magnitude
as ε and that the measurement noise �i is of the same order as
ε3/2

τ
!= O(ε), θ

!= O(ε), Vij
!= O(ε3). (29)

In a strict sense, the use of the Landau symbols here is not
appropriate, because there is no functional relation between ε

and, e.g., τ . The above notation is rather used to express the
assumptions that, first, τ , ε, and �i are small quantities, which
allows us to sort powers by magnitude (like, e.g., τ 2 � τ ).
Second, it is assumed that τ , θ , and |�i |2/3 are of “comparable
size,” where comparable size means that, when restricting
to small exponents, also powers of different quantities can
be sorted by size (like, e.g., τ 3 � θ2 or |Vij | � τ 2). This will
be sufficient for appropriate low order approximations.

With this assumption the lowest order terms in A and B are
of order O(ε1/2). The magnitude of a moment M(k,ν), therefore,

is given by (omitting arguments)

M(k,ν) = 〈Ak ⊗ Bν〉 = O(ε(k+ν)/2). (30)

For a first-order description of the moments m∗(k) thus only
moments M(k,ν) with k + ν � 2 need to be taken into account.
Using Eqs. (28), (30), (A12) and the properties of �, one finds

M(0,0) = 1, (31a)

M(0,1) =
[

0
1
2θ f

]
+ O(ε2), (31b)

M(0,2) =
[

0 0
0 1

3θggT + 2 V
θ2

]
+ O(ε2), (31c)

M(1,0) =
[
τy2

τ f

]
+ O(ε2), (32a)

M(1,1) =
[

0 0
0 τ−ψ

2 ggT − (2 + δτ,θ ) V
θ2

]
+ O(ε2), (32b)

M(2,0) =
[

0 0
0 ψ ggT + 2(2 + δτ,θ ) V

θ2

]
+ O(ε2), (33)
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with

ψ :=
{

τ 2/θ − 1
3τ 3/θ2, τ < θ

τ − 1
3θ, τ � θ

. (34)

Inserting these expressions into Eq. (15), finally, yields a
first-order description of the moments m∗(k) in terms of ρ, f, g,
and V. It turns out that derivatives with respect to components
of y1 do not appear in the terms up to order O(ε)—so for a first-
order description only the derivatives with respect to the com-
ponents of y2 need to be considered. It also turns out that only
the upper half of the vector m∗(1) and the upper quarter of the
matrix m∗(2) need to be looked at (those components that corre-
spond to moments of the increments of Y∗

2). To take (syntacti-
cal) advantage of this reduction in dimensionality the notations

∂̂i : = ∂

∂yN+i

, m̂(0) := m∗(0), (35a)

m̂
(1)
i : = m

∗(1)
N+i , m̂

(2)
ij := m

∗(2)
N+i,N+j , (35b)

are introduced, where i and j are in the range 1, . . . ,N . The
relevant equations can now be written compactly as

m̂(0)(y,θ ) = ρ − θ

2
∂̂i[ρfi] + θ

6
∂̂i ∂̂j [ρ (ggT )ij ]

+ Vij

θ2
∂̂i ∂̂j ρ + O(ε2), (36a)

m̂
(1)
i (y,τ,θ ) = τρfi − 1

2
(τ − ψ) ∂̂j [ρ (ggT )ij ]

+ (2 + δτ,θ )
Vij

θ2
∂̂j ρ + O(ε2), (36b)

m̂
(2)
ij (y,τ,θ ) = ψρ (ggT )ij + 2(2 + δτ,θ )

Vij

θ2
ρ + O(ε2).

(36c)

These equations directly relate the unknown quantities ρ,
f, ggT , and V and the observable quantities m̂(k). The function
argument of ρ, f, and g is given by y. The function ψ depends
on τ and θ and has a piecewise definition only, Eq. (34).

V. SYSTEMATIC ERRORS OF THE STANDARD
EMBEDDING APPROACH (SEA)

Next the SEA will be analyzed, using the final result
of the previous section [Eq. (36)]. Only the case without
measurement noise, i.e., V ≡ 0, will be looked at. This will
show the “pure” effects of the reconstruction errors caused by
the numerical estimation of Y2.

For a time series, where Y2 has been reconstructed by a
first-order forward differencing scheme with step size θ , the
observable moments m̂(k) are described by Eq. (36). Ignoring
this result and attempting a Markov analysis as outlined in
Sec. I will put the focus on the terms m̂(k)(y,τ,θ )/[τm̂(0)(y,θ )].
According to Eq. (6), these terms should be finite-increment
estimates of f and ggT (k = 1, respectively k = 2). In fact,
however, the terms evaluate to

m̂
(1)
i (y,τ,θ )

τm̂(0)(y,θ )
= fi − 1 − ψ(τ,θ )/τ

2m̂(0)
∂̂j [m̂(0) (ggT )ij ] + O(ε),

(37a)

m̂
(2)
ij (y,τ,θ )

τm̂(0)(y,θ )
= ψ(τ,θ )

τ
(ggT )ij + O(ε). (37b)

Trying to extrapolate these estimates to τ = 0 then becomes
problematic. Instead of being approximately constant, as
expected from Eq. (6), the values will show nonlinear behavior
caused by the function ψ/τ . For fixed θ this function starts
linear with a value of zero at τ/θ = 0, passes through 2/3 at
τ/θ = 1, and approaches a value of 1 for τ/θ → ∞. Simply
fitting a low order polynomial to all estimates up to some
maximum increment τmax will thus, in general, underestimate
ggT (because of |ψ/τ | < 1). An error of comparable size
(although with arbitrary sign) will occur when estimating f.

