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Filtered shot noise processes have proven to be very effective in modeling the evolution of systems exposed to
shot noise sources and have been applied to a wide variety of fields ranging from electronics through biology. In
particular, they can model the membrane potential Vm of neurons driven by stochastic input, where these filtered
processes are able to capture the nonstationary characteristics of Vm fluctuations in response to presynaptic input
with variable rate. In this paper we apply the general framework of Poisson point processes transformations to
analyze these systems in the general case of nonstationary input rates. We obtain exact analytic expressions,
as well as different approximations, for the joint cumulants of filtered shot noise processes with multiplicative
noise. These general results are then applied to a model of neuronal membranes subject to conductance shot
noise with a continuously variable rate of presynaptic spikes. We propose very effective approximations for the
time evolution of the Vm distribution and a simple method to estimate the presynaptic rate from a small number
of Vm traces. This work opens the perspective of obtaining analytic access to important statistical properties of
conductance-based neuronal models such as the first passage time.
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I. INTRODUCTION

We investigate the statistical properties of systems that
can be described by the filtering of shot noise input through
a linear first-order ordinary differential equation (ODE) with
variable coefficients. Such systems give rise to filtered shot
noise processes with multiplicative noise. The membrane
potential Vm fluctuations of neurons can be modeled as filtered
shot noise currents or conductances [1,2]. These fluctuations
have been previously analyzed in the stationary limit of shot
noise conductances with constant rate [3–6], and an exact
analytical solution has been obtained for the mean and joint
moments of exponential shot noise [7,8]. However, many
neuronal systems evolve in nonstationary regimes driven
by shot noise with variable input rate. A typical example is
provided by visual system neurons that receive presynaptic
input with time-varying rate that reflects an evolving visual
landscape. Modeling studies often consider the exponential
shot noise case, whereas biological systems may display larger
diversity including slow rising impulse response functions
similar to alpha and biexponential functions, for example.
Previous studies have addressed nonstationary exponential
shot noise conductances and nonstationary currents [9–11].

Poisson point processes (PPPs) provide a natural model
of random input arrival times that are distributed according
to a Poisson law that may vary in time. Application-oriented
treatments of PPP theory and PPP transformations can be
found in Refs. [12,13]. The key idea of this article is to express
the filtered process as a transformation of random input arrival
times and to apply the properties of PPP transformations to
derive its nonstationary statistics. Using this formalism we
derive exact analytical expressions for the mean and joint
cumulants of the filtered process in the general case of variable
input rate. We develop an approximation based on a power
expansion of the expectation about the deterministic solution.
We apply these results to a simple neuronal membrane model
of subthreshold membrane potential Vm fluctuations that
evolves under shot noise conductance with continuously
variable rate of presynaptic spikes.

Shot noise processes are simple yet powerful models of
stochastic input that correspond to the superposition of impulse
responses arriving at random times according to a Poisson
law. Systems evolving under shot noise input have been
observed across many domains, such as electronics [14,15],
optics [16,17], and many other fields [18,19]. Shot noise
was discovered in the early works of Campbell and Schottky
[14,15]. Key theoretical results were obtained by Rice [20] and
a modern review of their probabilistic structure is presented
in Ref. [21]. Filtered shot noise processes with multiplicative
noise are an extension of filtered Poisson process [13,18,19]
that are generated by linear transformations of PPPs.

In this article, we start by presenting a simple model
of filtered shot noise process with multiplicative noise and
variable input rate (Sec. II). We next consider the general case
of PPP transformations and their properties (Sec. III). Exact
analytic expressions for the joint cumulants of the filtered
process are derived (Sec. IV) in addition to an approximation
of the exact analytical solution (Sec. V). Finally, we apply these
results to a simple neuronal membrane model of subthreshold
Vm fluctuations with continuously variable rate of presynaptic
spikes and explore several practical applications (Sec. VI).

II. MODEL OF FILTERED SHOT NOISE PROCESS

In this section we present a simple model of filtered shot
noise process with multiplicative noise. This stochastic process
results from the filtering of shot noise input through a linear
first-order ODE with variable coefficients. We show that
under very simple input rate conditions the filtered process
is nonstationary. We derive the time course of the filtered
process in terms of the shot noise arrival times. The numerical
simulation parameters are presented at the end of this section.

Consider the time evolution Y (t) of a system governed by a
linear first-order ODE with variable coefficients that is driven
by shot noise input Q(t):

τ
d

dt
Y (t) = −Y (t) + [1 − Y (t)]Q(t), (1)

Q(t) =
∑
xj ∈ ξ

g(t − xj ) H (t − xj ), (2)
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where τ is a time constant, ξ is the set of shot noise arrival
times, g(t − xj ) H (t − xj ) is the impulse response function
at time t for arrival time xj ∈ ξ , and H (u) is the Heaviside
function. The impulse response function is also known as shot
noise kernel.

The input arrival times ξ in Eq. (2) are distributed according
to a Poisson law as is characteristic of shot noise. The time
evolution of this system is both stochastic and deterministic:
stochastic since it is driven by random input arrival times ξ ,
but also deterministic since to each ξ corresponds a unique
outcome. The system response Y (t,ξ ) is said to be a filtered
version of the shot noise process Q(t,ξ ) since Eq. (1) changes
its spectral characteristics.

Nonstationary dynamics are introduced in the model by re-
stricting input arrival times to occur between ta and tb � ta with
constant Poisson rate λ. A single realization of shot noise input
Q(t,ξ ) and the resulting system response Y (t,ξ ) are shown
in Fig. 1. The mean and standard deviation (μ ± σ ) of both
processes are clearly nonstationary since they vary in time.

