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Ground-state statistics of directed polymers with heavy-tailed disorder
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In this mostly numerical study, we reconsider the statistical properties of the ground state of a directed polymer
in a d = 1 + 1 “hilly” disorder landscape, i.e., when the quenched disorder has power-law tails. When disorder
is Gaussian, the polymer minimizes its total energy through a collective optimization, where the energy of each
visited site only weakly contributes to the total. Conversely, a hilly landscape forces the polymer to distort and
explore a larger portion of space to reach some particularly deep energy sites. As soon as the fifth moment of
the disorder diverges, this mechanism radically changes the standard Kardar-Parisi-Zhang scaling behavior of
the directed polymer, and new exponents prevail. After confirming again that the Flory argument accurately
predicts these exponents in the tail-dominated phase, we investigate several other statistical features of the
ground state that shed light on this unusual transition and on the accuracy of the Flory argument. We underline
the theoretical challenge posed by this situation, which paradoxically becomes even more acute above the upper
critical dimension.
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I. INTRODUCTION

The so-called “directed polymer” (DP) problem has at-
tracted an enormous amount of interest in the last 30 years
[1–3]. It is a stylized model for the pinning of directed
one-dimensional elastic objects (polymers, vortex lines, dislo-
cations, etc.) by random impurities. It is perhaps the simplest
model that captures the notion of “frustration” which is so
crucial in many more complex disordered materials, such as
spin glasses: the elasticity of the polymer competes with the
energy of very favorable, but distant, pinning sites that would
lead to a costly distortion of the polymer. The huge amount
of work on this problem is justified not only because of its
intrinsic interest, but also because it can be mapped to a
host of other problems: the stochastic heat equation [4], itself
mapped onto the Kardar-Parisi-Zhang (KPZ) equation [5] and
the stochastic Burgers equation [6], population dynamics [7],
problems of jammed transport [the totally asymmetric simple
exclusion process (TASEP)], and crystal growth [8].

In 1 + 1 dimensions (one transverse, one longitudinal, often
taken as the “time” dimension), the problem is considered to
be exactly solved, at least in some special limits and for some
particular observables [9–16]. It is now well established that in
the limit of “long” polymers of length t → ∞, the transverse
excursions x are of order t ζ with ζ = 2/3, i.e., much larger
than

√
t , which would correspond to the thermal excursion of

the polymer in the absence of disorder. Moreover, the total
free-energy fluctuations scale with an anomalous exponent
θ = 1/3. More precisely, the total free energy of the polymer
can be written as −ct + ξ t1/3, where c is a nonuniversal
constant and ξ is proportional to a random variable with a
Tracy-Widom (TW) distribution, identical to the one govern-
ing the statistics of the largest eigenvalue of random matrices
[the Gaussian orthogonal ensemble (GOE) or Gaussian unitary

ensemble (GUE), depending on the boundary conditions]
[12–16].

Although these scaling exponents have been known at
the level of physical rigor since the 1980s [using replica
theory [17], the exact stationary state of the corresponding KPZ
equation [18], renormalization-group (RG) techniques [5], or
mode-coupling theory [19]), it is fair to say that there is up
to now apparently no simple, heuristic derivation of these
exponents that would (a) unveil the deep physical origin of
these results and (b) allow one to extend these results to
other, similar problems, such as the directed polymer problem
in d + 1 dimensions, for which the situation is still quite
unclear [20–23] (although some progress has been made
recently, notably in 2 + 1 dimensions [21,24]). In particular,
the existence of an upper critical dimension dc beyond which
ζ = 1/2 even in the low-temperature, pinned phase, is still
highly debated [25]. In d = 1 recent results have shown that the
total free energy of the polymer can be written as −ct + ξ t1/3,
where c is a nonuniversal constant and ξ is proportional to
a random variable with a Tracy-Widom distribution, identical
to the one governing the statistics of the largest eigenvalue of
random matrices (GOE or GUE, depending on the boundary
conditions) [12–16].

In spite of numerous exact results, it is fair to say
that even the 1 + 1 directed polymer problem is far from
understood. Consider, for example, the role of the distribution
of the pinning energy in the large-scale properties of the
polymer. One would naively expect that, as with many other
problems, the existence and finiteness of the second moment
of the distribution is enough to ensure that the above scaling
results (valid for Gaussian or exponential disorder) hold
asymptotically. Surprisingly, though, this does not seem to
be the case. A heuristic, Flory-type argument that dates back
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from the early 1990s [26–28] suggests that as soon as the
fifth moment of the distribution diverges, one should leave the
realm of the standard DP or KPZ 2/3 scaling, and enter a
new regime, where the extreme values taken by the pinning
potential matter and change the scaling results. In fact, the
same Flory argument suggests that the situation becomes
worse and worse as the dimension increases—see [28] and
Eq. (12) below. One expects any subexponential tail of the
potential to play a crucial role at and above dc. [In the
different tree geometry, for example, it can indeed be checked
explicitly that the Derrida-Spohn solution for DP on a tree
indeed breaks down as soon as the potential has subexponential
tails [29].]

