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Thermodynamics of weakly coupled Falicov-Kimball chains from renormalization-group theory
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The linear perturbation renormalization group is used to study spinless two-band fermion chains at half-filling.
The model consists of two species of spinless fermions, namely localized f and extended p, and it takes into
account the following: the kinetic energy of fermions p, the on-site Coulomb repulsion V between p and
f fermions, chemical potentials μp and μf adjusted in such a way that the average of the site occupation
〈ni

f 〉 + 〈ni
p〉 = 1, and a weak interchain hopping tx . The average occupation number, the specific heat, and the

correlation functions are studied as functions of temperature. For a single chain the occupation number is a smooth
function of T and the specific heat displays two maxima. The weak interchain hopping triggers a discontinuity
in the occupation number of fermions as a function of temperature. A long-standing controversy on whether the
Falicov-Kimball model can describe a discontinuous transition of nf is also addressed.
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I. THE MODEL

Spinless fermions [1] can be considered as fully polarized
electrons in a high magnetic field, but usually they are studied
as a simplified model for the spin- 1

2 fermions. Such a model
is, of course, magnetically uninteresting, but it can still have
interesting features associated with the effect of a competition
between Coulomb repulsion and kinetic energy as well as inter-
band mixing or charge ordering. For the single-band spinless
model at half-filling and zero temperature, it is expected that a
growth of the Coulomb repulsion leads to a transition from a
metallic to an insulating charge-ordered state. The evaluation
of physical quantities at finite temperature possesses some
difficulties even for one-dimensional integrable models. The
thermodynamics of such a model has been discussed by the
thermodynamic Bethe ansatz and by the quantum transfer-
matrix approach [2]. In our previous paper [3], we have used
the linear renormalization-group transformation to study the
weakly coupled chains of the spinless model, and we found
the metal-insulator phase-transition temperature as a function
of the interchain hopping parameter.

A single-band spinless model is not sufficient to describe all
the relevant physics of the highly correlated electron systems.
Therefore, to describe strong electron-electron correlations,
several extensions and generalizations of the single-band
spinless model have been proposed. And so, the spinless
periodic Anderson model with phonons [4] and the extended
Hubbard model with spinless itinerant and localized electrons
[5–7] were used in the past for the description of the
mixed-valance systems. The latter model in the limit of
infinite dimensions was studied in the context of the metal-
insulator transition [8]. The renormalization-group equation
was derived for the two-band spinless fermion model in
one dimension by Muttalib and Emery [9]. In this paper,
we study the thermodynamic properties of the simplified
two-band Hubbard model without hybridization, proposed by
Falicov and Kimball [10] to describe the metal-semiconductor
transitions in metallic oxides. The Falicov-Kimball model
(FKM) is one of the simplest nontrivial interacting electron
models, and since its creation it has attracted much attention
in the literature. It has been used to study several phenomena,
most commonly metal-insulator transitions [11,12], phase

separation in the binary alloy [13], intermediate valence [14],
and charge-density-wave order [15].

Except for very few rigorously controlled results in the
strong-coupling regime and low temperature [16], much of the
finite-temperature results for the FKM have either been based
on the molecular field approximation, or they are restricted to
one [17,18] or an infinite number of spatial dimensions [19].
Recently, the Suzuki-Takano renormalization-group transfor-
mation [20] combined with the Migdal-Kadanoff bond moving
approximation [21] was used to find the phase diagram of the
FKM [22]. The authors obtained the global phase diagram
of the d = 3 FKM for a whole range of interactions (hop-
ping, on-site Coulomb repulsion, and chemical potentials).
However, they have not studied the temperature dependence
of the thermodynamic quantities, and we should notice that
the Migdal-Kadanoff approximation badly reproduces the
physical content of the simplest s = 1

2 field-free Heisenberg
model, and it gives rather poor quantitative results even for the
two-dimensional (2D) Ising model.

The model considered in this paper is composed of an
infinite number of spinless fermion chains coupled by weak
interchain hopping. The model consists of two species of spin-
less fermions, namely localized, denoted by f , and extended,
p, and it can be defined by the following Hamiltonian:

H = H0 + HI , (1)

where H0 denotes a one-chain Hamiltonian,

H0 = t̃p
∑
〈ij〉

(p†
i pj + p

†
jpi) + Ṽ

∑
i

ni
f ni

p

+ μ̃p

∑
i

ni
p + μ̃f

∑
i

ni
f , (2)

and

t̃p = tp

T
, Ṽ = V

T
, μ̃i = μi

T
, (3)

p
†
i ,pi (ni

p = p
†
i pi) are the creation and annihilation operators

of the itinerant spinless fermions, and f
†
i ,fi (ni

f = f
†
i fi)

are the creation and annihilation operators for the spinless
fermions in the localized state. A factor −β = −1/kBT has
been absorbed in the Hamiltonian (1). Thus, V < 0 denotes
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FIG. 1. (Color online) Averages of the site occupations 〈nf

i 〉 and
〈np

i 〉 as functions of temperature for tp = 0, V = −4 and μf = 0
(dashed lines) and μf = 2.1 (solid lines).