In principle, however, the estimates for large τ , i.e., where
ψ/τ ≈ 1, could be used for a fit. On the other hand also the
influence of higher order terms becomes stronger for large
increments. Unless a time series is sampled with a very small
time step, such an approach will also fail to provide accurate
estimates for fi and (ggT )ij .

VI. MODIFIED EMBEDDING APPROACH (MEA)

Based on Eq. (36), we now will propose a modified
approach that takes into account the effects of the differencing
scheme as well as the effects of measurement noise. An
important point in this approach will be to keep the ratio of
τ and θ fixed. This provides an easy way to avoid problems
caused by the nonlinear term ψ(τ,θ ). In the following θ ≡ τ

is chosen. From a practical point of view this means that
we no longer use a fixed step size to estimate all velocities.
Instead, to calculate a velocity increment Y2(t + τ ) − Y2(t),
the involved velocities will be estimated using a step size
θ = τ . Equation (36) then reads

m̂(0)(y,τ ) = ρ − τ

2
∂̂i[ρfi] + τ

6
∂̂i ∂̂j [ρ (ggT )ij ]

+ Vij

τ 2
∂̂i ∂̂j ρ + O(ε2), (38a)

m̂
(1)
i (y,τ,τ ) = τρfi − τ

6
∂̂j [ρ (ggT )ij ] + 3

Vij

τ 2
∂̂j ρ + O(ε2),

(38b)

m̂
(2)
ij (y,τ,τ ) = τ

2

3
ρ (ggT )ij + 6

Vij

τ 2
ρ + O(ε2). (38c)

A fixed ratio of τ and θ also leads to a simpler form of
the higher order terms (see Appendix B). Each term of order
O(εn) on the right hand side of Eq. (38) has the form

Q(n) = c(y) τ a(ε3/τ 2)b (39)

with

0 � a � n, b = n − a, c = O(1). (40)

Here the symbol Q(n) is used to denote such a term and
ε3 accounts for the assumption on the magnitude of V.
The functional form of Q(n) (with respect to τ ) can thus
be described by a function-base B(n) that consists of n + 1
functions τ a−2b. As noted in Appendix B, this implies B(n) ⊂
B(n+3) and thus puts a limit on the accuracy that can be achieved
in least square fits of m̂(k). For example, it is not possible
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to distinguish a first-order term cτ and a fourth-order term
c′τ 3(ε3/τ 2) by their functional form.

In the following Eq. (38a) will be used in the form m̂(0) =
ρ + O(ε), i.e., the explicit results for the first-order terms will
not be used. This avoids the need to numerically calculate the
derivatives that appear within these terms. Next, Eqs. (38b)
and (38c) are divided by ρ. Replacing ρ by m̂(0) in the resulting
left hand sides will only result in additional terms of order
O(ε2) and higher for the right hand sides. One finds (omitting
function arguments again)

m̂
(1)
i

m̂(0)
= τ f̃i + 3Vij ∂̂j ρ

τ 2ρ
+ O(ε2), (41a)

m̂
(2)
ij

m̂(0)
= τ

2

3
(ggT )ij + 6Vij

τ 2
+ O(ε2), (41b)

with the shortcut

f̃i := fi − ∂̂j [ρ (ggT )ij ]

6ρ
. (42)

The term 3Vij (∂̂j ρ)/(τ 2ρ) in Eq. (41a) will now be expressed
as τ−2ci , where ci is an unknown constant [of order O(ε3)].
Finally, it will be assumed that V is known. This assumption
is not mandatory—V could be estimated using Eq. (41b)—
but this quantity can be estimated more easily in advance
by, for example, analyzing the autocovariance of Y∗

1 (see
Appendix C). The final set of equations now reads

m̂(0) = ρ + O(ε), (43a)

m̂
(1)
i

m̂(0)
= τ f̃i + 1

τ 2
ci + O(ε2), (43b)

m̂
(2)
ij

m̂(0)
− 6Vij

τ 2
= τ

2

3
(ggT )ij + O(ε2). (43c)

The terms on the left hand sides can be estimated for different
values of τ from a given time series. Choosing appropriate
sets of regression functions thus allows us to estimate ρ, f̃,
and ggT by a linear regression analysis. Once these quantities
have been estimated, Eq. (42) can be used to finally calculate f
[the derivative that appears in Eq. (42) can, e.g., be calculated
using a density-weighted local polynomial fit of ρggT ].

The functional form of the higher order terms can be shown
to still obey Eq. (39). Therefore {1,τ,τ−2}, {τ,τ−2}, and {τ }
are appropriate function sets for Eq. (43a), (43b), and (43c) if
terms up to order O(ε) shall be taken into account. To also take
into account second-order terms, the functions {τ 2,τ−1,τ−4}
must be added to the sets. In principle, also third-order
terms can be accounted for in Eqs. (43b) and (43c) by also
adding the functions {τ 3,1,τ−3,τ−6}. In practice, however, a
large number of regression functions and also large negative
exponents lead to numerical problems. As a compromise, the
terms can partially be accounted for. In the numerical example
given later, e.g., only τ 3 is used as a regression function for
third-order terms.