The sensitive dependence of large-scale properties on the
far tails of the disorder is certainly unusual and highlights
our poor grasp of the standard (Gaussian) case. It also raises
many technical questions; for example, about the validity of
techniques that have been exploited in the context of Gaussian
disorder, such as the replica method or the functional RG. It
is clear that, if confirmed, these far-tail-induced effects would
require new, specific theoretical methods that could, indirectly,
shed added light on the DP problem altogether and perhaps
beyond it. Before embarking on such a program, we wanted to
reconsider the 1 + 1 DP problem with heavy-tailed disorder,
and establish numerically, as convincingly as possible, the
violation of the standard DP or KPZ 2/3 scaling. Our results
are, quite remarkably, in perfect agreement with the naive
Flory predictions for the diffusion exponent ζ and the energy
exponent θ , which confirms that the values ζ = 2/3 and
θ = 1/3 and the whole Tracy-Widom statistics hold only if
the probability density of the pinning energy V decays faster
that 1/|V |6. We investigate several other statistical features
of the ground state of the DP in the anomalous regime that
shed light on this unusual transition and on the tenets of the
Flory argument, namely, that the accessible extreme values
of the pinning potential dominate the scaling behavior—a
feature that we confirm directly; see, e.g., Figs. 3 and 11.
One of the most interesting results of this study is our
numerical determination of the generalization of the Tracy-
Widom distribution for fat-tailed potentials, which appears
to retain the standard e−|s|3 asymptotic TW behavior on one
side of the distribution, but behaves as a power law (instead
of e−|s|3/2

) on the other side. We conclude with several open
problems, underlying the theoretical challenge posed by this
situation, which paradoxically becomes even more acute above
the upper critical dimension.

II. THE MODEL

Here we consider a one-dimensional directed polymer
growing on the two-dimensional square lattice depicted in
Fig. 1. In what follows, we confine the study to the lowest-
energy state of the polymer, as the temperature is expected to
be irrelevant for the large-size limit.

Directed paths grow along the diagonals of the lattice with
only (0,1) or (1,0) moves (hard-constraint condition), starting
at (0,0) and with the second end left free. To each site of the
lattice is associated an independent and identically distributed
random number V (x,t). The time coordinate is given by t =
i + j and the space coordinate by x = (i − j ). The total energy

FIG. 1. (Color online) Sketch of the directed polymer model. The
blue solid line corresponds to a polymer growing over the square
lattice under the hard-constraint condition.

of the polymer is the minimum over all paths γt growing from
(0,0) up to time t , defined as

E(t) = min
γt

∑
(x,τ )∈γt

V (x,τ ) (1)

with x ∈ [[−t,t]] and τ ∈ [[0,t]]. The energy of the polymer
satisfies the following transfer matrix recurrence relation:

Ex,t+1 = min(Ex−1,t ,Ex+1,t ) + V (x,t + 1) (2)

with Ex,0 = δx,0. The free-end ground state is computed by
taking the minimum of the energies over all end points E(t) =
minx E(x,t). In what follows, we use the shorthand notation
x(τ ) to describe the polymer path coordinate at time τ and
V (τ ) = V (x(τ ),τ ). In this paper, we study the properties of
the DP for different disorder distributions P (V ); in particular
we focus on the heavy-tailed probability distribution function
(PDF) decaying as

P (V ) ∼V →−∞
1

|V |1+μ
. (3)

It is known that, in one dimension, the search for an optimal
path in a disorder landscape leads to excursions larger than
the thermal ones, which are of order

√
t . The shape of the

optimal path strongly depends on the underlying disorder
landscape, as shown in Fig. 2. In particular, the excursions
are more important for a heavy-tailed disorder than for a
Gaussian disorder. Those differences correspond to different
optimization strategies, as illustrated in Fig. 3:

(a) For a Gaussian disorder, the optimization strategy is
collective: the total energy of the polymer is equally shared
between all the sites.

(b) For a heavy-tailed PDF with 1 < μ < 5, the optimiza-
tion strategy is elitist: an important fraction of the total energy
is held by a small fraction of the sites belonging to the
path.

(c) For a heavy-tailed PDF with μ < 1, the optimization
strategy is individual: most of the total energy of the polymer
is localized on one particularly deep site.

Such differences in optimization have marked effects on
the fluctuation properties at large t , in particular on the
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FIG. 2. (Color online) Optimal path (t = 300) for three different
random environments: Gaussian disorder (lowest, in yellow), and
heavy-tailed disorder with μ = 0.1 (highest, in blue) and with μ =
2.5 (middle, in green). The shape of the path is strongly affected by
the underlying disorder. Because of the hard constraint, the path can
evolve only inside the cone delimited by the dashed lines.

observables

x(t)2 ∼ t2ζ , (4)

E(t)2
c = E2(t) − E(t)

2 ∼ t2θ . (5)

Here θ and ζ are respectively the energy and the roughness
exponents and show some universal features: they depend only
on the behavior of the disorder tails, namely, the index μ. Note
that other important quantities, such as the average energy
E(t), strongly depend on all the microscopic details of the
chosen model.