the repulsive Coulomb interaction. The first term in (2) is the
kinetic energy corresponding to the hopping of the itinerant
fermions p between sites i and j . The second term represents
the on-site Coulomb repulsion between p itinerant and f

localized fermions. μp and μf are chemical potentials adjusted
in such a way that the average of the site occupation〈

ni
f

〉 + 〈
ni

p

〉 = 1. (4)

In this paper, we assume that the localized level μf is
temperature-independent and the condition (3) is fulfilled
by calculating the chemical potential μp. For tp = 0, the
model (1) describes two classical subsystems (Ising models),
both chemical potentials are temperature-independent, and the
condition 〈ni

f 〉 + 〈ni
p〉 = 1 is fulfilled for

μf + μp = −V. (5)

In the symmetric case, μf = μp = −V/2, the average oc-
cupation numbers (AONs) 〈nf 〉 = 〈np〉 = 1/2, whereas for

μf �= μp the AONs are temperature-dependent. In Fig. 1,
the average occupation numbers for tp = 0 and two cases:
(i) μf = 0, μp = −V and (ii) μf = 2.1, μp = 1.9, V = −4,
are presented.

The interchain coupling is restricted to the hopping of the p

fermions between the nearest-neighbor chains, and HI reads

HI = t̃x
∑
i,n

(p†
i,npi,n+1 + p

†
i,n+1pi,n), (6)

where n numbers the chains. In the following, all values will
be given in units of tp (tp = 1).

The purpose of this paper is to use the linear perturbation
renormalization group to study the thermodynamics: the
specific heat, correlation functions, and average occupation
number of the p fermions, as functions of temperature of the
two-band spinless fermion model (FKM). The discontinuous
transition of the p (f ) -fermion occupation number 〈np〉 (〈nf 〉)
as a function of temperature is also discussed.

II. LINEAR PERTURBATION
RENORMALIZATION GROUP

The linear perturbation renormalization-group (LPRG)
approach starts with an approximate decimation of one
chain (2). Then, on the basis of it the interchain interaction
is renormalized in a perturbative way [23].

The RG transformation for the Hamiltonian (1) is defined
by

eH ′(σ̂ ,φ̂) = TrpP (σ̂ ,φ̂; p̂,f̂ )eH (p̂,f̂ ) (7)

with a linear weight operator P (σ̂ ,φ̂; p̂,f̂ ), which projects the
original fermions p and f space onto the space of the new
fermions σ and φ,

P (σ̂ ,φ̂; p̂,f̂ ) =
∏
i=0

(
1 + p

†
mi+1σi+1 + σ

†
i+1pmi+1 + 2nmi+1

p ni+1
σ − nmi+1

p − ni+1
σ

)
× (

1 + f
†
mi+1φi+1 + φ

†
i+1fmi+1 + 2nmi+1

f ni+1
φ − nmi+1

f − ni+1
φ

)
, (8)

where σ
†
i ,σi (ni

σ = σ
†
i σi) and φ

†
i ,φi (ni

φ = φ
†
i φi) are the cre-

ation and annihilation operators of the new spinless fermions.
For a single chain (2), the transformation (7) and (8) is
a Suzuki-Takano [20] -type decimation transformation. For
instance, for m = 2 in each renormalization step, every other
site survives, whereas for m = 3 every third site survives, and
so on. To obtain effective interactions between the operators
on surviving sites, for m = 2 a three-site block has to be
considered, and generally an (m + 1)-site block for any m.

For an infinite number of chains, the RG transformation (7)
can be written as

H ′ = ln Trp,f P eH0+HI . (9)

For simplicity, from now on we omit arguments of the
operators H and P . Due to the noncommutativity of several

parts of the Hamiltonian, there is a necessity for an approx-
imate decomposition of the exponential operator. The sim-
plest second-order decomposition is given by the symmetric
product [24]

eH0+HI ≈ e
H0
2 eHI e

H0
2 . (10)

The interchain interaction HI is renormalized in a perturbative
way, and if we confine ourselves to the second order in the
cumulant expansion the transformation (9) can be rewritten as

H ′ = ln z0 + 1
2 (〈HI 〉P + 〈HI 〉L)

+ 1
8

(〈
H 2

I

〉
P

+ 2
〈
H 2

I

〉
P−L

+ 〈
H 2

I

〉
L

)
− 1

8

(〈HI 〉2
P + 2〈HI 〉P 〈HI 〉L + 〈HI 〉2

L

)
, (11)
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where

z0 = Trp,f P eH0 , 〈A〉L = 1

z0
Trp,f PAeH0 ,

〈A〉P = 1

z0
Trp,f P eH0A, 〈A2〉P−L = 1

z0
Trp,f PAeH0A.

(12)

In contrast to the one-band model [3], in the case of
the Hamiltonian (2) the RG transformation generates new
interactions even for a single chain. So, except for the four
original parameters (2)—tp, V , μp, and μf —in the renormal-
ization procedure, the following eight new couplings come into
play:

upni
pnj

p, uf ni
f n

j

f , vni
pn

j

f , g1n
i
pnj

pni
f , g2n

i
f n

j

f ni
p,

g4n
i
f n

j

f ni
pnj

p, gpp
†
i pjn

i
f , gnp

†
i pjn

i
f n

j

f . (13)

If one considers the chains in higher dimensions, the
LPRG transformation (9) generates additional interactions.
The number of these new interactions already in the lowest
nontrivial order cumulant expansion is infinite for an infinite
system [23,25]. So, the LPRG transformation is obtained
by using several approximations: the abbreviation of the
cumulant expansion (11), the truncation of the new interchain
interactions generated by the transformation, the approximate
decomposition of the exponential operator (10), and the block
approximation used for one-dimensional decimation [20]. All
of these approximations are high-temperature approximations.
Thus, the LPRG is a reliable approach at rather high tempera-
tures.