VII. NUMERICAL TEST CASE

To check the analytical results and to compare the different
embedding approaches, a numerical example is investigated

now. As test case a scalar process X(t) is chosen that obeys
the second-order ODE,

Ẍ = f (X,Ẋ) + g(X,Ẋ)ξ (t), (44)

where f and g are defined as

f (X,Ẋ) := −X − 3Ẋ, g(X,Ẋ) := 1. (45)

Again ξ (t) denotes Gaussian white noise with 〈ξ (t)ξ (t ′)〉 =
δ(t − t ′). The above ODE can be rewritten as a system of
first-order ODEs for a two-dimensional (2D) process Y(t),
the components of which are given by position Y1 ≡ X and
velocity Y2 ≡ Ẋ of the 1D process X(t),

Ẏ1 = Y2, (46a)

Ẏ2 = −Y1 − 3Y2 + ξ. (46b)

These equations describe an Ornstein-Uhlenbeck process
in two dimensions and can be solved analytically. The
characteristic time scales of the autocovariance of Y are
found to be (3 + √

5)/2 ≈ 2.618 and (3 − √
5)/2 ≈ 0.382.

The values of Y are Gaussian distributed and have a variance
of 〈YYT 〉 = Id/6.

For this process a time series of Y, consisting of 107 values,
sampled with a time increment 	t = 0.01, is generated.
Excerpts of the resulting series for Y1 and Y2 are shown in
Figs. 1 and 2. Here also a basic problem of the SEA can
be seen, which was noted in Sec. (I) and quantified in Sec.
(V): Even if a series is sampled sufficiently fine to allow
an “accurate” estimation of Y2 by a numerical differencing
scheme, the velocity increments (for time increment τ ) will
still show notable errors for small τ . This error depends on the
ratio θ/τ (here θ = 	t) and its effects can be quantified by
the function ψ in Eq. (37).

To obtain a baseline for the accuracy that can be achieved
with the given data, a SMA is applied to the true 2D series Y
first. Here and for subsequent analyses a binning approach is
used, where the region [−1,1] × [−1,1] of the (y1,y2) plane is

FIG. 1. (Color online) Excerpt of the generated series of position
values Y1 (a). A zoomed-in view ( b) shows that the signal in fact is
smooth and thus allows us to numerically estimate its derivative if
the sampling time step 	t is sufficiently small.
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FIG. 2. (Color online) Excerpt of the generated series of velocity
values Y2 (a). In the zoomed-in view (b) additionally the numerically
estimated derivative of Y1 is shown. Although the values of both
series (true and estimated) quite accurately match, there are notable
differences for the small scale increments.

covered by 30 × 30 bins. For one of these bins the estimated
moments of the conditional velocity increments are shown in
Fig. 3.

Actually the moments in Fig. 3 are scaled by τ−1, as is
usually done for their visual presentation. This allows us to
interpret the estimation of f and g2 as “extrapolating the scaled
moments to τ = 0.” Later on, however, when measurement
noise enters the scene, a more general interpretation will be
needed, where f and g2 are found by a linear regression
strategy. Of course this interpretation is also valid in the given
setup. The values of f and g2 are given by the coefficients of

FIG. 3. (Color online) First (a) and second moment ( b) of the
conditional velocity increments (obtained by a SMA). The estimated
values (circles) are scaled by τ−1. The corresponding fits are shown as
solid curves. Estimates are taken at (y1,y2) = (−0.1,−0.2333). Here
f and g2 have values of 0.8 and 1.0 respectively (dashed lines).

FIG. 4. (Color online) Estimates for f and g2, (a) and (b),
obtained by a SMA.

the linear part (in τ ) of the conditional moments m
(1)
2 /m(0) and

m
(2)
22 /m(0) respectively [see Eq. (6)].
In the following, the regression functions {τ,τ 2} and

{τ,τ 2,τ 3} are used to fit the estimated first and second
conditional moments [this corresponds to fitting a linear
function to the values in Fig. 3(a) and a quadratic function
to those in Fig. 3(b)]. The maximum increment that is used for
these fits is chosen as τmax = 15	t . The resulting estimates for
f and g2 are shown in Fig. 4. In Fig. 5 the absolute errors δf and
δg2 of these estimates are shown. In regions with low density
(as noted above, the PDF of Y is a symmetric Gaussian with a
standard deviation of ≈0.408) fluctuations become larger but
there is no obvious bias of the results.

VIII. EMBEDDING APPROACHES
WITHOUT MEASUREMENT NOISE

Next the results of the different embedding approaches are
looked at. First a SEA is used to perform an analysis solely

FIG. 5. (Color online) Absolute errors of the estimates for f and
g2, (a) and (b), obtained by a SMA.
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FIG. 6. (Color online) First (a) and second moment (b) of the
conditional velocity increments (obtained by a SEA with θ = 	t).
The estimated values (circles) are scaled by τ−1. The corresponding
fits are shown as solid curves. Additionally, the estimates obtained
by a SEA with θ = 2	t are shown (crosses). Estimates are taken at
(y1,y2) = (−0.1,−0.2333). Here f and g2 have values of 0.8 and 1.0
respectively (dashed lines).

based on the 1D series of positions Y1. The corresponding
velocity values Y2 are estimated by a first-order forward
differencing scheme with a step size of θ = 	t and the
resulting 2D series then is analyzed by a SMA.

As is shown in Fig. 6, the estimated moments of the condi-
tional velocity increments behave quite differently compared
to those obtained from the true 2D series (shown in Fig. 3). As
expected from Eq. (37), the moments show strongly nonlinear
behavior for small increments τ . For an estimation of f

and g2, therefore, only increments with 5 � τ/	t � 15 are
used. Least square fits are performed using the same sets of
regression functions as in the previous section. The absolute
errors δf and δg2 of the resulting estimates are shown in
Fig. 7. Of course, the fluctuations become larger now as fewer

FIG. 7. (Color online) Absolute errors of the estimates for f and
g2, (a) and (b), obtained by a SEA.