The system response Y (t,ξ ) for a particular shot noise input
Q(t,ξ ) is obtained by solving Eq. (1). For a given set of input
arrival times ξ and initial value Y0 = 0,

Y (t,ξ ) = 1

τ

∫ t

−∞
e− t−z

τ Q(z,ξ ) e− 1
τ

∫ t

z
Q(u,ξ ) du dz

= 1

τ

∫ t

−∞
e− t−z

τ

∑
xj ∈ ξ

g(z − xj ) H (z − xj )

×
∏
xi∈ ξ

e− 1
τ

∫ t

z
g(u−xi ) H (u−xi ) du dz. (3)

The input arrival times ξ completely determine the time
evolution of Y (t,ξ ). Equation (3) also shows that the response
at time t for each input arrival xj also depends on later input
arrivals xi � t . For a single shot noise source the solution can
be further simplified using integration by parts:

Y (t,ξ ) = 1 − 1

τ

∫ t

−∞
e− t−z

τ

∏
xi∈ξ

e− 1
τ

∫ t

z
g(u−xi ) H (u−xi ) du dz. (4)

The remainder of this article addresses the question of how
to obtain the cumulants of the quantity on the left side of
Eq. (4) from those on the right side, in the particular case
of Poisson-distributed input arrival times ξ with variable rate
λ(t). For reasons of concise presentation, instead of Eq. (3),
we consider the equivalent Eq. (4).

The numerical simulations were generated with the rate
function λ(t) represented in Fig. 2(a) and exponential kernel
shot noise with g(t − x) = h exp[−(t − x)/τs]. Other param-
eters are tmax = 0.1 s, τ = 0.02 s, λ = 500 Hz, h = 4, and
τs = 0.0025 s.

III. CAUSAL POINT PROCESS TRANSFORMATIONS

We review the basic properties of PPP transformations and
analyze the stochastic process generated by causal PPP trans-
formations. The expectation of PPP transformations yields
the joint cumulants of the associated processes. We illustrate
this approach with the shot noise process and compare the
predicted mean and second order cumulants with numerical
simulations.

ta ts tb
0

5

10

15

Q
t

(a)
μ ±σ
sample Qt
sample ξ

0 20 40 60 80 100
t (ms)

0.0

0.5

1.0

Y t

(b)
μ ±σ
sample Yt

FIG. 1. (Color online) Single realization and basic statistics of
filtered shot noise process Yt under shot noise input Qt . (a) Random
input arrival times xj ∈ ξ generate nonstationary shot noise Qt ≡
Q(t,ξ ). The input arrival times are distributed with a variable Poisson
rate λ(t) that restricts the arrivals to occur between ta and tb. (b)
Nonstationary system response Yt ≡ Y (t,ξ ) driven by shot noise Qt .
A single realization of random arrival times ξ is represented by gray
dots; realizations of Qt and Yt are shown in black lines. The mean
and standard deviation (μ ± σ ) of Qt and Yt are shown by gray lines
and are clearly nonstationary.

We consider a PPP � (S,λ) that generates points in the
intervalS ⊆ R of the real line with rate function λ(x) � 0 such
that m(S) ≡ ∫

S λ(x) dx is finite for any bounded interval S. A
realization ξ of � contains a set of n � 0 points {x1, . . . ,xn} ∈
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FIG. 2. (Color online) Rate function λ(t) examples for inho-
mogeneous PPP. A single realization of input arrival times ξ is
represented by gray dots above the rate functions (blue lines) marking
the location of input arrival times xj ∈ ξ . (a) Rate function used to
generate input arrival times for the filtered shot noise process of
Sec. II. (b) Rate function used to generate presynaptic spike times for
the neuronal membrane of Sec. VI.
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FIG. 3. (Color online) A shot noise process Ft is a causal PPP
transformation F (t,ξ ) of input arrival times xj ∈ ξ . This particular
PPP transformation is defined in Eq. (2) and its causality ensures that
Ft is not affected by input arrivals later than t . For example, the value
of F2 = F (t2,ξ ) is determined by input arrivals xj ∈ ξ up to t2 (blue
line) and is not affected by input arrivals later than t2 (light gray line).
The dots above Ft mark the location of input arrival times xj ∈ ξ .

S that we associate with input arrival times. A PPP is said
to be homogeneous for constant λ(t) = λ and inhomogeneous
otherwise. Example rate functions and sample realizations of
the associated inhomogeneous PPP are shown in Fig. 2. These
rate functions were used to generate input arrival times for the
filtered shot noise process of Sec. II and the presynaptic spikes
for the neuronal membrane of Sec. VI.

We consider a transformation F (t,ξ ) that for each real
parameter t ∈ S and realization ξ evaluates to a positive real
number Ft = F (t,ξ ). The transformation is assumed invariant
under permutation of xj ∈ ξ , such that when written as a
regular function we have F (t,x1, . . . ,xn) = F (t,{x1, . . . ,xn}).

The expectation of F (t,ξ ) is obtained from the ensemble
average over the number n of points and their locations
{x1, . . . ,xn}:

〈F (t,ξ )〉 =
∞∑

n=0

1

n!
e−m(S)

∫
S

· · ·
∫
S

F (t,x1, . . . ,xn)

×
n∏

j=1

λ(xj ) dxj . (5)

We now focus on the class of PPP transformations that are
causal in the time parameter t . Such transformations ensure
that arrivals xj ∈ ξ later than t cannot affect the value of
F (t,ξ ). A single realization ξ generates the entire time course
of F (t,ξ ), and we therefore associate a slave stochastic process
Ft ≡ F (t,ξ ) to the causal PPP transformation F (t,ξ ). By
construction, the expectation of Ft is the expectation of F (t,ξ )
given by Eq. (5). This is illustrated in Fig. 3, where the value
of shot noise process Ft at different times is evaluated from
the same realization ξ .

We write F1, . . . ,FK for the values of stochastic process
Ft at times t1, . . . ,tK , 〈F1 · · · FK〉 for its joint moments and
〈〈F1 · · ·FK〉〉 for its joint cumulants. The expectation of PPP
transformations enables to obtain analytical expressions for
the joint moments and joint cumulants of Ft : its joint moments
are obtained by evaluating the expectation of suitable products
F (t1,ξ ) · · · F (tK,ξ ), and its joint cumulants can be constructed
explicitly from the joint moments. For example, the moment
〈F1 F 2

2 〉 is evaluated by the expectation 〈F (t1,ξ ) F (t2,ξ )2〉.
The causality of F (t,ξ ) enables to consider the PPP in

the entire real line (S = R) with finite activity intervals
constructed by setting λ(t) = 0 outside the activity windows.
This approach yields exact analytical expressions for the joint
cumulants of nonstationary processes generated from causal
PPP transformations as illustrated next with the nonstationary
shot noise process from Sec. II. A shot noise process is a
particular type of random sum, which is a PPP transformation
that factors as F (t,ξ ) = ∑

xj ∈ξ f (t,xj ). The joint cumulants
of random sums are given by the Campbell Theorem [14,20]
and are also derived for reference in Appendix A:

〈〈F1 . . . FK〉〉 =
∫
S

f (t1,x) · · · f (tK,x) λ(x) dx, (6)

where f (t,x) is the impulse response function at time t for an
input arrival time x. Shot noise is a causal random sum with
f (t,x) = g(t − x) H (t − x).