For a rapidly decaying disorder, the values of the exponents
are known to be ζ = 2/3 and θ = 1/3 [17,18], which have
been recently proved, via mathematical [9,30,31] and physi-
cal [10,15] approaches, for specific fast-decaying distributions
such as the Gaussian, the exponential, or the log-gamma

FIG. 3. (Color online) Ratio R(t) = minτ<t V (τ )/ minτ<t X(τ )
of the minimum energy contribution along the ground state of a
polymer of length t to the minimum of a sequence {X(τ )} of t

random variables independently drawn from the very same disorder
distribution, Eq. (3). Blue circles correspond to μ = 3 and yellow
squares to μ = 8. The dashed lines plot either a constant (for μ = 8)
or t θμ−1/μ = t4/15 [using minτ<t X(τ ) ∼ t1/μ and θ3 = 3/5]. One
clearly sees that the optimal polymer for μ = 8 performs hardly
better than do purely random sequences; the elitist optimization for
μ = 3 leads to power-law growth of R(t) with t , i.e., the optimization
has led the polymer to go through much deeper sites.

distribution [32–35] (see also [17,18] for earlier, more heuristic
arguments).

For heavy-tailed disorder, where extremes play a major
role in the choice of the optimal path, the values of the
exponents appear to rely on the balance between the energy of
the deepest sites and the deformation energy it would cost to
reach them [26–28]. This is formalized by the so-called Flory
argument which we now recall briefly. Denoting by t the length
and x the size of a typical excursion of the polymer, a result
from the extreme statistics of heavy-tailed distributions gives,
for the volume xt available to the polymer, an estimation of
the energy of the deepest sites: Emin ∼ −(xt)1/μ. On the other
hand, for the model with a hard constraint the deformation
cost is entropic and, provided that x � t , follows a scaling
similar to that of an elastic energy as S ∼ −x2/t . Balancing
both estimations, Emin ∼ S, leads to the estimates

ζμ = 1 + μ

2μ − 1
, (6)

θμ = 3

2μ − 1
. (7)

We can guess that those formulas are valid for 2 < μ < 5,
i.e., whenever ζμ > 2/3. Note that the values of the exponents
are compatible with the scaling relation θ = 2ζ − 1. This
relation comes from the statistical tilt symmetry (STS),
originating in the invariance of the problem upon the tilting
transformation x(τ ) → x(τ ) + ετ in the large-scale limit [36].

Above μ = 5, the Flory argument leads to ζμ < 2/3:
instead of a strategy focusing on deep sites of the disorder, the
behavior of the polymer is dominated by a collective strategy
as in the Gaussian case. On the other hand, for μ = 2 we have
ζμ = 1 so that x ∼ t and the entropy cannot be approximated
by an elastic energy. Due to the hard constraint, the excursions
of the polymer are confined in a cone. This observation leads
to another estimation of the exponents ζμ = 1 and θμ = 2/μ

for 0 < μ < 2. Note that the STS symmetry is violated in
that regime. All these Flory estimates are summarized in
Table I.

When μ < 1, the first moment of the disorder distribution
diverges. That leads to a huge separation of energy scales in the
disorder, where all the sites can be neglected compared to the
value of the deepest site through which the optimal path has to
go. Hence the optimization becomes individual and it allows
the optimal path to be constructed recursively by picking the
deepest site that pins the polymer and applying the same
strategy among the sites inside the area delimited by the hard
constraint. The term greedy was coined for such a hierarchical
optimization strategy in Ref. [37], where some of its properties

TABLE I. θμ and ζμ as functions of μ. For 0 < μ < 5 the values
of the exponents are estimated by scaling arguments. In contrast, in the
collective optimization regime (μ > 5) no simple scaling argument
is known.

μ > 5 5 > μ > 2 2 > μ > 0

θμ 1/3 3/(2μ − 1) 2/μ

ζμ 2/3 (1 + μ)/(2μ − 1) 1
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were studied for the limit μ → 0+. (Most notably, a complete
characterization of the path geometry in this limit was obtained
as a multifractal process, whose spectrum was computed.)
Here we show that this approximation seemingly becomes
asymptotically exact as t → ∞ for all μ � 1. In particular the
end point distribution of the polymer is computed analytically
for the greedy strategy and very well reproduces the numerical
behavior for all μ < 1.

III. NUMERICAL SIMULATIONS

In this section, we present numerical simulations done with
the matrix transfer method, which allows us to keep track of
both the energy and the position of the optimal path at every
time t . The underlying disordered medium was generated using
heavy-tailed distributions. Both a normalized Pareto and a
Student t distribution of the tail index μ were used to ensure
that the following results are not sensitive to the bulk of the
distribution, but only to the tail, as expected.

