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Interrupted coarsening in the zero-temperature kinetic Ising chain driven
by a periodic external field
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If quenched to zero temperature, the one-dimensional Ising spin chain undergoes coarsening, whereby the
density of domain walls decays algebraically in time. We show that this coarsening process can be interrupted
by exerting a rapidly oscillating periodic field with enough strength to compete with the spin-spin interaction.
By analyzing correlation functions and the distribution of domain lengths both analytically and numerically, we
observe nontrivial correlation with more than one length scale at the threshold field strength.
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I. INTRODUCTION

One of the most important topics in statistical physics is
the formation of order. A classical nonequilibrium example is
provided by the one-dimensional (1D) Glauber-Ising model
quenched to a zero temperature. It approaches one of the
ordered ground states by forming larger and larger domains
[1], and this coarsening process has been analyzed in full
detail (see, e.g., Ref. [2]). The relaxation toward equilibrium
is very slow: In the absence of an external field, the domain
walls perform annihilating random walks, and the density
accordingly decays as ρ ∼ t−(1/2) as time t goes by [3]. A
kinetically constrained version also exhibits glassy behavior
with anomalously slower coarsening [4–6], and such “aging”
can even cease to proceed under steady driving [7]. One
may ask if something similar can be achieved in the original
Glauber-Ising system by driving it with a suitable protocol
as has been pointed out in Ref. [8]. Evidently, a constant
external field does not work for that purpose because the
field will only accelerate the coarsening dynamics by breaking
the up-down symmetry. If the symmetry is concerned, an
alternative protocol would be an oscillating field with a short
period. This is of particular interest from the perspective of
interaction of light and matter in the high-frequency regime.
The problem becomes highly nontrivial, especially when the
matter has internal spatiotemporal correlations as a many-body
system (see, e.g., Refs. [9–11] and references therein). Due
to its ubiquity and often dramatic consequences as reported
in Ref. [12], the nonequilibrium caused by oscillatory driving
still remains as an active area of research to be explored further
[13,14]. If we consider the 1D Ising chain under an oscillating
field, one possible scenario is that the system has such a large
time scale that it simply overlooks the rapid oscillation so that
the field appears as a small perturbation around the ordered
state. Indeed, this has been numerically observed in the two-
dimensional kinetic Ising model subjected to an oscillating
field (see, e.g., Ref. [15]). On the other hand, it also seems
plausible that the disordered state can remain stable, although
energetically unfavorable, just as an inverted pendulum is
stabilized by fast oscillatory driving [16,17]. In this paper,
we show that the latter is the case when the field strength is
greater than or equal to the spin-spin coupling strength. In fact,
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from the dynamic rules defined below, we can readily convince
ourselves that all the correlations are completely destroyed if
the field amplitude exceeds the spin-spin coupling strength,
which effectively corresponds to an infinite temperature. If
the field is weaker than the spin-spin interaction, on the other
hand, the up-down symmetry can be broken as in an ordered
phase because the system cannot escape from the absorbing
states with all the spins aligned in one direction. Only when
the internal and external energy scales are equally strong, we
observe finite nontrivial correlations and a stationary density
of domain walls. We will explain this point by calculating
correlation functions and the distribution of domain lengths
both analytically and numerically.

This paper is organized as follows: An explanation of our
model system is given in Sec. II. Correlation functions and
the domain length distribution are analyzed in Sec. III. This is
followed by a discussion of results and conclusions.

II. GLAUBER-ISING DYNAMICS

Let us consider a 1D Ising chain with size L under a time-
dependent external field H (t). The energy function is written
as

E = −J

2

L∑
i=1

SiSi+1 − H (t)
L∑

i=1

Si, (1)

where the spin variable Si can take either +1 or −1 and J
2 > 0

is the coupling strength between neighboring spins. We will
impose a periodic boundary condition by setting SL+1 = S1.
The time evolution of this system is assumed to obey the
zero-temperature Glauber dynamics [18], which means that
every spin flips with the following rate:

Wi =

⎧⎪⎨
⎪⎩

1, if �Ei < 0,

1
2 , if �Ei = 0,

0, if �Ei > 0,

(2)

where �Ei is the energy difference due to a spin flip from
Si to −Si . The external field H (t) takes a rectangular pulse
shape between +H0 and −H0 with period 2T , where H0 > 0
is a constant. It is convenient to define τ ≡ (t mod 2T ) as
a time index within each period. Then, the external field is
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described as follows:

H (t) =
{

+H0 for 0 ≤ τ < T,

−H0 for T ≤ τ < 2T .
(3)

As briefly mentioned above, we need to consider competition
between the spin-spin interaction and the external driving: If
H0 > J , the field direction solely determines the dynamics so
that the system is equivalent to a collection of noninteracting
spins subjected to the field. If H0 < J , on the other hand,
the field cannot flip a spin once it is surrounded by two
other spins in the same direction. As a consequence, the
density of domain walls keeps decreasing, regardless of the
field direction, playing the role of the Lyapunov function
in this dynamics. This means that the steady states under
periodic driving must be the ordered ones for H0 < J , and
the deterministic nature of the dynamics suggests that the
coarsening will not be slower than the field-free case. One
can indeed numerically check that the density of domain walls
decays as ρ ∼ t−(1/2) when T is small but with a smaller
prefactor than in the absence of H (t). For this reason, we can
say that H0 = J is the most nontrivial point due to the interplay
between the field and the spin-spin interaction. Henceforth, we
will set H0 = J unless otherwise mentioned.

As is well known, the dynamics can also be analyzed in
terms of domain walls. We will briefly review three basic
processes of the domain-wall dynamics, i.e., pair creation, pair
annihilation, and propagation, assuming that H (t) = +H0.
First, two domain walls are created inside a down-spin domain
{· · · ↓↓↓ · · · } when the field flips the spin in the middle
with rate 1

2 , which results in {· · · ↓↑↓ · · · }. Second, the
pair-annihilation process is possible in two different ways, i.e.,
{· · · ↑↓↑ · · · } =⇒ {· · · ↑↑↑ · · · } with rate 1 or {· · · ↓↑↓
· · · } =⇒ {· · · ↓↓↓ · · · } with rate 1

2 . Last, a domain wall
propagates when a spin flips at a domain boundary, e.g.,
{· · · ↓↓↑ · · · } =⇒ {· · · ↓↑↑ · · · } with rate 1. In the spin
language, all these processes tend to align spins along the
field direction. Therefore, few domain walls exist if the field
has been applied for a sufficiently long period. One of our
primary interests is how the density of domain walls varies
in time when the time-dependent field in Eq. (3) drives the
system.

We can formally describe the Glauber-Ising dynamics
by using the transition-matrix formulation because it is
Markovian. The Ising chain in Eq. (1) has N = 2L microstates.
Indexing the microstates by α = 1, . . . ,N , we define pα(t)
as the probability to find the system in state α at time t .
The probability distribution can then be denoted as p(t) ≡
{p1(t),p2(t), . . . ,pN (t)} with a constraint for the conservation
of total probability

∑
α pα(t) = 1. One can readily calculate

any single-time observable from p(t) in principle, including the
average domain-wall density. The zero-temperature Glauber
rates in Eq. (2) define an N × N transition matrix M(t) that
governs the evolution of p(t) in the following way:

p(t + �t) = M(t)p(t), (4)

where �t means a time scale for flipping a single spin. It
is reasonable to suppose that every spin has a chance to flip
during one time step on average, which means that �t should
be proportional to L−1. The rates are dependent on the external
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FIG. 1. Density of domain walls in the zero-temperature Ising
chain of length L = 10, entrained by the field in Eq. (3) with
(a) T = 1, (b) T = 2, (c) T = 5, and (d) T = 10. Each panel shows
numerically exact results from Eq. (6) and Monte Carlo results
averaged over 105 periods, although they are indistinguishable in
this plot.

field, so we can distinguish the rates under H (t) = +H0 from
those under −H0. It implies that we have to work with two
transition matrices:

M(t) =
{

M+, if H (t) = +H0,

M−, if H (t) = −H0,
(5)

which are actually related by a simple coordinate trans-
formation [14]. After one period, therefore, the probability
distribution at time t = 0 evolves to p(t = 2T ) = MT p(t = 0)
with MT ≡ [(M−)L]T [(M+)L]T . When the system has been
entrained by the driving, it should be found statistically
identical at time t and t + 2T . This can be regarded as
a nonequilibrium steady state in a stroboscopic sense. For
example, we may observe the system at the beginning of every
period, i.e., at τ = 0 and denote the resulting steady state as
p∞(τ = 0). It is obtained by solving the following equation:

p∞(τ = 0) = MT p∞(τ = 0), (6)