FIG. 8. (Color online) Relative errors of the estimated density
values, obtained by a SEA. In (a) errors relative to the true density ρ

are shown. In (b) errors are relative to the binned density of the 2D
series.

increments are used for the fits. But, more importantly, it is
obvious that g2 is systematically underestimated. And also
the estimates for f clearly show a significant bias that is
approximately linear in y2.

FIG. 9. (Color online) Estimated densities (a) and estimated mo-
ments (scaled by τ−1) of the conditional velocity increments (b),
(c). The estimates (circles) have been obtained by a MEA. The
corresponding fits are shown as solid curves. Estimates are taken
at (y1,y2) = (−0.1,−0.2333). Here f̃ [see Eq. (42)] and 2g2/3 have
values of 0.5667 and 0.6667 respectively and the binned density of
the 2D series has a value of 0.7873 (dashed lines).
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Using a SEA also affects the estimates for the process
density ρ. It would be misleading, however, to compare the
estimates m(0) to the true density ρ, as is done in Fig. 8(a). To a
large extent the observed errors are caused by finite size effects
and not by the reconstruction approach (the binned density of
the true 2D series would show very similar errors). To assess
the errors that are introduced by the embedding approach, the
estimates m(0) thus should be compared to the binned density
of the 2D series. This is done in Fig. 8(b), where the errors are
found to be biased by a hyperbolic function in y1 and y2.

Now a MEA, as proposed in Sec. VI, is applied. Again
the analysis is purely based on the 1D series of positions Y1.
Opposed to a SEA, however, velocities are no longer estimated
by a differencing scheme with a fixed step size. Instead,
velocities and velocity increments for time increment τ are
estimated using the step size θ = τ . Using a binning approach,
it is not much more effort than for a SEA to implement the
calculation of the density m(0) and of the conditional moments
m

(1)
1 /m(0) and m

(2)
22 /m(0). In pseudocode this reads

fori = 1 : n − kmax

fork = 1 : kmax

pos = x[i]

velo = (x[i + k] − x[i])/k/dt

dvelo = (x[i + 2 ∗ k] − 2 ∗ x[i + k] + x[i])/k/dt

idx = getBinIndex(pos,velo)

if(isValid(idx))

m0[idx][k]+ = 1

m1[idx][k]+ = dvelo

m2[idx][k]+ = dvelo ∗ dvelo

end

end

end

foridx = 1 : idxmax

fork = 1 : kmax

m1[idx][k]/ = m0[idx][k]

m2[idx][k]/ = m0[idx][k]

m0[idx][k]/ = (n − kmax) ∗ binSize

end

end

FIG. 10. (Color online) Relative error of the estimated density ρ

(a) and absolute errors of the estimates for f and g2, (b) and (c),
obtained by a MEA. Errors in (a) are relative to the binned density of
the 2D series.

Estimates for density and conditional moments obtained by
a MEA are shown in Fig. 9. As expected from Eq. (41), the
scaled moments now approach f̃ and 2g2/3 respectively for
τ → 0. Also the density m(0) now depends on τ and approaches
the density of the 2D series.

All increments up to τmax = 15	t are used for the least
square fits. The regression functions {1,τ } are used to fit the
density estimates. For the fits of the estimated first and second
conditional moments again the functions {τ,τ 2} respectively
{τ,τ 2,τ 3} are used. There is no need to add functions like τ−2,
as still a case without measurement noise is looked at. The
errors of the resulting estimates for ρ, f , and g2 are shown
in Fig. 10. Opposed to a SEA, shown in Fig. 7, no obvious
biasing of the estimates can be observed and the fluctuations
of δf and δg2 are comparable to those observed in an analysis
of the 2D series using a SMA.

IX. EMBEDDING APPROACHES WITH MEASUREMENT
NOISE

So far, only data without measurement noise as been
analyzed. Next, a series of “noisy” values Y ∗

1 is generated
by adding Gaussian, uncorrelated noise with a variance of
V = 1.6667 × 10−7 (this corresponds to a noise-to-signal
amplitude ratio of 10−3) to the series Y1. This noisy series
Y ∗

1 is then analyzed—first by applying a SEA and next by
applying a MEA.

Moments obtained by a SEA are shown in Fig. 11. Due
to the measurement noise the scaled moments now diverge
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FIG. 11. (Color online) First (a) and second moment (b) of the
conditional velocity increments of the noisy series Y ∗

1 (obtained by
a SEA with θ = 	t). The estimated values (circles) are scaled by
τ−1. The corresponding polynomial fits are shown as solid curves.
Estimates are taken at (y1,y2) = (−0.1,−0.2333). Here f and g2

have values of 0.8 and 1.0 respectively (dashed lines).

for τ → 0. For an estimation of f and g2, therefore, again
only increments with 5 � τ/	t � 15 are used. Least square
fits again are performed using the functions {τ,τ 2} and
{τ,τ 2,τ 3} respectively. The absolute errors δf and δg2 of
the resulting estimates are shown in Fig. 12. It turns out that
g2 is systematically overestimated now. The estimates for f

still show a significant bias that is approximately linear in
y2—although the bias now has switched sign.