We compare the numerical values of θ and ζ with the
predictions of the (Flory) scaling arguments given in the
the previous section, and obtain additional information about
the whole PDF of the fluctuations of the total energy E.
The Flory estimates have been conjectured (see [27]) to be
a good approximation only in the limit μ → 2+. However, a
careful analysis of finite effects leads to the conclusion that
the Flory argument may in fact be asymptotically exact [38].
Finally, we give strong numerical evidence of the existence
of different optimization strategies as μ varies. This supports
the correctness of the scaling argument in the regime of strong
disorder for μ < 5.

A. The scaling exponents

To measure the exponents θ and ζ , we can use the
definitions given in Eq. (5). However, in Fig. 4, we observe
that the statistical estimator for E2

c
never averages out when

μ < 4 and shows large jumps even for very large sampling

FIG. 4. (Color online) Stability analysis of our numerical results.
The averages are performed over N = 105 samples. The mean
squared displacement x2(t) shows a well-defined smooth behavior,
while the variance of the energy E2(t)

c
displays a jump around

t = 70, which stems from a very deep single pin. This makes E2(t)
c

numerically unstable. On the contrary, for μ > 2, the quantity 	E(t)
displays a well-defined behavior allowing for a reliable estimation of
the exponent θnum. Here μ = 3 and N = 2 × 105 samples.

TABLE II. Flory predictions of θ and ζ compared to numerical
estimates for several values of μ. The agreement is extremely good
(see also Figs. 5 and 6), except close to the transition value μ = 5,
where the numerical estimate is less precise due to important size
effects.

μ θμ θnum ζμ ζnum

3 3/5 = 0.60 0.605 ± 0.006 4/5 = 0.80 0.802 ± 0.004
4 3/7 � 0.43 0.44 ± 0.02 5/7 � 0.714 0.715 ± 0.005
5 1/3 0.36 ± 0.03 2/3 0.69 ± 0.04
7 1/3 0.338 ± 0.008 2/3 0.669 ± 0.004

sizes. Note that the statistical estimator of E2
c

converges only
if both E2

c
and its statistical error (E4

c
/N )1/2 are finite. But,

due to the presence of heavy tails in the disorder, high enough
moments of the distribution of energy P (E) could diverge. We
will see in Sec. III B that for 2 < μ < 4, E2

c
is finite while

E4
c

diverges.
Another estimator of the spread of the distribution is the

mean absolute deviation (MAD) 	E:

	E = 1

N

∑
i

|Ei − E|. (8)

This estimator is more resilient to extreme events and works
better with heavy-tailed distributions. In contrast to the stan-
dard deviation, which squares the distance from the average,
the MAD is well controlled as soon as the second moment
of the PDF exists (in our case for μ > 2), and allows us to
properly extract θnum (see Fig. 4). Note that x2(t) does not
present this kind of problem, because it is compactly supported
due to the hard constraint (see Fig. 4).

The numerical values of the exponents for different values
of μ, and their comparison with the Flory prediction, are
summarized in Table II. The numerical estimations have
been made with the maximum likelihood method. Figures 5
and 6 illustrate how good the Flory prediction is: see in

FIG. 5. (Color online) Mean square displacement of the end
position of the optimal path for μ = 3 (in red, above) and μ = 4
(in blue, below). Dashed lines correspond to the Flory estimate given
in Table I. Inset: x(t)2/tζμ showing saturation at large t in both cases.
N = 2 × 105 samples.
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FIG. 6. (Color online) Mean absolute deviation 	E of the opti-
mal energy for μ = 3 (in red, above) and μ = 4 (in blue, below).
Dashed lines correspond to the Flory estimate given in Table I. Inset:
	E(t)/tθμ showing saturation at large t in both cases. N = 2 × 105

samples.

particular the insets where we show the quantities x(t)2/tζμ

and |E − E|(t)/tθμ which should saturate to a constant when
t 	 1 if the scaling argument is correct. The saturation time
should, howeve, grow larger and larger as μ → 5−, explaining
the observed difference between results for μ = 3 and μ = 4.
Indeed, in this limit, the strategy remains elitist, but the effect
of deep sites is not as strong and needs a large value of t to be
clearly distinguished from the rest of the “crowd.” For μ > 5,
the strategy becomes collective, and the exponents θ = 1/3
and ζ = 2/3 are recovered.

B. Space and time fluctuations of the total energy

In this section, we present results for the probability
distribution of the fluctuations of the ground-state energy E.
The Gaussian (or fast-decaying disorder) case has been studied
extensively in the past. On the other hand, there currently
appears to be no study of its equivalent in heavy-tailed disorder.