The expectation of more general forms of random sums,
such as those in Eq. (3), are provided by the Slivnyak-
Mecke Theorem [22,23]. A comparison between numerical
simulations and Campbell Theorem predictions is shown in
Fig. 4 with excellent agreement for the mean and second
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FIG. 4. (Color online) Comparison with numerical simulations for (a) the mean and standard deviation and (b) the autocorrelation of the
shot noise process Qt from Sec. II as predicted by the Campbell Theorem [Eq. (6)]. There is excellent agreement between the simulations
(gray lines) and the analytic predictions (black lines) with the respective lines overlapping. The autocorrelation ρ is evaluated at ta , ts , and tb
corresponding respectively to the onset of PPP activity, quasistationary Qt , and extinction of PPP activity.
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order cumulants. The autocorrelation at times t1 and t2 is given
by ρ(F1 F2) = 〈〈F1 F2〉〉/(σ (F1) σ (F2)) where 〈〈F1 F2〉〉 is the
autocovariance at times t1 and t2 and σ (Ft ) is the standard
deviation at time t .

IV. EXACT ANALYTICAL SOLUTION

We use the properties of PPP transformations to derive
exact analytical expressions for the cumulants of filtered shot
noise processes with multiplicative noise and variable input
rate. We investigate transformations that are relevant to these
filtered processes: integral transform and random products.
We evaluate their cumulants and compare with numerical
simulations the predicted mean and second order cumulants of
the filtered process.

According to Eq. (4), the filtered process Yt is the integral
of a causal PPP transformation that factors as a product of
exponentials of input arrival times xj ∈ ξ . We now investigate
these transformations and define an integral transform of
F (t,ξ ) with regard to a positive and bounded function w:

SF (t,ξ ) =
∫ t

−∞
F (u,ξ ) w(u,t) du. (7)

The mean and joint moments of the integral transform are
calculated by interchanging the infinite sum and integrals of
the expectation Eq. (5) with the integral of the transform
provided any one side of the equalities is finite (Fubini-Tonelli
Theorem):

〈SFt 〉 =
〈∫ t

−∞
F (u,ξ ) w(u,t) du

〉

=
∫ t

−∞
〈F (u,ξ )〉w(u,t) du, (8)

〈SF1 · · · SFK〉 =
∫ t1

−∞
· · ·

∫ tK

−∞
〈F (u1,ξ ) · · · F (uK,ξ )〉

×
K∏

l=1

w(ul,tl) dul. (9)

The linearity of integration extends Eq. (9) to the joint
cumulants:

〈〈SF1 · · · SFK〉〉 =
∫ t1

−∞
· · ·

∫ tK

−∞
〈〈F (u1,ξ ) · · ·F (uK,ξ )〉〉

×
K∏

l=1

w(ul,tl) dul. (10)

We now analyze random products that are PPP transformations
factoring as F (t,ξ ) = ∏

xj ∈ξ f (t,xj ). The joint moments of
random products are well known and as shown in Appendix A:

〈F1 . . . FK〉 = exp

{∫
S

[
K∏

k=1

f (tk,x) − 1

]
λ(x) dx

}
. (11)

We have gathered all the elements to derive the mean and joint
cumulants of the filtered process Yt . Writing Q(t,ξ ) = Q(t)

and using the properties of joint cumulants,

〈Yt 〉 = 1 − 1

τ

∫ t

−∞

〈
e− 1

τ

∫ t

z
Q(u) du

〉
e− t−z

τ dz, (12)

〈〈Y1 · · · YK〉〉 =
(

− 1

τ

)K ∫ t1

−∞
· · ·

∫ tK

−∞

〈〈
K∏

k=1

e
− 1

τ

∫ tk
zk

Q(u) du

〉〉

×
K∏

l=1

e− tl−zl
τ dzl. (13)

The expectation of the random product of exponentials is
obtained from Eq. (11) and yields:〈

K∏
k=1

e
− 1

τ

∫ tk
zk

Q(u) du

〉

= exp

{∫
S

(
K∏

k=1

e
− 1

τ

∫ tk
zk

g(u−x) H (u−x) du − 1

)
λ(x) dx

}
.

(14)

Replacing Eq. (14) into Eqs. (12) and (13) yields the exact
solution for the joint cumulants of filtered shot noise process
with multiplicative noise and variable input rate. The random
product expectation of Eq. (14) is the key element in the
evaluation of the mean and joint cumulants, which was already
identified in previous work [7,8], where closed expressions
were obtained for exponential kernel shot noise with constant
rate. As our derivation shows, this extends to any shot noise
kernel g(t − x) H (t − x) and variable input rate λ(t) and is
the main original contribution of this work.

The comparison between numerical simulations and the
predictions from Eqs. (12) and (13) are shown in Fig. 5.
There is excellent agreement even in such a nonstationary
scenario with the system undergoing transient evolution. The
numerical evaluation of Eqs. (12) and (13) can be performed
very efficiently with the trapezoidal rule due to the double
exponential in the integrand.

V. CENTRAL MOMENTS EXPANSION

We propose an approximation of the exact analytical
solution that is based on a power expansion about the
deterministic solution. The central moments expansion (CME)
yields a series in the central moments of integrated shot noise.
We compare this approximation for the mean and second order
cumulants with numerical simulations, including the case of
constant Poison rate.

The deterministic solution of Eq. (1) with mean shot noise
input 〈Q(u)〉 is given by

〈Yt 〉0 = 1 − 1

τ

∫ t

−∞
e− t−z

τ e− 1
τ

∫ t

z
〈Q(u)〉 du dz.