III. TWO-BAND SPINLESS FERMION CHAIN

As mentioned above, applying the transformation (7) with
the projector (8) for any m to the single-chain Hamilto-
nian (2), one obtains a renormalized Hamiltonian H′ for new
fermion operators (σ †,σ,φ†,φ) and renormalized parameters
t ′p, μ′

p, μ′
f , and V ′ with eight additional terms (12) generated

by the transformation. So, one has to complete the original
Hamiltonian (2) by those couplings, and finally consider
the renormalization-group flow in 12-dimensional coupling
parameter space. For m = 3 (four site block), the renormalized
couplings read

t ′p = 1

2
lg

λ5

λ4
, μ′

f = 2 lg
λ2

f0
, μ′

p = lg
λ4λ5

f 2
0

,

(14)

V ′ = lg
f 2

0 λ6λ8

λ2
2λ4λ5

− fV − fv

W
lg

λ6

λ8
,

where

W =
√

4f 2
gp

+ 8fgp
ftp + 4f 2

tp + (fV − fv)2, (15)

and λi are eigenvalues of the operator H0,

λ2 = f0 + fμf
, λ4,5 = f0 + fμp

∓ ftp ,

λ6,8 = 1
2

(
2f0 + 2fμp

+ 2fμf
+ fV + fv ∓ W

)
, (16)

with

f0 = Trp,f Rf RpeH0 , ft = Trp,f p1p
†
4e

H0 ,

fμp
= Trp,f (2n1p + n4p − 2n1pn4p − 1)Rf eH0 ,

(17)
fμf

= Trp,f (2n1f + n4f − 2n1f n4f − 1)RpeH0 ,

fV = Trp,f (2n1p − 1)(1 − n4p)(2n1f − 1)(1 − n4f )eH0 ,

and

Rf = (1 − n1f − n4f + n1f n4f ),

Rp = (1 − n1p − n4p + n1pn4p). (18)

The other H0 eigenvalues and formulas for the
effective couplings generated by the RG transformation
(u′

p, u′
f , v′, g′

1, g
′
2, g

′
4, g

′
p, and g′

n) are presented in the
Appendix.

We are now able to evaluate numerically the renormaliza-
tion transformation (7) [the appropriate recursion relations are
given by Eqs. (14) and (A3)]. The RG transformation allows
us to find the thermodynamic properties of the system. The
free energy per site can be calculated by using the following
formula:

f =
∞∑

n=1

ln f0
(
t (n)
p ,μ(n)

p ,μ
(n)
f ,V (n), . . .

)
3n

, (19)

where “n” numbers the RG steps. Knowing the temperature
dependence of the free energy, one can find the temperature
dependences of the internal energy and specific heat but also
the average occupation numbers and correlation functions on
site i-Gp,f and adjacent sites i,j -Gp,p,Gf,f :

Gp,f ≡ 〈
ni

pni
f

〉
, Gp,p ≡ 〈

ni
pni+1

p

〉
, Gf,f ≡ 〈

ni
f ni+1

f

〉
. (20)

The first step in the LPRG procedure is the choice of
the block size. It is obvious that a renormalization-group
transformation should preserve all symmetries of the original
problem. This determines, to some extent, the choice of the
block size. For example, if one wants to admit the possibility
of the existence of a phase transition to the two-sublattice

0.5 1.0 1.5 2.0 2.5 3.0 T0

1

2

3

4

5

6

µp

µ f 4.9

µ f 5.1

µ f 1.9

µ f 2.1

FIG. 2. (Color online) Temperature dependence of the chemical
potential μp adjusted to fulfill the condition 〈nf 〉 + 〈np〉 = 1 for
tp = 1. Upper curves: V = −10, μf = 4.9, 5.1, and 5 (dashed line)
and bottom curves: V = −4 and μf = 1.9 and 2.1.
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FIG. 3. (Color online) The chemical potentials μf and μp for the
model with V = −10, μf = 5.1, and the edges of the p-band (dashed
lines).

phase, one should use blocks with an even number of sites
(4,6,8, . . . ). The advantage from the use of a larger block was
discussed in our previous article [3]. However, in this paper,
taking into account a number of degrees of freedom for the
two-band model, for simplicity, we will confine ourselves to
the four-site block. As shown in Ref. [3], for such a block
at very low temperature, some anomaly in thermodynamic
functions is observed, which can be an artefact of neglecting
quantum effects between adjacent blocks. So, due to the
restricted validity of our procedure at low temperatures, all
curves are only shown for the reduced temperature T > 0.5.