It has been shown that, for some particular, fast-decaying
disorder distributions (see [9,15,31]), after the proper rescal-
ing, the probability distribution converges to a family of
distributions, called the Tracy-Widom distributions. It is
believed that this universality extends to all fast-decaying
distributions. We define the rescaled variable

s(t) = [E(t) − E(t)]/[E2
c
(t)]1/2 (9)

and show in Fig. 7 the rescaled energy distribution φ(s)
for different μ’s. (Note that, because we are interested in
departure from the TW family, and for simplicity, we normalize
the distribution to mean 0 and variance 1. For a finer
characterization of the TW distribution, one could rely on
more elaborate scalings as presented in Ref. [39]). It seems
numerically clear that the TW universality class extends for
any disorder with μ > 5. Note that, for very negative s, φ(s)
remains algebraic beyond some time dependent threshold
s < s∗

t . However, when t → ∞, the crossover towards the
algebraic behavior s∗

t moves to −∞.
On the contrary, for 0 < μ < 5, the limiting distribution

is very different. The family of limiting distributions Fμ

depends only on μ and on the boundary conditions. Its

FIG. 7. (Color online) Collapse of the PDF φ(s), for several
lengths (from the farthest from to the closest to the dashed line)
t = 24 (blue),27 (red),28 (yellow) for a disorder PDF with μ = 8.
Comparison is made with the Tracy-Widom distribution F2 after
centering and rescaling (in dotted black). The average is over
N = 2 × 105 samples.

analytical expression is still unknown; inspired by results
from extreme statistics, a natural guess would be the Frechet
distribution P(X < x) = exp(−a|x|−μ′

) or some convolutions
thereof (see [28]). Similarly, one would intuitively assume that
the tail exponents are preserved, as for the PDF of the minimum
of independent random variables and so α = μ. However, the
interplay with the elastic energy might lead to a shift in this
exponent. This fact was already noticed in [40] for the model
of a particle in a disorder landscape confined by a harmonic
potential. In this simpler model, the shift can be understood
heuristically as follows: Assuming again that the polymer is
controlled by a very deep site, from record statistics, it is
known that the tail of the distribution of the minimum of n

heavy-tailed random variables decays as ∼ n
|V |1+μ . Assuming

that both elastic and potential energies scale similarly, this
leads to the total energy of the polymer Etot ∼ u2 ∼ |Vmin|
(where u denotes the typical lateral extension of the polymer)
and therefore to n ∝ u ∼ |Vmin|1/2. Hence the dependence of
n on Vmin, inherent to the fact that large deviations in the
disorder allow the particle to explore a larger space, which in
turn leads to a modified exponent μ′ = μ − 1/2 of the tail of
the total energy. Since for the heavy-tailed directed polymer
case, the ground state is supposedly controlled by a few deep
sites, on which the elastic energy and potential compete in a
similar way, the above argument could also possibly describe
the tails, and yield μ′ = μ − 1/2.

However, this exponent is rather hard to extract from
numerics, as it comes from large deviations in the free-
energy fluctuations, and hence from rare disorder realizations.
Simulations up to t = 213 for more that N = 2 × 106 samples
nonetheless indicate a clear departure of μ′ from the value
μ and tend indeed to favor the above conjecture μ′ = μ −
1/2 (see Fig. 8). Let us add that those numerical results
indicate that the support of the limiting distributions Fμ is
the whole real line, unlike the standard Frechet distribution
for heavy-tailed extreme statistics. An interesting feature of
Fμ is the fact that its right tail, corresponding this time to
unfavorable configurations of the disorder, appears to decay
as e−αs3

, similarly to the TW distribution. This fact would
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FIG. 8. (Color online) The algebraic left tail of φ(s) on a log-
log scale, compared with decays of both exponents μ (dotted) and
μ − 1/2 (dashed), for μ = 3. Polymers are of length t = 213, for a
sampling of N = 2 × 106 samples.

support a mixture of some Frechet and TW distributions as a
possible guess and calls for further investigations of the typical
properties of such large-deviation paths.

For future reference, the tail analysis of Fμ(s) for the special
case μ = 3 leads to the following numerical estimations:
the left tail decays as

∫ s
dx F3(x) ≈ 1.5 |s|−2.5 for s → −∞

while for the right tail F3(s) ≈ 1.8 e−1.5s3
for s → ∞ (see

Fig. 9).
Let us now turn to the dependence of the ground-state

energy on its final position E(x,t), when the latter is imposed.
In the Gaussian case, for infinite systems at large time, this
process has been characterized as an Airy process, dependent
on the initial conditions [41–44]. For small x, E(x,t) behaves
as a mere Brownian motion in x, but its correlations saturate
for x 	 t2/3 [45,46]. [It is worthwhile to mention that, in
the discrete grid model used presently, E(x,t) does not have
Gaussian spatial increments, and these increments are in
fact weakly correlated. Nonetheless, the correlation length
does not grow with t and in the continuum limit E(x,t)

FIG. 9. (Color online) Collapse of φ(s), for several lengths t =
24,27,210 and for a disorder PDF with μ = 3 (due to the weak
finite-size effect, the various curves, drawn as solid lines, are
indistinguishable). Comparison is made with the Tracy-Widom
distribution F2 after centering and rescaling (in dotted black). The
decay estimate of index μ′ = μ − 1/2 is plotted in dashed black.
Inset: Far right tail of φ(s) compared to a decay of e−1.5s3

(in dotted
black). Average over N = 2 × 105 samples.