This suggests an expansion about the deterministic solution
〈Yt 〉0 by performing power expansions of the random product
expectations in Eqs. (12) and (13). The integrated mean shot
noise is first factored out of the random product, and a power
expansion of the resulting exponential is performed. This
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FIG. 5. (Color online) Comparison with numerical simulations for (a) the mean and standard deviation and (b) the autocorrelation of the
filtered process Yt predicted by the exact analytic solution given by Eqs. (12) and (13). There is excellent agreement between the simulations
(gray lines) and the analytic predictions (black lines) with the respective lines overlapping. The autocorrelation ρ is evaluated at ta , ts , and tb
corresponding respectively to the onset of PPP activity, quasistationary Yt , and extinction of PPP activity.

corresponds to the delta method technique [24,25] for approx-
imating expectations of random variable transformations and
yields a series in the central moments of integrated shot noise.
As shown in Appendix B, the second order expansion for a
single random product yields〈

e− 1
τ

∫ t

z
Q(u) du

〉 � e− 1
τ

∫ t

z
〈Q(u)〉du

×
(

1 + 1

2

〈{
− 1

τ

∫ t

z

[Q(u) − 〈Q(u)〉] du

}2
〉)

.

This provides the following approximation for the mean of the
filtered process:

〈Yt 〉2 = 1 − 1

τ

∫ t

−∞
e− 1

τ

∫ t

z
[1+〈Q(u)〉]du

×
[

1 + 1

2τ 2

∫ t

z

∫ t

z

〈〈Q(u1) Q(u2)〉〉du1 du2

]
dz.

(15)

where the subscript 2 represents the second order of the
expansion. Extending to joint cumulants is straightforward
by expanding each exponential individually and collecting
terms of same order in 1/τ . The first order expansion for

the autocovariance is given by

〈〈Y1 Y2〉〉1 = 1

τ 4

∫ t1

−∞

∫ t2

−∞
e
− 1

τ

∫ t1
z1

[1+〈Q(u)〉]du− 1
τ

∫ t2
z2

[1+〈Q(v)〉]dv

×
∫ t1

z1

∫ t2

z2

〈〈Q(u1) Q(u2)〉〉 du1 du2 dz1 dz2.

(16)

The first order expansion for the variance is obtained from
Eq. (16) by replacing t1 = t2 = t . The comparison between
numerical simulations and the predictions from Eqs. (15) and
(16) are shown in Fig. 6. There is good agreement for the
mean but lower accuracy for second order cumulants. This
can be improved with the second order expansion for the
autocovariance that is provided in Appendix B.

We found that the second order expansion for the mean
and autocovariance consistently provided good results in the
parameter regimes of neuron cells [as seen in Fig. 6(a) and
Fig. 9 below]. Under these conditions, third and fourth order
expansions either did not provide significant improvements
over the second order or even resulted in worse approxima-
tions, in which case much higher order expansions would
be required to improve on the second order. Under certain
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FIG. 6. (Color online) Comparison with numerical simulations for (a) the mean and standard deviation and (b) the autocorrelation of
the central moments expansion given by Eqs. (15) and (16). There is good agreement between the simulations (full gray lines) and the
approximation (full red lines) for the mean but lower accuracy for second order cumulants. This is corrected by the second order expansion
for the autocovariance (dashed black lines) that is provided in Appendix B. The stationary limit (dashed dotted gray lines) is also shown. The
deterministic solution (dotted black line) displays considerable approximation error.
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FIG. 7. (Color online) Single realization and basic statistics of
membrane potential Vt fluctuations under conductance shot noise
input Gt . (a) Random presynaptic spike times xj ∈ ξ generate
nonstationary shot noise conductance Gt ≡ G(t,ξ ). The presynaptic
spike times are distributed with a continuously varying rate λ(t).
(b) Nonstationary membrane potential Vt ≡ V (t,ξ ) driven by shot
noise conductance Gt . A single realization of spike times ξ is
represented by gray dots; realizations of Gt and Vt are shown in
black lines. The mean and standard deviation (μ ± σ ) of Gt and Vt

are shown with gray lines.

parameter regimes the first order expansion for the
autocovariance [Eq. (16)] may already provide good results
(see Fig. 8 below).

The stationary limit of the filtered process reflects the
statistics of long running trials under shot noise input with
constant rate. The cumulants for this regime can be obtained
by placing the onset of input arrival times at −∞ and
replacing the mean and second order cumulants of shot noise in

Eqs. (15) and (16) with their stationary limits. After integration
by parts,

〈Yt 〉2 = 〈Q〉
1 + 〈Q〉 − 〈〈Q2〉〉

(1 + 〈Q〉)2

1

τ

×
∫ t

−∞
e− t−z

τ
[1+〈Q〉] r(t − z) dz, (17)

〈〈Y1 Y2〉〉1 = 〈〈Q2〉〉
(1 + 〈Q〉)2

1

τ 2

∫ t1

−∞

×
∫ t2

−∞
e− t1−z1+t2−z2

τ
(1+〈Q〉) r(|z1 − z2|) dz1 dz2,

(18)

where 〈Q〉, 〈〈Q2〉〉 and 〈〈Q1 Q2〉〉 = 〈〈Q2〉〉r(|t1 − t2|) are,
respectively, the mean, variance, and autocovariance of sta-
tionary shot noise.

The stationary limits for the mean and second order
cumulants of the exponential and alpha kernels are presented
in Appendix B 1.

VI. APPLICATION TO NEURONAL MEMBRANES

We apply the previous results to a simple model of
membrane potential Vm(t) fluctuations and explore several
practical applications. We first calculate the nonstationary
cumulants and compare them with numerical simulations.
The central moment expansion (CME) is compared with
previously published analytical estimates for the stationary
limit of Vm(t). The nonstationary cumulants are integrated in
truncated Edgeworth series to approximate the time-evolving
distribution of Vm(t), which is compared with numerical
simulations. We propose a simple method to estimate λ(t) from
a small number of noisy realizations of Vm(t) and compare
the inferred rate to the original presynaptic rate function. The
numerical simulation parameters are presented below.