Finally our proposed MEA is applied to the series Y ∗
1 ,

which leads to estimates for density and conditional moments
as shown in Fig. 13. For τ → 0 the moments are diverging
because of the terms proportional to τ−2 (and other higher
order terms proportional to negative powers of τ ), as described
by Eq. (41). It is thus necessary now to add appropriate
regression functions that account for these terms: For density

FIG. 12. (Color online) Absolute errors of the estimates for f

and g2, (a) and (b), obtained by using a SEA for the noisy series Y ∗
1 .

FIG. 13. (Color online) Estimated densities (a) and estimated
moments (scaled by τ−1) of the conditional velocity increments (b)
and (c) of the noisy series Y ∗

1 . The estimates (circles) have been
obtained by a MEA. The corresponding fits are shown as solid
curves. The nondiverging parts of these fits are shown as dashed
curves. Estimates are taken at (y1,y2) = (−0.1,−0.2333). Here f̃ [see
Eq. (42)] and 2g2/3 have values of 0.5667 and 0.6667 respectively
and the binned density of the 2D series has a value of 0.7873 (dashed
lines).

estimation, all terms up to order O(ε) are accounted for by
using the functions {1,τ,τ−2}. Fits of the first conditional
moments (yielding an estimate for f̃ ) are performed using
the regression functions {τ,τ−2,τ 2,τ−1,τ−4}, i.e., considering
terms up to order O(ε2). Fits of the second conditional mo-
ments, finally (yielding an estimate for 2g2/3), are performed
using the regression functions {τ,τ 2,τ−1,τ−4,τ 3}. This choice
needs some explanation. First, only τ 3 is present to account
for third-order terms. This is a compromise for numerical
reasons—it reduces the number of regression functions and
avoids numerical problems with large negative powers of τ .
Second, the first-order term 6V/τ 2 is not accounted for by any
regression function. This term is assumed to be known and thus
does not need to be estimated. The value of V is estimated in
advance by extrapolating the autocovariance function of Y ∗

1 to
τ = 0 and then taking the difference to 〈Y ∗2

1 〉 (see Appendix C).
For the given example a fifth-order polynomial without
linear term has been used to extrapolate the autocovariance
values calculated at τ/	t = 1, . . . ,5. Estimates for V that are
obtained this way are accurate within about five percent, as
has been checked numerically.

Using the above sets of regression functions and all
increments up to τmax = 15	t then leads to estimates for f

and g2, the absolute errors of which are shown in Fig. 14. The
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FIG. 14. (Color online) Absolute errors of the estimates for f

and g2, (a) and (b), obtained by using a MEA for the noisy series Y ∗
1 .

estimates are quite heavily fluctuating now. But—at least to
the bare eye—the results seem not to be biased.

X. SUMMARY OF NUMERICAL RESULTS

Solid quantitative results for biases of the results of the
different analyses that have been performed would require
an averaging over a large number of analyses of independent
realizations of Y. Instead, a simpler approach is chosen to
numerically compare the results. A polynomial P with

P = a + b1y1 + b2y2 + c11y
2
1 + c12y1y2 + c22y

2
2 (47)

is fitted to the results for f and g2 using a density weighted least
square fit. According to Eq. (45) the only nonzero coefficients
for f should be b1 = −1 and b2 = −3. For g2 only a = 1
should be nonzero. Defining rms as the root of the density
weighted mean of the squared differences between the actual
estimates and P allows us to also assess the fluctuations. The
results for f and g2 are given in Table I.

TABLE I. Polynomial coefficients and mean errors of a fit of the
estimates for f and g2 respectively. Here SEA∗ and MEA∗ denote
results for the noisy series Y ∗

1 . Bold values are discussed in the text.

f a b1 b2 c11 c12 c22 rms

Exact 0.00 −1.00 −3.00 0.00 0.00 0.00
SMA 0.00 −1.00 −2.97 −0.05 0.01 0.02 0.06
SEA 0.00 −1.00 −2.77 −0.05 0.01 0.02 0.06
MEA 0.00 −0.99 −2.97 −0.05 0.01 0.02 0.06
SEA∗ 0.00 −1.00 −3.16 −0.05 0.01 0.01 0.06
MEA∗ 0.00 −0.97 −2.98 −0.05 0.00 0.00 0.13

g2 a b1 b2 c11 c12 c22 rms
Exact 1.00 0.00 0.00 0.00 0.00 0.00
SMA 1.00 0.00 0.00 0.00 0.00 0.01 0.02
SEA 0.89 0.00 0.00 0.00 0.00 −0.04 0.04
MEA 1.00 0.00 0.00 0.00 0.01 0.00 0.02
SEA∗ 1.11 0.00 0.00 0.00 0.04 0.08 0.04
MEA∗ 1.00 0.01 0.00 0.01 0.02 0.00 0.06

The most pronounced effects of a SEA can be observed
for the coefficient b2, when estimating f , respectively for
the coefficient a, when estimating g2. These coefficients are
also strongest affected by the presence of measurement noise.
Applying a MEA, however, yields results that are comparable
to those obtained by an analysis of the 2D series—at least
if no measurement noise is present. When analyzing noisy
data, the coefficients still are quite accurate, which indicates
the absence of systematical estimation errors. However, the
fluctuations, rms, are quite large then. Eventually this is caused
by the metric of the regression functions. Roughly speaking,
rms becomes large, when the angle between the function {τ }
(the coefficient of which we want to estimate) and the subspace
spanned by the other regression functions becomes small. For
above analyses, this angle is smallest for the set of regression
functions required by a MEA able to analyze noisy data.