FIG. 10. (Color online) Probability distribution of 	E for var-
ious sizes of the increments 	x of the stationary distribution
for the disorder with μ = 3: from the most peaked to the least,
	x = 4 (blue) and 64 (yellow). The variance of the distributions
is normalized to 1. Tails survive even for large increments. The
dashed black line is the Gaussian distribution. Inset: Same probability
distributions for a disorder with μ = 8, with convergence towards a
Gaussian distribution at large increments. The time used in simulation
is t = 105.

indeed converges (for small x) to a Brownian motion.] For
a heavy-tailed disorder with μ > 5, our results are consistent
with the scenario where this convergence holds, as can be seen
in the inset of Fig. 10.

The situation is quite different in the elitist optimization
strategy. Because the increments of the stationary process are
controlled by the deep sites, they exhibit jumps of all sizes
with power-law tails. Furthermore, the increments in energy
	E(x) are, through scaling arguments, expected to behave as
	E(x) ∼ xθ/ζ with θ/ζ = 3/(1 + μ) > 1/2 as soon as μ < 5.
Hence the time-stationary process of E(x,t) is superdiffusive
(in x), with strongly correlated heavy-tailed increments of
index μ (see Fig. 10). A more precise characterization of this
process (which is neither a fractional Brownian motion nor a
Lévy walk) would be quite interesting and is left for future
investigations. The analog of the Airy process for μ < 2 was
characterized in Refs. [37,47].

C. Zooming into the optimization strategies

Although the scaling argument gives the correct estimates,
it relies on the assumption that the fluctuations of E are
controlled by the fluctuations of the deepest sites in the
disorder. This stems from the fact that the optimal path makes
large excursions specifically to reach some favorable pinning
sites. While for μ < 1, one site dominates over all the the
others, there is no such obvious dominance for 1 < μ < 5:
there still exists a large population of sites with local energy
of order Vmin. Hence to check the validity of the elitist
optimization strategy, one has to test the fact that the optimal
path indeed picks up some sites among the deepest available,
whereas in the collective case this is not so.

We have therefore formulated the elitist optimization
hypothesis as follows: Consider a paraboloid region R(α)
of length t and width tα/2, containing a number of sites
proportional to t1+α . We then compute the probability Pc(α)
that the minimum-energy site along the polymer is one among
the μ ln(t) deepest sites within the region R(α). [The choice
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FIG. 11. (Color online) Probability Pc(α) as defined in the text
for a heavy-tailed disorder with μ = 3, corresponding to an eli-
tist optimization. Symbols correspond to different lengths: t =
26 (circles), 29 (squares), 211 (diamonds), 212 (triangles). The aver-
ages are performed over N = 2 × 105 samples. As expected, Pc(α)
appears to peak around the value 0.9, which should converge to
ζ3 = 0.8 for very large sizes. Inset: The same analysis performed for
μ = 8, corresponding to a collective optimization. In this case, Pc(α)
decreases as a function of t , indicating that the minimum-energy site
becomes less and less relevant as the size of the polymer increases.

of μ ln t sites corresponds to a rough estimate of the number
of completely independent paths in the region R(α).]

Intuitively, we expect that for the elitist strategy, the
minimum energy along the polymer should be deeper than
the minimum restriced to R(α) ⊂ R(ζ ) when α < ζ . On the
contrary, whenever α > ζ , the minimum along the polymer
should be higher than the minimum in R(α), since the
elastic energy prevents it from reaching this particularly
favorable site. Therefore, when t → ∞, Pc(α) should be-
come more and more peaked around α = ζ for the elitist
strategy. In the collective regime, on the other hand, Pc(α)
should vanish for all α since the global optimization has
nothingwhatsoever to do with the value of the deepest available
site.

Figure 11 suggests a different qualitative behavior for
μ = 3 and μ = 8, in agreement with the above prediction.
Note that the maxima of the curves in Fig. 11 corresponding
to an estimation of the rugosity exponent ζ are moving to
the left as t increases. They are expected to converge towards
ζ3 = 4/5 for t → ∞, although the convergence appears to
be very slow. Such a difference in optimization strategy
is reflected in the extremal statistics observed along the
polymer path. Granted the Gaussian optimal path is not
relying on extremal sites, the position of the minimum-energy
site should be (asymptotically) flat over [1,t] (see Fig. 12),
with finite-size effects coming from the smaller entropy at
the very extremities of the polymer. On the other hand, for
μ < 5 and for periodic boundary conditions, the position
of the minimum site is related to the maximum entropy of
the polymer; hence the mode should be located right in the
middle of the path. In the greedy case μ → 0+, the probability
distribution of this minimum is easily computed and repre-
sented in Fig. 12 as the limiting distribution for every disorder
with μ < 1.

FIG. 12. (Color online) Histograms for P (xmin) of the position
of the minimum xmin (normalized in [0,1]) of site energy along
the polymer with both extremities fixed, for various disorder. From
the most peaked to the flattest, μ = 0.5 (blue) and 3 (yellow)
and Gaussian disorder (green). In dashed black, both the uniform
distribution and the distribution of the minimum for the greedy case, to
which disorders with μ < 1 converge. t = 512 and N = 105 samples.
We expect that the distribution converges to a uniform distribution at
large t for μ > 5, but to remain nontrivial for μ < 5.