We consider a simple model of the membrane potential
Vm(t) for a passive neuron without spiking mechanism that
is driven by shot noise conductance G(t). This model has a

0 20 40 60 80 100tc td te
t (ms)

−56

−48

−40

−32

V t
(m
V
)

(a)
μ ±σ
deterministic
analytical
CME

0 5 10 15 20
Δt (ms)

0.0

0.5

1.0

ρ
(V
1V
2)

(b)

t1 = tc+Δt
t1 = te+Δt
analytical
CME

FIG. 8. (Color online) Comparison with numerical simulations for (a) the mean and standard deviation and (b) the autocorrelation of
membrane potential Vt predicted by the exact analytical solution (full black lines) and the central moments expansion (red squares). There is
excellent agreement between the simulations (full gray lines) and the analytic prediction for both methods with the respective lines overlapping.
The deterministic solution (dotted black line) also displays good agreement with mean Vt . The autocorrelation ρ is evaluated at local maxima
(tc) and minima (te) of mean Vt .
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single synapse type and is directly applicable to experiments
where one type of synapse is isolated [26]. The time evolution
of Vm(t) under conductance shot noise input G(t) is given by
the following membrane equation:

τm

d

dt
Vm(t) = El − Vm(t) + [Es − Vm(t)]

1

gl

G(t), (19)

1

gl

G(t) =
∑
xj ∈ξ

g(t − xj ) H (t − xj ), (20)

where τm is the membrane time constant, El is the resting
potential, Es is the synaptic reversal potential, and gl is the
leak conductance and ξ is a set of presynaptic spike times.
The membrane equation is a scaled and translated version of
Eq. (1) with the following change of variables:

Vm(t) = (Es − El) Y (t) + El, Q(t) = 1

gl

G(t).

A single realization of conductance shot noise Gt ≡ G(t,ξ )
and the resulting membrane potential response Vt ≡ Vm(t,ξ )
are shown in Fig. 7, where the mean and standard deviation of
both processes are also represented. The numerical simulations
were generated with the rate function λ(t) represented in
Fig. 2(b) and alpha kernel shot noise with f (t,x) = h(t −
x/τs) exp [−(t − x)/τs]. Other parameters are τm = 0.02 s,
El = −60 mV, Es = 0 mV, h = 4 nS, in addition to those
detailed in Sec. II.

A. Nonstationary cumulants

A first application of this formalism is to derive the mean
and joint cumulants of Vt from those of Yt . Using the properties
of the mean and cumulants of random variables for each value
of t yields the required relationships:

〈Vt 〉 = (Es − El)〈Yt 〉 + El,
(21)

〈〈V1 · · · VK〉〉 = (Es − El)
K〈〈Y1 · · · YK〉〉.

The comparison between numerical simulations and the
predictions from Eq. (21) is shown in Fig. 8. There is excellent
agreement with the predictions from both the exact analytical
solution given by Eqs. (12) and (13) and the CME given
by Eqs (15) and (16). The deterministic solution is obtained
from Eq. (21) by replacing 〈Yt 〉 with 〈Yt 〉0 and displays good
agreement with mean Vt .

In this parameter regime, the approximation error of the
CME is very low (on the order of 0.01 mV). However,
additional terms of the expansion may be required to reach
similar precision in other parameter regimes. In order to
illustrate this, we increase the quantal conductance h by a
factor of 20 (h = 80 nS) with the effect of raising mean Vt

very close to the reversal potential Es . As shown in Fig. 9,
the CME is still in very good agreement for the mean, but the
approximation error is larger for the standard deviation (on
the order of several millivolts). The second order expansion
for the standard deviation results in lower approximation error
(on the order of 1 mV) but requires evaluating third and fourth
order cumulants of integrated shot noise. The approximation
error for the deterministic solution also increases to several
mV.

0 20 40 60 80 100
t (ms)

−32

−24

−16

−8

V t
(m
V
)

μ ±σ
deterministic
CME
CME 2

FIG. 9. (Color online) Same parameter regime as Fig. 8 but with
quantal conductance increased by a factor of 20 (h = 80 nS). The
mean and standard deviation of the numerical simulations (full gray
lines) display excellent agreement with the exact analytical solution
but are omitted for clarity. The approximation error for the CME
(full red lines) remains low for the mean but increases significantly
for both the standard deviation and the deterministic solution (dotted
black line). The second order expansion for the standard deviation
(dashed black lines) results in lower approximation error.

Appendix B 2 provides analytical expressions for the CME
in the stationary limit of Vt for the mean and second order
cumulants of exponential and alpha kernels. These expressions
are obtained by applying Eq. (21) to Eqs. (17) and (18) and are
consistent with previous analytical estimates for the mean and
standard deviation that were derived with different approaches:
Fokker-Planck methods for exponential kernel shot noise [4,5]
given by Eq. (B1), and a shot noise approach for alpha
kernel shot noise [3] given by Eq. (B3). The extension to
the autocovariance is given by Eq. (B2) and (B4), respectively.

B. Probability distribution approximation

A second application of this formalism is to use the
nonstationary cumulants to approximate the time-evolving
distribution of membrane potential fluctuations. The mean and
standard deviation of Vt yield a Gaussian approximation that
successfully captures the time evolution of p(Vt ) as illustrated
in Fig. 10. As expected, the skew of the distribution is not
well captured by the Gaussian approximation, which has been
reported in both experimental [27] and theoretical studies
[4,5]. The quantal conductance was increased by a factor of 4
(h = 16 nS) in these simulations.

Deviations from the Gaussian distribution are expected
whenever cumulants of order three or higher are present in
p(Vt ). We use a truncated Edgeworth series [24,28,29] to
account for these deviations since it provides an asymptotic
expansion of p(Vt ) in terms of its cumulants. In particular, we
use the Edgeworth series expanded from the Gaussian distribu-
tion as discussed in [30]. This has the advantage of coinciding
with the Gaussian approximation whenever cumulants of order
three or higher are negligible. This is an important aspect
since approximately Gaussian shapes of p(Vt ) are sometimes
present in experimental intracellular recordings. In terms of the
normalized process Xt = (Vt − 〈Vt 〉)/σt with σt ≡

√
〈〈V 2

t 〉〉,

062102-7



MARCO BRIGHAM AND ALAIN DESTEXHE PHYSICAL REVIEW E 91, 062102 (2015)

0.000

0.025

0.050

0.075(a) Gaussian
t = tc

0.000

0.025

0.050

0.075(b) Gaussian
t = td

−60 −50 −40 −30 −20 −10
Vt (mV)

0.00
0.02
0.04
0.06

p(
V t

)

(c) Gaussian
t = te

FIG. 10. (Color online) Nonstationary density of membrane po-
tential p(Vt ) evaluated at three different times times: tc, td , and
te corresponding to (a), (b), and (c), respectively, [see abscissa of
Fig. 8(a)]. Comparison between the empirical histogram (gray) and
the Gaussian approximation (dashed line) based on nonstationary
mean and variance of Vt . The time evolution of p(Vt ) is captured
successfully by this approximation, which as expected also misses
the skew of p(Vt ).

the truncated fourth order Edgeworth series is given by

pEw4(Xt = x)

= 1

σt

[
1 + 1

3!