XI. CONCLUSIONS

For a time series analysis of a process X that is described
by a stochastically forced second-order ODE, frequently an
embedding strategy as outlined in Sec. I is used: First the
temporal derivative Ẋ is estimated for each point in time by
a numerical differencing scheme, and a new series YT :=
(XT ,ẊT ) is built. Then a Markov analysis is applied to the
series Y in order to estimate its drift and diffusion functions.
However, the errors that are caused by the differencing
scheme lead to notably biased estimates for these functions.
Additionally, even a very small amount of measurement noise
has strong influence on the results.

The errors of the above “standard” approach have been
studied analytically and a modified approach has been pro-
posed. This approach allows for an accurate estimation of the
drift and diffusion functions. Additionally, this approach can
be adapted to also deal with weak measurement noise. This
has been verified for a numerical test case.

In this numerical test it also could be seen that measurement
noise is a bigger problem than one might think intuitively.
Already measurement noise with an noise-to-signal amplitude
ratio of only 10−3 had a severe influence. For the standard
approach, it introduces an additional, notable bias to the
results. When using the “noise-aware” version of our modified
approach, still unbiased results are obtained. However, the
additional ability to also deal with measurement noise has to
be paid for with much stronger fluctuations of the estimates.

The implementation of the presented approach is easily
done and straightforward. The algorithm is not demanding
with respect to memory or CPU power. All calculations have
been performed on a standard desktop PC, where each analysis
took less than one minute.

Compared to the standard approach, our modified embed-
ding approach performs much better at comparable costs. It,
therefore, should be the method of choice in the given setup.

APPENDIX A: TAYLOR–ITÔ EXPANSION OF Y1

A Taylor-Itô expansion of Y1(t) provides a stochastic
description of the values Y1(t + 	) for given Y(t). Assuming
smooth functions f and g, the expansion can be written as
an infinite sum of deterministic and stochastic integrals that
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only depend on 	 and ξ and that are weighted by coefficient
functions. These functions only depend on the values and
derivatives of f and g, evaluated at Y(t). In the following,
some properties of the integrals will shortly be summarized.
A detailed description of the Taylor-Itô expansion and the
properties of the stochastic integrals can be found, e.g., in [1].

Using a multi-index α, the expansion of Y1 can be written
quite compactly,

Y1(t + 	)|y = y1 +
∑

α

cα(y)I t,	
α (ξ ), (A1)

with

α := (α1, . . . ,αn), n ∈ N, (A2)

αi ∈ {0, . . . ,N}. (A3)

Here cα denotes vectors of the above mentioned coefficient
functions. The multiple integrals Iα may contain integrations
with respect to time as well as integrations with respect to
components of the Wiener process W(t), associated with
the Gaussian noise ξ (t). The structure of each integral is
determined by its multi-index α,

I t,	
α :=

∫ t+	

sn=t

∫ sn

sn−1=t

· · ·
∫ s2

s1=t

dZ1 · · · dZn, (A4)

with

dZi :=
{
dsi, αi = 0
dWαi

(si), αi �= 0 . (A5)

The ith integration, therefore, will be performed with respect
to si if the ith component of α is zero. Otherwise, if αi =
j �= 0, the integration will be performed with respect to the
j th component of the vector W(si). The multi-index also
determines the order of magnitude of the integral

I t,	
α = O(	m(α)), (A6)

with

m(α) :=
∑
αi=0

1 +
∑
αi �=0

1

2
. (A7)

Because of Itô’s definition of the stochastic integral, the
expectation value of Iα will be zero if it contains any integration
with respect to a Wiener process, i.e., if there are any nonzero
components in its index vector. Otherwise, when all compo-
nents are zero, the integral becomes purely deterministic and
evaluates to (	n)/n!, where n indicates the length of α.

In Appendix B expectation values of multiple products
of integrals will be of interest. These values in general are
given by multivariant polynomials in the increments 	i of the
involved integrals, where for each monomial the powers sum
up to a value r , which is determined by the index vectors of
the integrals, 〈

k∏
i=1

I t,	i

αi

〉
=

{
P (r)(	1, . . . ,	k)
0

, (A8)

with

r :=
k∑

i=1

m(αi). (A9)

Here a sufficient (but not necessary) condition for a vanishing
expectation value is an odd total number of nonzero entries in
the index vectors, i.e., a nonintegral value of r . Consequently,
for nonvanishing expectation values, r will always be integral.
The coefficients of the above mentioned polynomials, in
general, will not have a uniform definition but will depend
on size relations between the increments. To give an example
(and also to provide a result needed for the calculation of
the moments M(k,ν) in Sec. IV) one such expectation value is
calculated explicitly now. We are interested in

E := 〈
I

t,	1
(i,0) I

t,	2
(j,0)

〉
. (A10)

Using the (somewhat loose) notation dWi(s) = ξi(s) ds,
one first finds

I
t,	1
(i,0) =

∫ t+	1

s2=t

∫ s2

s1=t

ξi(s1) ds1 ds2

=
∫ t+	1

s1=t

∫ t+	1

s2=s1

ξi(s1) ds2 ds1

=
∫ t+	1

s1=t

(t + 	1 − s1)ξi(s1) ds1. (A11)

With 〈ξi(s)ξj (s ′)〉 = δij δ(s − s ′) this leads to

E = δij

∫ 	1

s=0

∫ 	2

s ′=0
(	1 − s)(	2 − s ′)δ(s − s ′) ds ds ′

= δij

∫ min(	1,	2)

s=0
(	1 − s)(	2 − s) ds

= δij

{
1
2	1	

2
2 − 1

6	3
2 , 	2 � 	1

1
2	2

1	2 − 1
6	3

1 , 	2 > 	1

. (A12)