and the existence of such an eigenvector is guaranteed because
both the M+ and the M− are stochastic. The steady-state
distribution for general τ is also obtained in a straightforward
way. In practice, Eq. (6) can be solved only for L � O(10)
because the size of M grows as an exponential function of
L. From a computational point of view, it is often more
efficient to sample configurations by using a Monte Carlo
method. Figure 1 demonstrates that the Monte Carlo sampling
precisely reproduces the result from Eq. (6). Our Monte Carlo
result also shows that the transition-matrix calculation for
L = 10 is quite accurate in estimating the average density
of domain walls in a larger system (Fig. 2). It implies the
following: Suppose that we randomly take ten consecutive
spins in a large system many times and count the frequency
of an arbitrary spin configuration i. Our observation suggests
that it will be more or less similar to pi obtained from the
transition-matrix calculation, and it is supported by Monte
Carlo calculations (not shown). If a large system can be
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FIG. 2. (Color online) Size dependence in the density of domain
walls for (a) T = 1 and (b) T = 10, obtained by using Monte Carlo
calculations where the solid (dotted) lines represent L = 10 (L =
103).

approximated as a collection of small ones of L ∼ O(10),
it is because the characteristic length scale is shorter than
O(10). In other words, this observation suggests weakness of
the interaction between domain walls. This remark will also
be supported by other observations below.

Another important question in this context is whether a
dynamic phase transition (DPT) occurs as the half period T

is varied. For example, for dimensions higher than one, the
Glauber-Ising model undergoes a symmetry-breaking DPT at
a sufficiently low temperature as T decreases [19,20]. Such
a DPT is explained by the competition between internal and
external time scales for relaxation and driving, respectively.
However, such a DPT seems unlikely in our Ising chain,
although the temperature is zero: One clue in Figs. 1 and 2
is that the response to +H0 (0 ≤ τ < T ) is indistinguishable
from the one to −H0 (T ≤ τ < 2T ) for any value of T . The
magnetization m = L−1 ∑

i Si also oscillates around zero with
preserving the up-down symmetry for any T (not shown). We
will present a more quantitative argument for the absence of
a DPT by using correlation functions, which we introduce
below.

III. RESULTS

A. Correlation functions

We begin by considering slow driving, e.g., as in Fig. 1(d).
One can easily understand the behavior of the density of
domain walls: At τ = 0, for example, the field abruptly
changes from −H0 to +H0, whereas most of the spins
are pointing downward. The density of domain walls thus
increases when τ is small. As τ grows further, however, it
is followed by a downturn in the density because almost all
the spins are aligned in the field direction. Then, the field
changes to −H0 again, and all the processes of creation and
annihilation of domain walls are repeated anew. We will put
this description on a more quantitative ground by considering
correlation functions and then move on to the case of fast
driving.

Let us recap the time evolution of an individual spin i during
�t as follows:

Si(t + �t) =
{

Si(t), with probability 1 − Wi�t,

−Si(t), with probability Wi�t,
(7)

where Wi is given in Eq. (2). In the limit of �t → 0, the
time derivative of magnetization and that of the two-point

correlation function can be written as
d〈Si〉
dt

= −2〈SiWi〉, (8)

and
d〈SiSi+r〉

dt
= −2〈SiSi+r (Wi + Wi+r )〉, (9)

respectively, where 〈· · · 〉 means the average over configu-
rations. We now suppose that the system experiences +H0.
Enumerating all the possible spin triplets, we can summarize
the Glauber transition rates in Eq. (2) as follows:

Wi = 1
2 [gi + (1 − gi)(1 − Si)], (10)

with gi ≡ 1
4 (1 − Si−1)(1 − Si+1). By substituting Eq. (10) with

Eqs. (8) and (9), we find that

dm(t)

dt
= 1

4
(3 − 2m − C2), (11a)

dCr (t)

dt
= 1

2
(3m − 4Cr + Cr−1 + Cr+1 − Cr−1,2), (11b)

where m ≡ 〈Si〉, Cr ≡ 〈SiSi+r〉, and Cl,r ≡ 〈Si−lSiSi+r〉 =
Cr,l . Note that we have assumed invariance under translation
and reflection in the correlation functions. We could also write
down the evolution of the three-point correlation functions, but
it is already obvious that the equations will not be closed. To
proceed, we need to truncate the endless sequence of equations.
Our minimalist description is neglecting correlation over a
distance greater than two, so it reads as

dm(t)

dt
= 1

4
(3 − 2m − C2), (12a)

dC1(t)

dt
= 1

2
(3m − 4C1 + 1 + C2 − m), (12b)

dC2(t)

dt
= 1

2
(3m − 4C2 + C1t), (12c)

where we have included the evolution of C2, which appears in
Eq. (11a). This description is minimalist in the following sense:
Suppose that C2 is also neglected. Considering Eq. (12a),
we see that this makes the evolution of m independent
of other correlation functions. Unregulated by higher-order
correlations, it has a fixed point at m = 3