Using the recursion relations (14) and (A3), one can
calculate the AON for a fixed value of μf and several values
of μp and find for a given temperature the value of μp for
which the relation 〈nf 〉 + 〈np〉 = 1 is fulfilled. In Fig. 2, the
fitted chemical potential μp as a function of temperature is
presented for two values of the Coulomb repulsion V = −4
with fixed values of μf = 1.9 and 2.1 and V = −10 with
μf = 4.9, 5.1, and 5 (dashed line), all in units of tp. The
visible change in the temperature dependence of μp at lower
temperature seems to be due to the proximity of μf to the
p-band edge. For example, as seen in Fig. 3 for the model

1.0 1.5 2.0 2.5 3.0 T

0.1

0.2

0.3

0.4

C

µ f 5.1

µ f 4.9

µ f 2.1

µ f 1.9

FIG. 5. (Color online) Temperature dependence of the one-chain
specific heat for tp = 1, (i) V = −4, μf = 1.9, and 2.1 and (ii) V =
−10, μf = 4.9, 5.1, and 5 (dotted line).

with V = −10 and μf = 5.1, the p-band edge crosses the
level f around T = 0.63. Evaluating numerically the recursion
relation, one finds that the RG transformation exhibits only
one high-temperature fixed point (t∗p = 0,V ∗ = const) as one
expects for a one-dimensional system, and the system does not
undergo any finite-temperature phase transition. Now, using
the formula (19) for the free energy per site, we can evaluate
the average of the band occupation number, specific heat, and
two-point correlation functions.

In Fig. 4, the average occupation numbers as functions
of temperature are presented for two values of Coulomb
repulsion: (i) V = −4 with μf = 1.9 and 2.1; (ii) V = −10
with μf = 4.9, 5.1, and 5. According to the convention
adopted in this paper, where negative V corresponds to
the repulsive Coulomb interactions, for μf > − 1

2V the p

fermions are transferred to the localized state f , and vice versa
for μf < − 1

2V the localized fermions are transferred to the
band with decreasing temperature. As seen in the first case (i)
V = −4 (left plot), this transfer is smooth, and for μf > − 1

2V

(μf < − 1
2V ), np > nf (np < nf ) over the whole range of

temperature (from now on we omit the brackets and denote an
average as nα , α = f or p). For larger coupling (ii) V = −10

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 T

0.2

0.4

0.6

0.8

1.0

np , nf
a

np f 1.9

nf f 1.9
np f 2.1
nf f 2.1
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1.0

np , nf
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np f 4.9

nf f 4.9
nf f 5.1
np f 5.1

FIG. 4. (Color online) Averages of the site occupation as functions of temperature for tp = 1, (a) V = −4 (μf = 1.9,2.1) and (b) V = −10
and μf = 4.9, 5.1, and 5 (thin lines; the upper one denotes 〈np〉).
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FIG. 6. (Color online) Temperature dependence of the correla-
tion functions for tp = 1,V = −10 and μf = 5.1 (solid lines) and
μf = 5 (dotted lines, upper one denotes Gp,p).

(right plot), we consider three cases. For μf = − 1
2V = 5

the occupation numbers np and nf are almost temperature-
independent over a wide temperature range. However, due to
the hopping term, np > nf for T > Teq = 0.525. At T = Teq,
the curves nα(T ) intersect and then both AON tend to the
value np = nf = 1

2 . For μf = 4.9 < − 1
2V similarly to the

weaker coupling case (V = −4), np > nf over the whole
range of temperature. In contrast, for μf = 5.1 > − 1

2V at
high temperature np > nf , the occupation numbers are equal
to each other at Teq = 1.41 and then nf > np, as expected.

The specific heat as a function of temperature for the
same models is presented in Fig. 5. For the symmetric case,
μf = − 1

2V = 5, the specific-heat curve has a single broad
maximum. In other cases, the specific heat displays two
maxima and a minimum, the depth of which depends on the
coupling strength. A two-maxima structure of the specific heat
is also observed in the standard one-dimensional Hubbard
model with U > 4t , and the minimum corresponds to a
maximum in the electronic localization [3]. In the present
model, the minima correspond to the maxima in the fermion
transfer from the p-band to the f -level (for μf > − 1

2V ) or
vice versa from the f -level to the p-band (for μf < − 1

2V ).
As seen in Fig. 4, at high temperatures the average occupation
numbers weakly depend on temperature (the transfer between

bands is slow) down to a certain temperature at which the
transfer rapidly increases. The same two-peak specific-heat
structure with a sharp peak followed by a broad peak was
found for one-dimensional FKM within small cluster exact-
diagonalization calculations [17].

Next, we use the RG transformation to find the two-
particle on-site Gp,f and nearest-neighbor (NN) Gf,f and
Gp,p correlation functions (20). In Fig. 6, their temperature
dependences are shown for V = −10 and μf = 5 and 5.1.
At high temperatures, all functions tend to 1

4 , which means
1
2 p-particle and 1

2 f -particle per site, as expected. At low
temperature, the on-site function Gp,f monotonically goes
to zero in both cases μf = 5 and 5.1. Instead, the NN
function Gp,p for the symmetric case μf = 5 first slightly
increases from 1

4 (Gf,f decreases) and then tends again to 1
4 .

For μf = 5.1, Gp,p tends to zero.