In Appendix B a more restrictive case is looked at, where
the ratios 	i/	j of the increments are kept fix. This can
be expressed by 	i = λi	, where 	 denotes some reference
increment and the factors λi are constants. The expectation
values then become proportional to the rth power of 	,

	i
!= λi	 ⇒

〈
k∏

i=1

I t,	i

αi

〉
=

{
C 	r

0 . (A13)

Next the actual expansion will be given. There is one special
point in the expansion of Y1: If the last entry of an index vector
is nonzero, the corresponding coefficient function cα will be
vanishing [this is due to the fact that Y1 is not directly driven
by noise; see Eq. (9)]. The remaining integrals will thus all be
at least of order O(	),

Y1(t + 	)|y = y1 + y2 	 + f(y)
	2

2
+ g(y)It,	 + Rt,	(y),

(A14)

with

I
t,	
i := I

t,	
(i,0). (A15)

The remainder R is used to summarize all remaining
expansion terms. Its lowest order stochastic terms are given
by c(j,k,0)I

t,	
(j,k,0) and its lowest order deterministic term by

c(0,0,0)I
t,	
(0,0,0). Thus R is a term of order O(	2) with the
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statistical properties 〈
R

t,	
i

〉 = O(	3), (A16)〈
R

t,	
i R

t,	
j

〉 = O(	4). (A17)

APPENDIX B: FUNCTIONAL FORM OF HIGHER ORDER
TERMS

Equation (36) is accurate up to first order only. The
“classical” Markov analysis, as sketched in Sec. I, faces the
same problem: Equation (6), the relation between the moments
m(k) and the Kramers-Moyal coefficients, is accurate up to
order O(τ ) only. However, for Eq. (6) the functional form
(with respect to τ ) of the higher order terms is known—terms
of order O(τn) simply are proportional to τn. Performing a
linear regression with a function base {τ,τ 2, . . . ,τ n} will thus
allow parameter estimations with an accuracy of O(τn) (of
course, there are practical limitations for n).

For higher order estimations in the given setup, the func-
tional form (with respect to τ and θ ) of the higher order terms of
m̂(k) is needed. Because the functional form of all terms of m̂(k)

is dictated by the form of the moments M(k,ν) = 〈Ak ⊗ Bν〉,
the starting point will be the vectors A and B.

According to Eq. (28) the components of both vectors can
be expressed as linear combination of terms that either stem
from the Taylor-Itô expansion or from the measurement noise.
Denoting the former by qξ and the later by qγ , the terms can
be expressed as [using m(α) as defined in Eq. (A7)]

qξ ∈ {
I t,	
α ,θ−1I

t,	
β

}
, (B1)

	 ∈ {θ,τ,τ + θ}, m(α) � 1, m(β) � 3/2, (B2)

and

qγ ∈ {�i(t + 	),θ−1�i(t + 	)}, (B3)

	 ∈ {0,θ,τ,τ + θ}. (B4)

A component of M(k,ν), therefore, can be expressed as a linear
combination of expectation values of k + ν factors q. Because
� is assumed to be external noise, each expectation value,
denoted by Q, can be factorized,

Q :=
〈

n1∏
i=1

q
ξ

i

n2∏
j=1

q
γ

j

〉
=

〈
n1∏

i=1

q
ξ

i

〉 〈
n2∏

j=1

q
γ

j

〉
, (B5)

with

n1 + n2 = k + ν. (B6)

The components �i have been assumed to be Gaussian
noise with a magnitude of O(ε3/2). A nonvanishing expectation
value of a product of n factors �i(t + 	i) will thus be given
by Cγ ε3n/2, where Cγ in general depends on whether or not
τ equals θ . As qγ either denotes a factor � or a factor θ−1�,
one finds 〈

n2∏
j=1

q
γ

j

〉
= Cγ θn2−n′

2 (ε3/θ2)n2/2, (B7)

with

0 � n′
2 � n2. (B8)

The expectation value of a product of integrals Iα will be
a polynomial P in τ and θ , where the coefficients in general
will depend on whether or not τ is smaller than θ . For each
monomial the powers of τ and θ will sum up to a value n′′

1,
determined by the index vectors of the integrals. As qξ either
denotes a factor Iα or a factor θ−1Iβ , one finds〈

n1∏
i=1

q
ξ

i

〉
= θ−n′

1P (n′′
1)(τ,θ ), (B9)

with

0 � n′
1 � n1, n′′

1 � n1 + n′
1/2. (B10)

The expectation values Q can thus be written as a linear
combination of terms Q′, as defined below. Here it has been
used that odd moments of � are vanishing, i.e., only even
values n2 have to be considered,

Q′ = Cτaθb(ε3/θ2)c, (B11)

with

a � 0, a + b � 0, c � 0. (B12)

The value of C depends on whether τ is smaller, equal or
larger than θ . Keeping the ratio of τ and θ fixed, therefore,
leads to a constant factor C. The functional form of the terms
Q′ (and thus of all terms in the moments m̂(k)) is then given by

τ/θ
!= const ⇒ Q′ ∼ τ a(ε3/τ 2)b, (B13)

with

a � 0, b � 0. (B14)

Because τ is assumed to be of order O(ε), the term Q′ is
of order O(εa+b). The function base of terms of order O(εn),
denoted by B(n), thus consists of the τ -dependent parts of all
terms Q′ with a + b = n,

B(0) = {1}, (B15)

B(1) = {τ,τ−2}, (B16)

... (B17)

B(n) = {τn,τ n−3, . . . ,τ−2n}. (B18)

Unfortunately this means B(n) ⊂ B(n+3), which puts a limit
on the accuracy that can be achieved. It is, for example, not
possible to distinguish some of the terms of order O(ε4) from
the terms of order O(ε). At most, therefore, an accuracy of
order 3 can be achieved [if no O(1) terms are present].