2 , which is unphysical.
We thus conclude that we need to take into account C2

at least. Note that our simplified dynamics still admits a
fully ordered state with m = C1 = C2 = 1 as a stationary
solution for the static field H (t) = +H0. Calculating the
density of domains walls ρ(t) = 1

2 [1 − C1(t)], we find a
striking agreement between Monte Carlo results and Eq. (12),
numerically integrated from an initial condition with m = −1
and C1 = C2 = 1 [Fig. 3(a)]. This agreement is also consistent
with the remark in the previous section that the correlation
length is not greater than O(10).

Having checked our description for slow driving, we may
now consider the opposite limit of T → 0. We assume that this
limit restores the up-down symmetry so that m is negligible in
Eqs. (12b) and (12c) in an average sense. This assumption
is supported by the following argument: If any remnant
magnetization m �= 0 exists, it means that the system is unable
to respond to such a rapid field modulation. According to this
idea, C2 would not change appreciably upon the field reversal

062107-3



SU DO YI AND SEUNG KI BAEK PHYSICAL REVIEW E 91, 062107 (2015)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7

ρ

τ

(a) (b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2

ρ

τ

(a) (b) Monte Carlo
11/30

FIG. 3. (Color online) Density of domain walls as a function of
τ . (a) The solid lines are obtained by using Monte Carlo simulations
for L = 103 and T = 15, whereas the dotted lines are obtained by
numerically integrating Eq. (12). (b) Monte Carlo results for L = 103

and T = 1 (solid line) remain close to the value 11
30 estimated from

Eq. (12) in the limit of T → 0 (dotted line).

either. When H (t) = −H0, Eq. (12a) takes a slightly different
form

dm(t)

dt
= 1

4
(−3 − 2m + C2), (13)

where the right-hand side is written in terms of the same
correlation functions based on the “freezing” scenario above.
The summation of Eqs. (12a) and (13) expresses the total
change in m during one period, which must vanish in a steady
state. This immediately leads to the conclusion that m = 0.
In this way, we can argue that a symmetry-breaking DPT,
as a result of the competition between relaxation and driving
time scales, should be absent in our system. Put differently,
the relaxational time scale does not grow longer than the one
for driving, and this is consistent with our observation of short
correlation lengths. As a side remark, we add that the statement
of vanishing m contains a subtle point: If m was strictly zero
all the time, it would imply dm

dt
�= 0 in Eq. (12a) or (13),

which is self-contradictory. A correct explanation is rather that
m will keep changing around zero with a small magnitude.
In addition to m = 0 in an average sense, the steady-state
condition requires that both dC1

dt
and dC2

dt
must also vanish.

Solving the set of linear equations resulting from Eqs. (12b)
and (12c), we estimate the stationary density of domain walls
as ρ = 1

2 (1 − C1) = 11
30 . This calculation agrees well with our

Monte Carlo result, confirming the existence of domain walls
in the presence of a fast switching field [Fig. 3(b)].

B. Domain statistics

So far, we have focused on the lowest-order ones among the
infinite hierarchy of correlation functions, and this turns out to
be enough to describe certain average quantities, such as the
density of domain walls. Now, let us proceed to the detailed
statistics of domains to gain more information. We begin by
considering how domains evolve in time when the field is taken
to be +H0. Let Pn denote the density of down-spin domains of
length n so that

∑
n nPn is equal to the fraction of down spins.

We have four mechanisms that affect Pn.
(1) A domain of length n disappears when any of its

down spins flip upward. According to Eq. (2), two spins at
the boundary flip with rate 1, whereas the rate is reduced
to 1

2 for the other (n − 2) spins in the bulk. Therefore, the
total rate of loss amounts to 1 × 2 + 1

2 × (n − 2) = ( n
2 + 1),

multiplied by Pn, for n � 2. Note that this formula does not
cover the case of a single-spin domain, which disappears via
{· · · ↑↓↑ · · · } =⇒ {· · · ↑↑↑ · · · } with rate 1.