IV. DISTRIBUTION OF THE END POINT

Another observable of interest is the distribution of the end
point of the (unconstrained) optimal path. Compared to the
fluctuations of the energy E(t), we know much less about the
statistics of x(t). One expects the rescaled position z = x(t)/tζ

to converge in fact towards a limiting distribution Qζ (z). In
general, the analytic shape of Qζ (z) is unknown, although for
the case ζ = 2/3 and the particular case of an exponential
distribution of the disorder [42] one can characterize the joint
distribution of the position and total energy of the optimal
path P(E(t),x(t)). From this result, it has been shown that
the marginal Q2/3(z) has an infinite support and is actually
numerically very close to the Gaussian distribution, although
it cannot be computed explicitly [48–50].

The heavy-tailed disorder case exhibits a radically different
behavior, since Qζ (z) is strongly influenced by the large
excursions of the optimal path to reach pinning sites. For
μ < 2, ζ saturates to 1 due to the hard constraint and
the support of Qμ(z) is reduced to the interval [−1,1]: the
extremity has a finite probability to reach any point of the
available space, even at large t .

Denoting z = x(t)/t ∈ [−1,1], the distribution Qμ(z) can
be explicitly computed for the greedy strategy, where the
optimization becomes a hierarchical recursive process. In the
Appendix we give the details of the computation and our final
result reads

Qgreedy(z) = 3
4 (1 − z2). (10)

This result a priori holds only in the limit μ → 0. However,
it was argued in Sec. II that the greedy strategy should hold
for every μ < 1 at large times. This assumption is further
confirmed by numerics for Qμ(z) (see Fig. 13), retaining
its parabolic shape until μ = 1. For μ ∈ (1,2), the support
still remains the interval [−1,1], but Qμ(z) is modified.
The numerical results are relatively well fitted by the Beta
distribution family B(ν,ν) = cν(1 − x2)ν , where ν is a fitting
parameter that depends on μ (see Fig. 13).
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FIG. 13. (Color online) The PDF Q(z) of the position of the free
end as a function of z = x(t)/t . In blue (most peaked) for a disorder
PDF of μ = 1.5; in red (less peaked), μ = 0.5. In dotted black, the
theoretical parabolic prediction. We also show the symmetric Beta
distribution fit, with ν = 3.8. t = 211 and N = 2 × 105.

Let us now consider the case 2 < μ < 5. We could expect
that the tails of Qμ(z) are again controlled by the position of
the deepest available site. The decay exponents may therefore
be inferred from the zero-dimensional particle model, as in
Sec. III B above. This approach predicts [40]

Qμ(z) ∼ 1

z2μ
. (11)

In practice, it is delicate to estimate accurately the tail exponent
of Qμ(z), because of the presence of the cutoff imposed
by the hard constraint of our discrete numerical model. Our
results are nevertheless consistent with the above prediction
Eq. (11). Such an algebraic tail is important conceptually
when comparing with, e.g., the functional RG approach.
Indeed, moments of the position are related to the moments
of the renormalized disorder in that method [51]. In our case
moments of sufficently high orders diverge, implying that the
loop expansion of the standard Gaussian disorder case [52]
needs to be reconsidered as soon as μ < 5, even when the
two-body correlator of the disorder is perfectly defined (i.e.,
when μ > 2).

V. PERSPECTIVES

Finally, we mention briefly here how the present results
extend to finite temperature and larger dimensions. The Flory
argument can be easily extended to any dimension (as was done
in Refs. [28,40]), predicting some fragility of the Gaussian
regime with respect to the dimension d. The critical μc(d) is
estimated as

μc(d) = 1 + dζG(d)

2ζG(d) − 1
. (12)

Indeed, the larger the transverse space, the easier it is for
the optimal path to visit deep sites, hence favoring the elitist
strategy to the detriment of the collective one. As mentioned in
the Introduction, the existence of an upper critical dimension
dc above which ζG = 1/2 even in the low-temperature phase is
still an open question. But from the Flory estimate above, we
readily conclude that μc(d) = ∞ for d > dc, meaning that any
heavy tail is expected to be relevant above dc. This fragility is

clearly apparent for the tree geometry, for which much of the
model is solvable [29].

As for the case of finite temperatures, we expect that at
least in low dimensions, the statistical properties studied in
the present article should survive in the large-t limit, with
the appearance of an additional thermal time scale below
which the polymer behaves as a random walk. The possibility
of an intermediate KPZ regime should also be investigated.
The interplay between those various scales can be cast into a
more quantitative framework, through simple Flory arguments
or results from extremal statistics, and will be displayed
elsewhere.

Finally, it should be noted that, albeit of very large interest,
the access to finite-temperature and high-dimension regimes
presents important difficulties even from a numerical point of
view. As shown previously, the study of the asymptotic regime
often requires rather long times. Coupled with the need for a
large disorder space in high d, or the thermal average at finite
T , it makes the simulations very difficult in practice.