IV. COUPLED FERMION CHAINS

Below in this section, we shall use the LPRG to study a
system with an infinite number of spinless fermion chains at
finite temperature, where the chains are coupled by the weak
interchain single-particle hopping tx (6). As was mentioned
above, the LPRG transformation when applied on an infinite
system generates an infinite number of new interactions al-
ready in the lowest nontrivial order of the cumulant expansion.
Thus, in order to find the renormalized Hamiltonian, we have
to confine ourselves to a finite cluster. In a second-order
calculation, one has to consider three rows. We use a cluster
with four sites in each row (4 − 4 − 4). So the sites from the
first and third rows (odd rows) are decimated such that in
each RG step every third site survives, whereas sites from the
second row (even row) are removed (the trace is taken over all
sites) [23]. In addition, for simplification we will consider only
two-site interchain interactions, thereby neglecting four-site
interactions which appear for the (4 − 4 − 4) cluster. Under
such an assumption, the LPRG transformation generates only
one new interaction—an interchain diagonal hopping,

ty
∑
i,n

(p†
i,npi+1,n+1 + p

†
i+1,n+1pi,n). (21)

Hence, in the second-order cumulant expansion for the cluster
(4 − 4 − 4), one has to evaluate the averages (11) of H 2

I ,

〈
H 2

I

〉
α

=
〈(

2∑
n=0

4∑
i=1

[tx(p†
i,npi,n+1 + p

†
i,n+1pi) + ty(p†

i,npi+1,n+1 + p
†
i+1,n+1pi,n)]

)2〉
α

, (22)

which means the averages of several fermion operators
products, e.g.,

t2
x

〈
4∑

i=1

p
†
i PiP

†
i+1pi+1

〉
, (23)

where in Eq. (22) the operators p†,p refer to the decimated
(odd) rows, and operators denoted by upper-case P †,P refer
to the removed (even) rows. These averages have rather

complicated expressions, and as an example we present the
appropriate formula for (23) in the Appendix.

Now, the transformation (11) allows us to find 14 renor-
malized parameters: four single-chain couplings t ′p,μ′

p,μ′
f ,V ′

(2), eight created by RG for the single chain (13), and
two interchain t ′x,t

′
y as functions of the original parameters.

Knowing the recursion relations for the interaction parame-
ters, one can evaluate numerically the LPRG transformation
for the Hamiltonian (1) defined by the original parameters
tp, V , μp, μf , and tx and analyze a flow in 14-dimensional
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FIG. 7. (Color online) Temperature dependence of the weakly
coupled chain chemical potential μp for tp = 1, V = −4, and tx = 0,
0.1, and 0.2 (from top to bottom).

coupling parameter space. Now again, we have to find the
chemical potential μp for which the condition 〈np〉 + 〈nf 〉 =
1 is fulfilled (μf is assumed to be constant). The results are
presented in Fig. 7 for two values of the interchain coupling
tx = 0.1 and 0.2 and compared with the chemical potential of
a single chain. Next we are able to evaluate the specific heat.

At this stage, it is worthwhile to remind ourselves of
the LPRG results for the two-dimensional one-band spinless
fermion model at half-filling (μp = −up) [3] given by the
Hamiltonian

H = tp
∑
〈ij〉

(p†
i pj + p

†
jpi) + up

∑
i

ni
pni+1

p + μp

∑
i

ni
p

+ tx
∑
i,n

(p†
i,npi,n+1 + p

†
i,n+1pi,n), (24)

where n numbers chains.
For tx �= 0 and T >T ∗, the RG flow is toward a T =∞

fixed point t∗p = 0,t∗x = 0 (solid lines in Fig. 8), which
describes a disordered phase, whereas for T < T ∗ (dashed
lines) the coupling parameter tx diverges (tx → −∞). The
temperature T ∗ = Tc can be interpreted as a critical tempera-
ture between a disordered phase where the average occupation
number of the p fermions is the same for all sites, and a

FIG. 8. (Color online) The iteration of the parameters tp and tx at
T > T ∗ (solid lines) and T < T ∗ (dashed lines) for the single-band
model (24).

FIG. 9. (Color online) Temperature dependences of the coupled
chain occupation numbers 〈nf 〉 and 〈np〉 for tp = 1, V = −4,

μf = 2.1, and tx = 0 (dashed line) and tx = 0.1 and 0.2 (solid lines).

charge-ordered phase where this number is different in every
other site in a chain. The critical temperature corresponds to
the specific-heat divergence as seen in Fig. 10 (dashed lines).
Notice that in the model (24) as well as in the present model,
there is no Coulomb interaction between the chains, which are
coupled only by the hopping tx . Thus, the weak interchain
hopping in the one-band case triggers a charge-ordering
continuous phase transition.

Let us now turn to the two-band model described by
the Hamiltonian (1). As presented in Fig. 7, contrary to the
one-dimensional case for the coupled chains μp for which the
condition (3) is fulfilled, there is a smooth function of T only
if the temperature is higher than some Tb = T (tx) (Tb ≈ 0.74
for tx = 0.1 and Tb ≈ 0.88 for tx = 0.2). Technically, if we
start with some values of the original parameters, for example
μp = 2.1, V = −4, tp = 1, tx = 0.1, and iterate the recursion
relations for several values of μp at a given temperature, we can
find a value of μp that leads to 〈np〉 + 〈nf 〉 = 1. It appears that
such a continuous solution exists only for T � Tb. At T = Tb,