(2) The density Pn increases when a domain of length
n + 1 shrinks by one at the boundary. The contribution is
counted as 2Pn+1 because of the two boundary spins.

(3) We can increase Pn by dividing a domain of length
l � n + 2 into two pieces in such a way that

{· · · ↑ ↓ · · · ↓↓↓ · · · ↓︸ ︷︷ ︸
l

↑ · · · }

=⇒

⎧⎪⎪⎨
⎪⎪⎩

{· · · ↑ ↓ · · · ↓︸ ︷︷ ︸
n

↑ ↓ · · · ↓︸ ︷︷ ︸
l−n−1

↑ · · · }, with rate 1
2 ,

{· · · ↑ ↓ · · · ↓︸ ︷︷ ︸
l−n−1

↑ ↓ · · · ↓︸ ︷︷ ︸
n

↑ · · · }, with rate 1
2 .

(14)

If n �= l − n − 1, this has two different possibilities, each with
rate 1

2 , so the contribution to Pn from the domain of length l is
equal to Pl . Even if n = l − n − 1, the contribution is still Pl

because the division creates two domains of length n with rate
1
2 . In total, this third mechanism contributes

∑∞
l=n+2 Pl to Pn.

(4) The last mechanism is to merge a domain of size l �
n − 2 and another with size n − l − 1 to create a domain of
size n. We can visualize it as

{· · · ↑ ↓ · · · ↓︸ ︷︷ ︸
l

↑ ↓ · · · ↓︸ ︷︷ ︸
n−l−1

↑ · · · }

=⇒ {· · · ↑ ↓ · · · ↓↓↓ · · · ↓︸ ︷︷ ︸
n

↑ · · · } with rate
1

2
. (15)

To evaluate the probability of this event, we need to know
the probability of the configuration on the left-hand side.
The independent-interval approximation (IIA) suggests that
the lengths can be regarded as totally uncorrelated so that
the probability can be expressed as PlPn−l−1 [21]. The total
contribution of this mechanism is thus approximately written
as 1

2

∑n−2
l=1 PlPn−l−1.

Gathering all these terms, we arrive at

dP1

dt
= −P1 + 2P2 +

∞∑
l=3

Pl, (16a)

dPn

dt
 −

(
1 + n

2

)
Pn + 2Pn+1 +

∞∑
l=n+2

Pl

+ 1

2

n−2∑
l=1

PlPn−l−1 for n � 2. (16b)

The next step is to consider the dynamics of up-spin
domains with keeping the same field direction. Similar to Pn,
we define Qn as the density of up-spin domains of length n.
We have five mechanisms to affect Qn.

(i) In the first mechanism, a domain of a single up spin
evaporates via
{· · · ↓↑↓ · · · } =⇒ {· · · ↓↓↓ · · · } with rate 1

2 . This takes
place only for n = 1.

(ii) Again, this second mechanism applies only to n = 1.
A domain of length 1 can be created via {· · · ↓↓↓ · · · } =⇒
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{· · · ↓↑↓ · · · } with rate 1
2 . For this to happen, we have to

pick up a down spin surrounded by two other down spins.
For a down-spin domain of size l, we have l − 2 such spins.
Therefore, we compute this contribution as 1

2

∑∞
l=3(l − 2)Pl .

Note that the dynamics of Qn is coupled to that of Pn.
(iii) The third mechanism describes a loss due to the growth

from length n. The domain can grow to the left or right, each
with rate 1, so the contribution becomes −2Qn.

(iv) A domain of length n can be gained from the growth
process as well when a domain of length n − 1 expands to n by
flipping a spin upward at the boundary with rate 1. However,
we cannot simply write it as 2Qn−1 because the spin flip may
merge this domain with another. For example, if we look at
the left boundary, the following process creates a domain of
length n:

{· · · ⇓↓ ↑ · · · ↑︸ ︷︷ ︸
n−1

↓ · · · } =⇒ {· · · ⇓ ↑↑ · · · ↑︸ ︷︷ ︸
n

↓ · · · }, (17)

whereas the following does not:

{· · · ⇑↓ ↑ · · · ↑︸ ︷︷ ︸
n−1

↓ · · · } =⇒ {· · · ⇑ ↑↑ · · · ↑︸ ︷︷ ︸
n

↓ · · · }.