APPENDIX C: ESTIMATING V FROM THE
AUTOCOVARIANCE OF Y∗

1

Before attacking the problem of estimating V, the autoco-
variance a(τ ) of Y(t) will be looked at,

a(τ ) := 〈Y(t)YT (t + τ )〉. (C1)

As Y(t) is a Langevin process, some useful properties of a(τ )
can be derived from a Taylor–Itô expansion. First Y(t + τ ) is
expressed as

Y(t + τ ) = Y(t) + h(Y(t),τ ), (C2)

062113-13



B. LEHLE AND J. PEINKE PHYSICAL REVIEW E 91, 062113 (2015)

with the conditional process increment

h(Y(t),τ ) := Y(t + τ )|Y(t) − Y(t). (C3)

This leads to

aij (τ ) = 〈Yi(t)Yj (t)〉 + 〈Yi(t)hj (t)〉

= aij (0) +
∫

y
p(y) yi〈hj (y,τ )〉 dy. (C4)

From the Taylor-Itô expansion the form of 〈h(y,τ )〉 is known
to be given by

〈h(y,τ )〉 =
∞∑

k=1

c(k)(y) τ k, τ � 0. (C5)

So the general form of a(τ ) is given by

a(τ ) = a(0) +
∞∑

k=1

a(k)τ k, τ � 0. (C6)

For small increments τ , therefore, the components of a(τ ) can
be approximated by polynomials in τ . It should be noted, how-
ever, that in general the derivatives of a(τ ) are discontinuous
at τ = 0. A polynomial approximation, therefore, should be
restricted to either positive or negative increments.

Next, the autocovariance of the given time series will be
looked at. As Y is partitioned into the subvectors Y1 and Y2,
the matrices a(τ ) and a(k) can accordingly be partitioned into
submatrices aij (τ ) and a(k)

ij with i,j = 1,2. The autocovariance
of the true values Y1, therefore, is given by

a11(τ ) := 〈
Y1(t)YT

1 (t + τ )
〉 = a11(0) +

∞∑
k=1

a(k)
11 τ k. (C7)

However, the given time series Y∗
1(t) is spoilt by measurement

noise �(t). This noise is assumed to have vanishing mean and
to be independent of Y [see Eqs. (21) and (22)]. The covariance
of Y∗

1, therefore, is given by

a∗
11(τ ) : = 〈

Y∗
1(t)Y∗T

1 (t + τ )
〉

= 〈
Y1(t)YT

1 (t + τ )
〉 + 〈�(t)�T (t + τ )〉. (C8)

As the noise is also assumed to be uncorrelated, one finds

a∗
11(τ ) =

{
a11(0) + V, τ = 0

a11(τ ), τ �= 0
. (C9)

For all values but τ = 0 we thus can estimate the true
covariance a11 from the given time series Y∗

1. According to
Eq. (C7), therefore, the value at τ = 0 can be estimated by
fitting a polynomial to a number of estimates for τ > 0 and
subsequently evaluating the polynomial at τ = 0. Subtracting

this estimate for a11(0) from the value a∗
11(0) (calculated from

the series Y∗
1) then gives an estimate for V.

Even though this approach works, it will show to be useful
to have a closer look at the coefficient a(1) of the linear term in
Eq. (C6). As from the Taylor-Itô expansion the coefficient c(1)

in Eq. (C5) is known to be given by D(1), one first finds

a
(1)
ij =

∫
y
p(y) yiD

(1)
j (y) dy. (C10)

As we are looking at a stationary process, the Fokker-Planck
equation yields the relation (using summation convention)

∂

∂yk

[
p(y)D(1)

k (y)
] = 1

2

∂2

∂yk∂yl

[
p(y)D(2)

kl (y)
]
. (C11)

Multiplying by yiyj and applying integration by parts then
yields (omitting the function argument y)∫

y
p
[
yiD

(1)
j + yjD

(1)
i

]
dy = −

∫
y
p D

(2)
ij dy (C12)

and therefore

a(1) + a(1)T = −
∫

y
p(y) D(2)(y) dy. (C13)

Partitioning D(2) into submatrices D(2)
ij and noting that D(2)

11
equals zero [see Eq. (10)] first gives

a(1)
11 + a(1)T

11 = −
∫

y
p(y) D(2)

11 (y) dy = 0. (C14)

Additionally taking into account the symmetry of V then
finally leads to (note that the sum now starts with k = 2)

ã11(τ ) = ã11(0) +
∞∑

k=2

ã(k)
11 τ k, (C15)

ã∗
11(τ ) =

{
ã11(0) + V, τ = 0

ã11(τ ), τ �= 0
, (C16)

with the symmetric matrices

ã11(τ ) := 1
2

[
a11(τ ) + aT

11(τ )
]
, (C17)

ã(k)
11 := 1

2

(
a(k)

11 + a(k)T
11

)
, (C18)

ã∗
11(τ ) := 1

2

[
a∗

11(τ ) + a∗T
11 (τ )

]
. (C19)

The components of ã11(τ ), therefore, can be approximated by
polynomials in τ without a linear part. Using such polynomials
to fit the values ã∗

11(τ ), therefore, should lead to more accurate
estimates of V due to the reduced number of unknown
polynomial coefficients.
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