FIG. 10. (Color online) Temperature dependence of the coupled
chain specific heat for tp = 1, V = −4, μf = 2.1, and tx = 0.1 and
0.2 (solid lines). For comparison, the specific heat for a single-band
system at half-filling with tp = 1, up = −4, and μp = 4 for tx = 0,
0.1, and 0.2 is presented (dashed lines).
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FIG. 11. (Color online) Temperature dependence of the coupled chain chemical potentials and specific heat for tp = 1, V = −4, μf = 2.1,
and tx = 0.1 (a) and tx = 0.2 (b).

the solution for μp undergoes a jump and consequently the
discontinuity in occupation number is observed (Fig. 9).
This supports the claim that the FK model can describe the
discontinuous transitions of the p- (f -) fermion occupation
number as a function of temperature [26] at least for the
weakly coupled chains. The value of the jump decreases upon
increasing the interchain coupling tx . Unfortunately, within the
present approximation we are not able to decide if the jump
vanishes for the isotropic case (tx = tp).

In Fig. 10, the specific-heat curves of the present model
are compared with the results for the weakly coupling chains
of the one-band spinless fermion model [3]. As seen in the
latter case, the specific heat diverges for a finite value of
the coupling parameter tx as expected at the critical point.
For small interchain coupling (tx = 0.1), this divergence is
preceded by the hump as a trace of the quasi-one-dimensional
character of the system. The hump disappears for larger tx ,
and for tx = 0.2 it is almost invisible. On the contrary, in
the present model there is no indication of the continuous
phase transition at finite temperature. The specific heat shows
a maximum below the temperature at which the band edge
(μp − 1) crosses the level μf (Fig. 11) and the discontinuity
at T = Tb due to the jump of the occupation number.

V. SUMMARY

First, the one-dimensional two-band spinless fermion
model with p-fermion hopping term tp, on-site Coulomb
repulsion V , and chemical potentials μp,μf with one electron
per site (Falicov-Kimball model) has been studied by means of
the linear renormalization-group transformation. The chemical
potential μp has been determined self-consistently by taking
into account the conservation of the total number of electrons.
The method should lead to reasonable results for tp not too
large (compared with V ) and at high temperature. Therefore,
two cases have been considered: (i) |V | = 4tp and (ii) |V | =
10tp at reduced temperature T > 0.5. In both cases, the value
of μf has been fixed to be slightly below and above −V/2.
In the first case (i) μf = 1.9 and 2.1 (V = −4,tp = 1) and in
the second case (ii) μf = 4.9 and 5.1 (V = −10). At high
temperature, the chemical potential is almost temperature-
independent, especially for the weaker coupling (V = −4)

over a wide temperature interval. At lower temperature, the
character of the temperature dependence of μp clearly changes
(Fig. 2), and the transfer of electrons between the bands rapidly
increases (Fig. 4). In all cases, the occupation numbers are
smooth functions of T as expected; only in the case of strong
coupling (V = −10) and μf = 5.1 > − 1

2V do the occupation
number curves nf (T ) and np(T ) intersect at T ≈ 1.41. The
specific-heat curves exhibit a two-maximum structure found
previously for the same model by the small-cluster exact-
diagonalization calculations [17].

For higher dimension, the question of whether the discon-
tinuous transition of the occupation number as a function
of temperature occurs in FKM is still an issue of interest.
This question was discussed in the review article of Freericks
and Zlatić [19]. The charge-transfer transition in which the
character of the electronic states is unchanged, but their
occupancy is shifted from an itinerant to a localized band
in FKM, was first studied by Falicov, Kimball, and Ramirez
[11,26]. Within the molecular field approximation (MFA), they
showed that the occupation number nf for some values of the
coupling parameter undergoes a jump at finite temperature.
However, in the presumably better approximation (e.g., the
coherent-potential approximation), for the same values of
the parameters, nf is a smooth function of T [12,27]. No
discontinuous transition at finite temperature has been found
by using small-cluster exact-diagonalization calculations [17].
Later, Chung and Freericks [28] showed that for an infinite-
coordination Bethe lattice, a first-order charge-transfer phase
transition can be observed for a narrow value range of the
Coulomb interaction. The first-order phase transition has also
been observed by using the Monte Carlo method in the weak
interaction regime [29].

In this paper, to study FKM chains we employed the LPRG
method on the (4 − 4 − 4)-cluster by confining ourselves to
two-site interactions only. We have assumed that the chains
are coupled by a weak single-particle hopping. Also in this
case, the chemical potential μp is determined by the condition
np + nf = 1. However, for the weakly coupled chains, the
LPRG recursion relations lead to the solution for μp , which has
a jump. Consequently, there is a discontinuity in the occupation
number as a function of temperature (Fig. 9). The value of the
jump is smaller for higher interchain hopping, and within the
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FIG. 12. (Color online) Temperature dependences of the coupled chain internal energy (a) and correlation functions Gff ,Gpf (b) for
tp = 1, V = −4, μf = 2.1, and tx = 0.1.

present approximation we cannot decide whether a finite jump
would also remain for the isotropic system with tx = tp. The
present approach does not permit us to analyze a system below
a critical point or spinodal, however we have found discontinu-
ity in the occupation number (Fig. 9) and jumps of the internal
energy (Fig. 12) and the on-site Gpf = 〈ni

pni
f 〉 and nearest-

neighbor Gff = 〈ni
f ni+1

f 〉 correlation functions (Fig. 12). This

indicates a discontinuous transition in which the electrons are
transferred from the “p” band to the localized “f ” level.