(18)
In short, it depends on the direction of the spin drawn as a
double arrow on the leftmost side. In a similar spirit to the IIA,
we assume a well-defined probability � for the spin to point
downward so that the contribution becomes 2Qn−1�.

(v) The last mechanism is to merge two up-spin do-
mains, one with size l and the other with size n − l − 1 as
follows:

{· · · ↓ ↑ · · · ↑︸ ︷︷ ︸
l

↓ ↑ · · · ↑︸ ︷︷ ︸
n−l−1

↓ · · · }

=⇒ {· · · ↓ ↑ · · · ↑↑↑ · · · ↑︸ ︷︷ ︸
n

↓ · · · } with rate 1. (19)

As before, we resort to the IIA to estimate the contribution as∑n−2
l=1 QlQn−l−1.
To sum up, we have derived equations for Qn as

dQ1

dt
= −1

2
Q1 − 2Q1 + 1

2

∞∑
l=3

(l − 2)Pl, (20a)

dQn

dt
 −2Qn + 2Qn−1� +

n−2∑
l=1

QlQn−l−1 for n � 2.

(20b)

Even if H (t) = −H0, we can derive essentially the same
as Eqs. (16) and (20), provided that the variable Qn indicates
domains in the direction of the field, whereas Pn does in the
opposite direction.

Suppose that T is so short that the down-spin domains are
effectively subjected to both Eqs. (16) and (20). The steady-
state condition implies that dPn

dt
+ dQn

dt
= 0 for every n � 1.

As the up-down symmetry is restored, we may also equate
every Qn with Pn with setting � = 1

2 . We finally end up with
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FIG. 4. (Color online) Domain size distribution. (a) The dotted
line shows the trial solution Pn = Azn with A  0.236 629 and z 
0.615 633 that approximately solves Eq. (21). The crosses represent a
numerically exact solution of Eq. (21) truncated at n = 50. The circles
are Monte Carlo results for the Ising chain of length L = 104. The
inset shows the same data in a semilogarithmic plot. (b) Correction
from the simple exponential form [Eq. (22)]. We estimate B  0.01
and w  0.75 by fitting the data on a logarithmic scale.

the following set of equations:

0 = −7

2
P1 + 2P2 +

∞∑
l=3

l

2
Pl, (21a)

0 = Pn−1 −
(

3 + n

2

)
Pn + 2Pn+1 +

∞∑
l=n+2

Pl

+ 3

2

n−2∑
l=1

PlPn−l−1 for n � 2. (21b)

Our trial solution is an exponential distribution, i.e., Pn =
Azn with positive constants A and z < 1. Substituting this into
Eq. (21a), we obtain z  0.615 633. It is worth noting that z

would be equal to 1
2 if all the correlations were destroyed as in

the infinite-temperature limit. Although this trial solution does
not exactly solve Eq. (21b), we can estimate the amplitude
A  0.236 629 by taking n → ∞. As a cross-check, we
truncate Eq. (21) by setting Pn = 0 for n > 50 and solve
the 50 coupled equations for P1, . . . ,P50 simultaneously. It
confirms the validity of our trial solution even for small
values of n as shown in Fig. 4(a). Of course, we have to ask
ourselves whether Eq. (21), involved with several uncontrolled
approximations, correctly describes the domain dynamics.
This is checked by simulating an Ising chain of length L = 104

to sample the domain length distribution. As depicted in Fig.
4(a), the result shows that Eq. (21) works qualitatively but
tends to underestimate Pn when n is large. The correction
from Azn reveals another length scale in the following
form:

Pn − Azn  Bwn, (22)

with B  0.01 and w  0.75 [Fig. 4(b)]. The second length
scale corresponds to roughly four lattice spacings, about twice
larger than the first one, but its origin is not fully understood
yet.
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IV. SUMMARY

To summarize, we have considered the zero-temperature
Glauber dynamics in the 1D Ising chain driven by rectangular
pulses of period 2T and strength equal to J . We have argued
that the driving interrupts the coarsening so that the density
of domain walls converges to a nonzero stationary value 
1
3 in the limit of fast driving. We have also calculated the
steady-state distribution of domain lengths in the same limit
by using the IIA, and the result indicates the existence of finite
nontrivial correlation. Moreover, our Monte Carlo calculation
shows that the actual density is higher than expected from
simple exponential decay, revealing the existence of the second
length scale, about twice larger than the first one.
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