〈〈
V 3

t

〉〉
σ 3

t

(x3 − 3x) + 1

4!

〈〈
V 4

t

〉〉
σ 4

t

(x4 − 6x2 + 3)

+ 10

6!

〈〈
V 3

t

〉〉2
σ 6

t

(x6 − 15x4 + 45x2 − 15)

]
N (x), (22)

where N (x) = exp(−x2/2)/
√

2π is the standard normal
density and p(Vt = v) � pEw(x = v−〈Vt 〉

σt
). The third order

Edgeworth series is given by the first two terms.
As illustrated in the left side of Fig. 11, the skewness of

p(Vt ) is indeed captured by the third order of the Edgeworth
series. Figure 11(c) also shows a slight overestimation near
the peak of p(Vt ), which is successfully captured by the fourth
order, as shown in the right side of this figure.

Under more extreme parameter regimes, additional terms
of the Edgeworth series may be needed to approximate p(Vt ).
In such cases, the asymptotic character of the series becomes
relevant since the truncation error is of the same order as the
first neglected term of the series. An important caveat is that the
truncated series may yield negative values for certain values
of x. This is intrinsic to Edgeworth series that are constructed
in the set of orthogonal polynomials associated with the base
distribution (Hermite polynomials in the case of the standard
normal distribution). The truncated series integrates to unity
but may result in an invalid density function since negatives
values are possible. Algorithms for computing an Edgeworth
series to an arbitrary order are provided in Refs. [31,32].

C. Presynaptic rate estimation

Another application of this formalism is to estimate the
nonstationary presynaptic rate λ(t) from a small number (N =
10) of membrane potential Vt traces that are independently
generated from the same PPP. Each trace has small amounts of
additive noise to simulate measurement error that are indepen-
dent from the PPP. The traces of Vt are sampled at rate 1/	t . A
single realization of the noisy membrane potential with mean
and variance estimated from a small number of traces is shown
in Fig. 12. The noisy membrane equation is given by

τm

d

dt
Vm(t) = El − Vm(t) + [Es − Vm(t)]

1

gl

G(t) + ε(t),

(23)

where ε(t) is a zero mean Gaussian white noise in units of
voltage with σ (ε) = 0.2 mV.

The key expression that enables to estimate λ(t) from traces
of Vt is the Campbell Theorem for the mean of nonstationary
shot noise given by Eq. (6). If the shot noise kernel is
known, then the rate function can in principle be obtained
by deconvolution of the mean conductance. However, this
operation is very sensitive to noise since small changes in the
estimated mean conductance will result in large changes of the
estimated rate function. This aspect is dealt with by smoothing
the estimated mean conductance prior to performing the
deconvolution step. From each trace of Vt we extract the input
conductance by inverting Eq. (23) and average them to obtain
the estimated mean conductance:

〈Ĝt 〉 = 1

N

N∑
n=1

gl

	t

τm

(
V n

t+	t − V n
t

) − 	t
(
El − V n

t

)
Es − V n

t

,

where V n
t is the nth trace of Vt and 	t is the sampling interval.

The estimated mean conductance will be a noisy version of
the actual mean conductance due to the effects of the additive
noise ε(t) in each trace of Vt . Non-parametric smoothing is
performed using a local linear smoother with tricube kernel and
kernel bandwidth selected by cross-validation [33], yielding
the smoothed version 〈Ĝs

t 〉 shown in Fig. 12(b). Finally, we use
the discrete convolution theorem to estimate the presynaptic
rate λ̂(t) from the smoothed mean conductance:

λ̂(t) = 1

	t
DFT−1

[
DFT

{〈
Ĝs

t

〉}
DFT{g}

]
.

The result is shown in Fig. 13, where the estimated λ̂(t)
rate compares favorably to the original presynaptic rate λ(t).
Estimating λ(t) from noisy shot noise data has been previously
addressed [34] in addition to methods that enable to estimate
the shot noise kernel [35].

VII. DISCUSSION

In this paper, we investigated important statistical properties
of filtered shot noise processes with multiplicative noise, in the
general case of variable input rate. These properties provide a
compact description of time-evolving dynamics of the system.
Such processes arise from the filtering of nonstationary shot
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FIG. 11. (Color online) (a)–(c) Comparison at times tc, td , and te between the empirical histogram (gray), Gaussian approximation (dashed
black line), and the third order Edgeworth series (full red line). (d)–(f) Comparison at times tc, td , and te between the empirical histogram
(gray), third order Edgeworth series (dashed black line), and fourth order Edgeworth series (full red line). The slight discrepancy at the peak
of the empirical histogram in (c) is successfully captured by the fourth order Edgeworth series in (f).

noise input through a linear first-order ODE with variable
coefficients. We have obtained general results for this class
of stochastic processes and results specific to applications in
neuronal models.

We first identified the causal PPP transformation that
corresponds to filtered shot noise with multiplicative noise. We
investigated the statistical properties of this transformation to
derive the exact analytical solution for the joint cumulants
of the filtered process with variable input rate. Excellent
agreement with numerical simulations was found for the mean
and second order cumulants. We proposed an approximation
based on a CME about the solution of the deterministic
system. We have shown with numerical simulations that under
parameter regimes relevant to neuronal membranes the second
order of this approximation provides good results for the mean
and second order cumulants. Under certain parameter regimes,
the first order expansion for the second order cumulants may
already provide effective approximations.