Thus, we conclude that the weakly coupled Falicov-
Kimball chains with one electron per site (nf + np = 1)
undergo a finite-temperature charge-transfer discontinuous
phase transition in which for μf > − 1

2V , fermions are shifted
from an itinerant to a localized band.

APPENDIX

1. Recursion relations for a single chain

The eigenvalues of the single-chain Hamiltonian (2) completed by the couplings (12) generated by the RG transformation
have the form

λ10 = f0 + 2fμf
+ fuf

, λ(11,12) = f0 + fg2 ∓ fgn
∓ 2fgp

+ 2fμf
+ fμp

∓ ftp + fV + fv + fuf
,

λ13 = f0 + 2fμp
+ fup

, λ14 = f0 + 2fg1 + fμf
+ 2fμp

+ fV + fv + fup
,

λ16 = f0 + 2fg1 + 2fg2 + fg4 + 2fμf
+ 2fμp

+ 2fV + 2fv + fuf
+ fup

, (A1)

where

fv = Trp,f (2n1p − 1)(1 − n4p)(2n4f − 1)(1 − n1f )eH0 ,

fup
= Trp,f (2n1p − 1)(2n4p − 1)Pf eH0 ,

fuf
= Trp,f (2n1f − 1)(2n4f − 1)PpeH0 ,

fg1 = Trp,f (2n1p − 1)(2n4p − 1)(1 − n1f )(2n4f − 1)eH0 ,

fg2 = Trp,f (2n1p − 1)(1 − n4p)(2n1f − 1)(2n4f − 1)eH0 ,

fg4 = Trp,f (2n1p − 1)(2n4p − 1)(2n1f − 1)(2n4f − 1)eH0 ,

fgp
= Trp,f p1p

†
4(2n1f − 1)(1 − n4f )eH0 ,

fgn
= Trp,f p1p

†
4(2n1f − 1)(2n4f − 1)eH0 . (A2)

and renormalized couplings are

v′ = 1

2
lg

f 2
0

λ2
2λ4λ5

+ fV − fv

2Q
lg

λ6

λ8
+ 1

2
lg(λ6λ8), u′

p = lg
f0λ13

λ4λ5
, u′

f = lg
f0λ10

λ2
12

,

g′
1 = lg

λ4λ5λ12λ14

f0λ13λ16λ18
, g′

2 = 1

2
lg

λ4
2λ4λ5λ8λ11

f 2
0 λ2

10λ
2
6λ

2
8

− R lg(λ12),
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g′
4 = lg

f0λ
2
6λ

2
8λ10λ12λ13λ16

λ2
2λ4λ5λ11λ

2
14

+ R lg(λ12), g′
p = 1

2
lg

λ4

λ5
− fgp

+ ftp

W
lg

λ6

λ8
,

g′
n = 1

2
lg

λ5

λ4λ11
+ 2(fgp

+ ftp )

W
lg

λ6

λ8
− 1

2
R lg(λ12), R = fgn

+ 2fgp
+ ftp

fgn
− 2fgp

− ftp

. (A3)

2. Coupled chains

To evaluate the transformation (10), one has to know the averages of the products of the original fermion operators from the
decimated (p) and removed (P ) rows of a type 〈p†

i PkP
†
l pj 〉. All of them are expressed through the effective fermion operators

(σ †,σ,φ†,φ) and, for example,〈
4∑

i=1

p
†
i PiP

†
i+1pi+1

〉
= −

4∑
i=1

〈p†
i pi+1〉〈P †

i+1Pi〉 = −r1〈Q̂〉

= −r1
(
Q10 + Qμp

(
n(1)

σ + n(2)
σ

) + Qμf

(
n

(1)
φ + n

(2)
φ

) + Qup

(
n(1)

σ n(2)
σ

) + Quf

(
n

(1)
φ n

(2)
φ

)
+QV

(
n(1)

σ n
(1)
φ + n(2)

σ n
(2)
φ

) + Qv

(
n(1)

σ n
(2)
φ + n(2)

σ n
(1)
φ

) + Qtp (σ †
1 σ2 + σ

†
2 σ1)

)
, (A4)

where

Q̂ =
4∑

i=1

p
†
i pi+1, (A5)

and

Q10 = C0Z0, Qμk
= Cμk

Z0 + C0Zμk + Cμk
Zμk

(k = p,f ),

Quk
= C0Zuk

+ 2Cμk

(
Zμk

+ Zuk

) + Cuk

(
Z0 + 2Zμk

+ Zuk

)
,

QV = Cμf
Zμp

+ (
C0 + Cμf

)
ZV + Cμp

(
Zμf

+ ZV

) + CV

(
Z0 + Zμf

+ Zμp
+ ZV

)
,

Qv = Cμp
Zμf

+ Cμf
Zμp

+ Cv

(
Z0 + Zμp

+ Zμf

)
, (A6)