VI. CONCLUSION

We presented a detailed investigation of the modification
of the KPZ universality class due to heavy-tailed disorder,
building upon several previous studies [26,27,37]. These
modifications are deep: the KPZ universality class breaks down
as soon as the fifth moment of the disorder diverges. From a
standard renormalization procedure, one would have naively
expected that the convergence of the second moment (the
variance) of the disorder would suffice. As we emphasized in
the Introduction, this paradox becomes even more acute above
the upper critical dimension—see [28]. From a KPZ point of
view, this shows that the interplay between nonlinearities and
rare but large events is highly nontrivial and requires differ-
ent analytical methods. Nonetheless, additional universality
classes emerge, since both the exponents and corresponding
probability distributions seem uniquely controlled by the
behavior of the tail, the bulk of the disorder distribution being
irrelevant.

However, our hope to get a better grasp on the KPZ
class itself by studying the case of heavy-tailed potentials is
clearly hindered by the lack of analytical tools. Exact results
are scarce and numerical simulations have been extensively
used to illuminate the situation. They indicate a sharp
transition when the fifth moment of the distribution diverges,
between the Gaussian KPZ or DP regime characterized by the
standard exponents (θ = 1/3,ζ = 2/3) and some nontrivial
values (θμ,ζμ) that seem to be exactly predicted by a simple
Flory-like argument. The full ground-state energy distribution
also changes from Tracy-Widom to a different family of
functions, with a power-law tail for large negative values of the
energy and the Tracy-Widom e−|s|3 behavior for anomalously
“bad” ground-state energies. Several other quantites have been
investigated—such as the process governing the energy as a
function of the end point of the polymer or the distribution of
this end point—which are also markedly different from their
Gaussian counterparts in the tail-dominated regime. Finally,
we have attempted to obtain direct evidence that the deepest
available sites play a special role in the tail-dominated regime,
giving support to the validity of the Flory argument. Still, there
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are many outstanding open problems. For example, the largest
eigenvalues of random matrices with heavy-tailed distributed
entries are known to leave the Tracy-Widom universality class
when the fourth moment (rather than the fifth) diverges [28].
This questions the existence of an exact mapping between the
DP problem and random matrix ensembles for heavy-tailed
disorder (see the discussion in Ref. [28]).

A very important issue (in our minds) is the extension of the
functional RG approach to heavy-tailed situations. This might
shed considerable light on the method itself and on the deep
underlying mechanisms at play in pinning problems and in
nonlinear (KPZ-like) stochastic partial differential equations.
Our detailed numerical study of the directed polymer has
unveiled that the appropriate statistics appears to possess an
underlying recursive structure. This hypothesis is backed by
the solvable “greedy” limit of an exponentially wide disorder.
This calls for the development of theoretical tools able to
handle these hierarchical processes.
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APPENDIX: DERIVATION OF Qμ(x) IN μ → 0

The derivation is eased by taking the continuum limit, where
for convenience we rescale the position of the end point to
z ∈ [−1,1]. We introduce the sequence of variables ξi = xi+yi

2
and 2ri = yi − xi , (xi,yi) which are the coordinates of the
pinning site chosen at step i. The measure being uniform over
the space of intervals, it stays uniform if we fix the center of
mass, under the constraint that the end points cannot leave
[−1/2,1/2]. The joint probability distribution is, constrained
on [−1,1] × [0,1],

P0(ξ,r)dξdr = (r � 1 − |ξ |)dξdr. (A1)

Due to self-similarity of the process, there are recursive
relations between the end points after i steps and after i + 1
steps. We are eventually interested in the limit of the following
process z∞, describing the position of the end point at n → ∞:

z∞ = ξ1 + r1ξ2 + r1r2ξ3 + · · · . (A2)

All pairs (ξi,ri) have the same joint distribution P0 and
are independent for i �= j . This bears some similarities with
Kesten variables [53] but note that ξi and ri are not independent
themselves. The variable z∞ obeys the following equation:

z∞ =law ξ + rz∞ (A3)

This leads to an integral equation for P (z∞), the PDF of
the end point; for example, if we choose to condition over the
value of z∞ in the above equation,

P (z) =
∫

r,u

P0(z − ru,r)P (u)du dr

=
∫

r,u

(r < 1 − |z − ru|)P (u)du dr. (A4)

Although there is no generic way to solve such integral
equations, we can recursively compute the moments or use
the above equation to write down a differential equation for
φ(λ) = E(eiλz∞ ). Or one can simply check that a parabola
P (z) = 3

4 (1 − z2) is the proper solution. (r < 1 − |z − ru|)
is non zero for r < 1+z

1+x
if z < x and r < 1−z

1−x
if x < z. Hence,

the right side of Eq. (A4) is equal to

3

4

(∫
−1<x<z

1 + z

1 + x
(1 − x2)dx +

∫
z<x<1

1 − z

1 − x
(1 − x2)dx

)

= 3

4
(1 − z2).

The result follows as given in Eq. (10).
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[22] Jeffrey Kelling and Géza Ódor, Extremely large-scale simulation
of a Kardar-Parisi-Zhang model using graphics cards, Phys. Rev.
E 84, 061150 (2011).
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