These general results were then applied to a simple model
of subthreshold membrane potential Vm fluctuations subject
to shot noise conductance with continuously variable rate
of presynaptic spikes. Excellent agreement with numerical
simulations was found for the mean and second order
cumulants for both the exact analytical solution and the
second order CME. This approximation is consistent with
previously published analytical estimates for stationary Vm.
An expression for the stationary limit of autocovariance is
provided for exponential and alpha kernel shot noise input.
An approximation for the time-evolving distribution of Vm

is proposed that is based on a truncated Edegeworth series
using the nonstationary cumulants obtained analytically. This
approximation successfully captures the time evolution of Vm

under a large range of conditions. The nonstationary mean
of shot noise is used to estimate the presynaptic rate from
a small number of intracellular Vm recordings with additive
noise simulating measurement error.
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−56
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−32

V t
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)
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G
t
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μ
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FIG. 12. (Color online) (a) Single realization (black line) and basic statistics (gray lines) generated from a small number (N = 10) of
membrane potential Vt traces with additive noise to simulate measurement error. (b) Extracted mean conductance (full gray line) and smoothed
version Gs

t (dashed black line) obtained with non-parametric smoothing.
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FIG. 13. (Color online) Estimated presynaptic rate λ̂(t) (black
dashed line) compared with original rate function λ(t) (full blue
line). The magnitude and variations are reasonably well captured
considering the small number (N = 10) of membrane potential traces
used.

In future work we will extend this formalism to multiple
independent shot noise inputs by applying the Slivnyak-Mecke
Theorem. Such development would yield direct applications
for neuronal membrane models with different synapse types
(such as excitatory and inhibitory synapses). Preliminary work
indicates that analytic treatment of filtered shot noise with
correlated input is accessible with this formalism. The present
work also opens perspectives for the analytical development
first passage time statistics based on nonstationary approxima-
tions of the filtered process distribution.
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APPENDIX A: RANDOM SUMS AND RANDOM PRODUCTS

Random products are transformations of PPP that factor as F (t,ξ ) = ∏
xj ∈ξ f (t,xj ). The expectation of random products is

obtained as follows:

〈Ft 〉 =
∞∑

n=0

1

n!
e−m(S)

[∫
S

f (t,x) λ(x) dx

]n

= exp

{∫
S

[f (t,x) − 1] λ(x) dx

}
,

〈F1 . . . FK〉 =
〈∏

xj ∈ξ

K∏
k=1

f (tk,xj )

〉
= exp

{∫
S

[f (t1,x) · · · f (tK,x) − 1] λ(x) dx

}
.

In the case of the random product with f (t,xj ) = e− 1
τ

∫ t

z
g(u−xj )H (u−xj ) du and S = R,

〈
e− 1

τ

∫ t

z
Q(u,ξ ) du

〉 = exp

[∫ z

−∞

(
e− 1

τ

∫ t

z
g(u−x) du − 1

)
λ(x) dx +

∫ t

z

(
e
− 1

τ

∫ t

y
g(v−y) dv − 1

)
λ(y) dy

]
.

Random sums are transformations of PPP that factor as F (t,ξ ) = ∑
xj ∈ξ f (t,xj ). The joint cumulants of random sums are given

by the Campbell Theorem [14,20]. The characteristic function φ(s1, . . . ,sK ) is the expectation of a random product, and its
derivatives yield the joint cumulants:

φ(s1, . . . ,sK ) ≡ 〈eis1F (t1,ξ )+···+isKF (tK ,ξ )〉 =
〈∏

xj ∈ξ

K∏
k=1

eiskf (tk ,xj )

〉
= exp

[∫
S

(
e

∑K
k=1 iskf (tk ,x) − 1

)
λ(x) dx

]
,

〈〈F (t1,ξ ) . . . F (tK,ξ )〉〉 =
(

1

i

d

ds1

)
· · ·

(
1

i

d

dsK

)
ln φ(s1, . . . ,sK )

∣∣∣∣
s1,...,sK=0

=
∫
S

f (t1,x) · · · f (tK,x) λ(x) dx.

APPENDIX B: CENTRAL MOMENTS EXPANSION

A Taylor expansion of the random product about mean shot noise input results in a series of central moments of the integrated
shot noise. Expanding the exponential inside the expectation, keeping terms of order (1/τm)2 and reexpressing in terms of
cumulants, yields

〈
e− 1

τ

∫ t

z
Q(u,ξ ) du

〉 = e− 1
τ

∫ t

z
〈Q(u)〉 du

{
1 +

+∞∑
m=2

1

m!

〈[
− 1

τ

∫ t

z

(Q(u,ξ ) − 〈Q(u)〉) du

]m〉}
� e− 1

τ
SQ̄

(
1 + 1

2 τ 2
〈〈SQ2〉〉

)
,

where SQ ≡ ∫ t

z
Q(v,ξ ) dv and SQ̄ ≡ ∫ t

z
〈Q(u)〉 du.

Higher order cumulants are obtained in a similar manner by expanding each exponential individually and collecting terms in
the same order of 1/τm. The second order expansion for second order cumulants involves the expansion of two random products
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and keeping terms up to order (1/τm)4, yielding

〈〈
e
− 1

τ

∫ t1
z1

Q(u1,ξ ) du1 e
− 1

τ

∫ t2
z2

Q(u2,ξ ) du2
〉〉 � e− 1

τ
SQ̄1− 1

τ
SQ̄2

{
1

τ 2
〈〈SQ1 SQ2〉〉 − 1

2τ 3

(〈〈
SQ2

1 SQ2
〉〉 + 〈〈

SQ1 SQ2
2

〉〉)

+ 1

2τ 4

[
1

3

〈〈
SQ3

1 SQ2
〉〉 + 1

3

〈〈
SQ1 SQ3

2

〉〉 + 1

2

〈〈
SQ2

1 SQ2
2

〉〉 + 〈〈SQ1 SQ2〉〉
(〈〈

SQ2
1

〉〉 + 〈〈
SQ2

2

〉〉 + 〈〈SQ1 SQ2〉〉
) ]}

,

where SQ1 ≡ ∫ t1
z1

Q(v,ξ ) dv and SQ̄1 ≡ ∫ t1
z1

〈Q(u)〉 du, etc.

1. Stationary limit for Yt

The stationary limit of shot noise autocovariance can be written 〈〈Q1 Q2〉〉 = 〈〈Q2〉〉 r(|t1 − t2|), since

〈〈Q1 Q2〉〉 = λ

∫ min(t1,t2)

−∞
g(t1 − x) g(t2 − x) dx = λ

∫ +∞

0
g(u) g(|t1 − t2| + u) du = 〈〈Q2〉〉r(|t1 − t2|),

with r (|t1 − t2|) ≡ ∫ +∞
0 g(u) g(|t1 − t2| + u) du/

∫ +∞
0 g(v)2 dv.