with

Z0 = Trp,f Q̂Rf RpeH0 , Zμk
= Trp,f Q̂(2n1k − 1)(1 − n4k)Rke

H0 ,

Zuk
= Trp,f Q̂(2n1k − 1)(2n4k − 1)Rk′eH0 ,

ZV,v = Trp,f Q̂(1 − 2n1p)(1 − n4p)(1 − n(4,1)f )eH0 ,

Ztp = Trp,f Q̂p1p
†
4e

H0 (k,k′ = p,f ),

C0 = 1

f0
, Cμp

= 1

λ4
+ 1

λ5
− 2

f0
, Cμf

= 2

(
1

λ2
− 1

f0

)
, Ctp = 1

2

(
1

λ5
− 1

λ4

)
,

CV = 2

f0
− 2

λ2
− 1

λ4
− 1

λ5
+ 1

λ6
+ 1

λ8
+ fv − fV

λ6λ8
,

Cv = 1

f0
− 1

λ2
− λ4 + λ5

2λ4λ5
+ fv − fV + λ6 + λ8

2λ6λ8
. (A7)

For the decimated rows, the single chain averages are given by

〈P †
1 P1+α〉 = Tr[P †

1 P1+αeH0 ]

Tr[eH0 ]
. (A8)

[1] W. Kohn, Phys. Rev. Lett. 19, 789 (1967).
[2] K. Sakai, M. Shiroishi, J. Suzuki, and Y. Umeno, Phys. Rev. B

60, 5186 (1999).
[3] J. Sznajd and K. W. Becker, J. Phys.: Condens. Matter 17, 7359

(2005).
[4] N. Grewe, P. Entel, and H. J. Leder, Z. Phys. B 30, 393 (1978).
[5] P. Schlottmann, Phys. Rev. B 22, 613 (1980).

[6] W. Hanke and J. E. Hirsch, Phys. Rev. B 25, 6748 (1982).
[7] M. Barma, J. Phys. C 15, 721 (1982).
[8] Q. Si, M. J. Rozenberg, G. Kotliar, and A. E. Ruckenstein,

Phys. Rev. Lett. 72, 2761 (1994).
[9] K. A. Muttalib and V. J. Emery, Phys. Rev. Lett. 57, 1370

(1986).
[10] L. M. Falicov and J. C. Kimball, Phys. Rev. Lett. 22, 997 (1969).

062111-9

http://dx.doi.org/10.1103/PhysRevLett.19.789
http://dx.doi.org/10.1103/PhysRevLett.19.789
http://dx.doi.org/10.1103/PhysRevLett.19.789
http://dx.doi.org/10.1103/PhysRevLett.19.789
http://dx.doi.org/10.1103/PhysRevB.60.5186
http://dx.doi.org/10.1103/PhysRevB.60.5186
http://dx.doi.org/10.1103/PhysRevB.60.5186
http://dx.doi.org/10.1103/PhysRevB.60.5186
http://dx.doi.org/10.1088/0953-8984/17/46/020
http://dx.doi.org/10.1088/0953-8984/17/46/020
http://dx.doi.org/10.1088/0953-8984/17/46/020
http://dx.doi.org/10.1088/0953-8984/17/46/020
http://dx.doi.org/10.1007/BF01321092
http://dx.doi.org/10.1007/BF01321092
http://dx.doi.org/10.1007/BF01321092
http://dx.doi.org/10.1007/BF01321092
http://dx.doi.org/10.1103/PhysRevB.22.613
http://dx.doi.org/10.1103/PhysRevB.22.613
http://dx.doi.org/10.1103/PhysRevB.22.613
http://dx.doi.org/10.1103/PhysRevB.22.613
http://dx.doi.org/10.1103/PhysRevB.25.6748
http://dx.doi.org/10.1103/PhysRevB.25.6748
http://dx.doi.org/10.1103/PhysRevB.25.6748
http://dx.doi.org/10.1103/PhysRevB.25.6748
http://dx.doi.org/10.1088/0022-3719/15/4/018
http://dx.doi.org/10.1088/0022-3719/15/4/018
http://dx.doi.org/10.1088/0022-3719/15/4/018
http://dx.doi.org/10.1088/0022-3719/15/4/018
http://dx.doi.org/10.1103/PhysRevLett.72.2761
http://dx.doi.org/10.1103/PhysRevLett.72.2761
http://dx.doi.org/10.1103/PhysRevLett.72.2761
http://dx.doi.org/10.1103/PhysRevLett.72.2761
http://dx.doi.org/10.1103/PhysRevLett.57.1370
http://dx.doi.org/10.1103/PhysRevLett.57.1370
http://dx.doi.org/10.1103/PhysRevLett.57.1370
http://dx.doi.org/10.1103/PhysRevLett.57.1370
http://dx.doi.org/10.1103/PhysRevLett.22.997
http://dx.doi.org/10.1103/PhysRevLett.22.997
http://dx.doi.org/10.1103/PhysRevLett.22.997
http://dx.doi.org/10.1103/PhysRevLett.22.997


JOZEF SZNAJD PHYSICAL REVIEW E 91, 062111 (2015)

[11] R. Ramirez, L. M. Falicov, and J. C. Kimball, Phys. Rev. B 2,
3383 (1970).

[12] M. Plischke, Phys. Rev. Lett. 28, 361 (1972).
[13] J. K. Freericks, C. Gruber, and N. Macris, Phys. Rev. B 53,

16189 (1996).
[14] J. W. Schweitzer, Phys. Rev. B 17, 758 (1978).
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