For the exponential kernel shot noise r (|t1 − t2|) = e− |t1−t2 |
τs and the stationary mean and second order cumulants are given by

〈Q〉 = λhτs, 〈〈Q1 Q2〉〉 = λh2τs

2
e− |t1−t2 |

τs = 〈〈Q2〉〉 e− |t1−t2 |
τs .

Writing Q0 ≡ 1 + 〈Q〉 and applying Eq. (17) yields the mean:

〈Yt 〉2 = 〈Q〉
Q0

− 〈〈Q2〉〉
Q2

0

1

τ

∫ t

−∞
e− t−z

τ
Q0

∫ t

z

e− u−z
τs dz = 〈Yt 〉0 − 〈〈Q2〉〉

Q2
0

(
Q0 + τ

τs

) .

Applying Eq. (18) yields the autocovariance:

〈〈Y1 Y2〉〉1 = 〈〈Q2〉〉
Q2

0

1

τ 2

∫ t1

−∞

∫ t2

−∞
e− t1−z1+t2−z2

τ
Q0 e− |z1−z2 |

τs dz1 dz2

=
⎧⎨
⎩

〈〈Q2〉〉
Q2

0

(
Q0+ τ

τs

)(
Q0− τ

τs

) (
e− |t1−t2 |

τs − 1
Q0

τ
τs

e− |t1−t2 |
τ

Q0

)
if Q0 
= τ

τs

〈〈Q2〉〉
2τQ3

0
(τs + |t1 − t2|)e− |t1−t2 |

τs otherwise

Setting t1 = t2 = t in the previous result yields the variance:

〈〈
Y 2

t

〉〉
1 = 〈〈Q2〉〉

Q3
0

(
Q0 + τ

τs

) .

For the alpha kernel shot noise r(|t1 − t2|) = e− |t1−t2 |
τs (1 + |t1−t2|

τs
) and the stationary mean and second order cumulants are given

by

〈Q〉 = λhτs, 〈〈Q1 Q2〉〉 = λh2τs

4
e− |t1−t2 |

τs

(
1 + |t1 − t2|

τs

)
= 〈〈Q2〉〉 e− |t1−t2 |

τs

(
1 + |t1 − t2|

τs

)
.

Proceeding as before yields

〈Yt 〉2 = 〈Q〉
Q0

−
(
Q0 + 2 τ

τs

)〈〈Q2〉〉
Q2

0

(
Q0 + τ

τs

)2 ,
〈〈
Y 2

t

〉〉
1 =

(
Q0 + 2 τ

τs

)〈〈Q2〉〉
Q3

0

(
Q0 + τ

τs

)2 ,

〈〈Y1 Y2〉〉1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈〈Q2〉〉
Q2

0

(
Q0+ τ

τs

)2(
Q0− τ

τs

)2

×
{[(

1 + |t1−t2|
τs

)(
Q0 + τ

τs

)(
Q0 − τ

τs

)
− 2

(
τ
τs

)2]
e− |t1−t2 |

τs + 2
Q0

(
τ
τs

)3

e− |t1−t2 |
τ

Q0

}
if Q0 
= τ

τs

〈〈Q2〉〉
4τQ3

0

(
3(τs + |t1 − t2|) + 1

τs
|t1 − t2|2

)
e− |t1−t2 |

τs otherwise

2. Stationary limit for Vt

We apply the transformation given by Eq. (21) to the results from the previous section to obtain the cumulants for the
membrane potential Vt . The expression for the stationary mean of the deterministic system is the same for both shot noise
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kernels:

〈Vt 〉0 = 〈G〉
G0

(Es − El) + El = gl El+〈G〉Es

G0
, G0 = gl + 〈G〉 .

The mean and variance of exponential and alpha kernel shot noise are consistent with those given in Refs. [4,5] and Ref.
[3], respectively. The extension to the autocovariance is also provided below. For exponential kernel shot noise and using
Ee − El = G0

gl
(Ee − 〈Vt 〉0),

〈Vt 〉2 = 〈Vt 〉0 − 〈〈G2〉〉
gl

(
G0
gl

+ τ
τs

)
G0

(Es − 〈Vt 〉0),
〈〈
V 2

t

〉〉
1 = 〈〈G2〉〉

gl

(
G0
gl

+ τ
τs

)
G0

(Es − 〈Vt 〉0)2, (B1)

〈〈V1 V2〉〉1 =
⎧⎨
⎩

〈〈G2〉〉
g2

l

(
G0
gl

+ τ
τs

)(
G0
gl

− τ
τs

) (
e− t1−t2

τs − τ
τs

gl

G0
e
− t1−t2

τ

G0
gl

)
(Es − 〈Vt 〉0)2 if G0

gl

= τ

τs

〈〈G2〉〉
2τglG0

(τs + |t1 − t2|)e− |t1−t2 |
τs (Es − 〈Vt 〉0)2 otherwise

(B2)

For alpha kernel shot noise,

〈Vt 〉2 = 〈Vt 〉0 −
(

G0
gl

+ 2 τ
τs

)〈〈G2〉〉
gl

(
G0
gl

+ τ
τs

)2
G0

(Es − 〈Vt 〉0),
〈〈
V 2

t

〉〉
1 =

(
G0
gl

+ 2 τ
τs

)〈〈G2〉〉
gl

(
G0
gl

+ τ
τs

)2
G0

(Es − 〈Vt 〉0)2, (B3)

〈〈V1 V2〉〉1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈〈G2〉〉
g2

l

(
G0
gl

+ τ
τs

)2(
G0
gl

− τ
τs

)2 (Es − 〈Vt 〉0)2

×
{[(

1 + t1−t2
τs

) (
G0
gl

+ τ
τs

) (
G0
gl

− τ
τs

)
− 2

(
τ
τs

)2
]

e− t1−t2
τs + 2

(
τ
τs

)3
gl

G0
e
− t1−t2

τ

G0
gl

}
if G0

gl

= τ

τs

〈〈G2〉〉
4τglG0

(
3(τs + |t1 − t2|) + 1

τs
|t1 − t2|2

)
e− |t1−t2 |

τs (Es − 〈Vt 〉0)2 otherwise

(B4)
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