
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 91, 060901(R) (2015)

Universality in spectral statistics of open quantum graphs
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The quantum evolution maps of closed chaotic quantum graphs are unitary and known to have universal spectral
correlations matching predictions of random matrix theory. In chaotic graphs with absorption the quantum maps
become nonunitary. We show that their spectral statistics exhibit universality at the soft edges of the spectrum. The
same spectral behavior is observed in many classical nonunitary ensembles of random matrices with rotationally
invariant measures.
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Since the 1970s the physics community has paid significant
attention to the particularities of the energy spectrum of
quantum systems with chaotic behavior in the classical limit.
In 1984 Bohigas et al. conjectured [1] that the spectral fluc-
tuations of closed chaotic Hamiltonian systems are universal
and coincide with those of one of three canonical random
matrix ensembles (RMEs) [2]. Based on semiclassical consid-
erations, the validity of the Bohigas-Giannoni-Schmit (BGS)
conjecture has been established by now on the physical level of
rigor [3–5].

Various physical phenomena might lead to the opening
of quantum systems: attaching external leads to quantum
dots, dissipation through Ohmic losses, partial reflection of
microwaves at the boundaries of dielectric microcavities, etc.
As a result, many theoretical and experimental studies have
focused on open chaotic systems whose wave dynamics are
described by nonunitary evolution operators [6]. It is of great
interest to know whether (and under what conditions) open
chaotic systems exhibit universal properties. So far, the vast
majority of studies in this regard have been restricted to
regimes of weak opening, where the mean dwell time of
the particle in the system grows in the semiclassical limit.
In such a case, the quantum characteristics are insensitive
to system-specific features and can be successfully studied
within the RME theory approach. For instance, transport
properties of quantum dots with a finite number of open
channels were shown to be universal [7] and in agreement
with the RME theory predictions [8]. In a strongly open
system, particle can leave the system phase space before it
is effectively explored and hence the standard universality
assumptions break down. In the present article we establish
a form of spectral universality that holds in strongly open
chaotic systems even if the mean dwell time stays finite in the
semiclassical limit.

In what follows we focus on the model of quantum graphs
with broken time-reversal symmetry. Quantum graphs were
proposed as a paradigm for the study of compact [9] and
scattering [10] quantum chaotic systems. They were also
studied experimentally in the presence of absorption [11].
Let us briefly describe a standard construction of quantum
graphs with V vertices connected by B bonds (see, e.g., [12]
for details). At bonds b = 1, . . . ,B the waves ψb satisfy the
free Schrödinger equation (−idxb

+ Ab)2ψb(xb) = k2ψb(xb),
where xb ∈ [0,Lb] measures the distance along the bond b

and Ab is a constant vector potential introduced to break the
time-reversal symmetry. The corresponding general solution
is a superposition of two plane waves propagating in op-
posite directions ψb(xb) = e−iAbxb (eikxbab+ + e−ikxbab−). The
constants ab± for different bonds are then connected at the
vertices by means of the scattering matrices σv , v = 1, . . . ,V .
To proceed further one introduces the associated directed graph
� with the double number N = 2B of bonds (b,b̄) carrying
waves with the positive and negative momenta separately
such that Lb = Lb̄ and Ab = −Ab̄. The complete spectral
information is carried by the N × N quantum map U (k) =
S�(k), where the internal scattering matrix S depends on
the graph’s structure, σv , and Ab, while the dependence on
the energy k2 is entirely stored in the diagonal part �(k) =
diag{eikLj }, j ∈ {b,b̄}. Note that S also fixes the classical
map F on �, whose matrix elements Fij = |Sij |2 specify
the classical transition probabilities between the bonds of
the graph. The spectrum {kn} of the system is provided by
solutions of the secular equation det[I − U (kn)] = 0. If all σv

are unitary and Ab are real then the resulting quantum map
U is unitary and the system’s spectrum is real. It is possible
to open the system by either attaching external leads to the
graph or introducing absorption at bonds (or vertices) violating
the aforementioned conditions. In any such case the resulting
internal scattering matrix S and U are no longer unitary and
we colloquially refer to � as an open quantum graph.

An appealing feature of quantum graphs is the exact trace
formula connecting the density of states d(k) = ∑

n δ(k − kn)
with the traces of the quantum map U (k). As a result, the
two-point spectral correlation function can be expressed as
the discrete Fourier transform of the spectral form factor
〈|TrU (k)|2〉k , where 〈·〉k ≡ limK→∞ 1

K

∫ K

0 dk(·) is the average
over the wave number. Furthermore, it was shown in [13] that
for graphs with rationally independent bond lengths (which
we assume throughout the paper) the average over k can
be traded for the averages over independent parameters kLb,
b = 1, . . . B. Therefore, the spectral correlations in individual
quantum graphs can be found by solving the same problem for
the ensemble of matrices Uφ ≡ S�φ , �φ = diag{eiφb}Nb=1, and
φb = φb̄, where the averages are taken over the flat probability
measure

∏B
b=1

dφb

2π
. It is worth noting that the constraint

φb = φb̄ can actually be removed by the additional averaging
over the vector potential. After adding a common real phase α

to each Ab the ensemble of U (k) with the average over both k
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and α becomes equivalent to the one of matrices S�φ , where
all components of the vector φ = (φ1, . . . φN ) are independent
and the average 〈·〉φ is over the measure dν ≡ ∏N

k=1
dφk

2π
in the

domain φk ∈ [0,2π ].
The case of graphs with unitary S has been analyzed

by both semiclassical [14,15] and supersymmetry methods
[16]. It was demonstrated that under certain condition on the
spectral gap of the classical map, the BGS conjecture holds,
i.e., in the presence (absence) of time-reversal symmetry, the
spectrum of Uφ has the same spectral statistics as Gaussian
orthogonal (unitary) random matrix ensembles. For strongly
open quantum graphs the eigenvalues {zk}Nk=1 of Uφ are
not confined to the unit circle, but rather are distributed
isotropically over the complex plane. The isotropy follows
immediately from the invariance of dν under the rotation
φk → φk + φ, k = 1, . . . ,N . Typically, with the increase of
the graph’s dimension zk become more and more concentrated
in an annulus whose boundaries are referred to as the inner
(outer) spectral edge. As we show below, a spectral universality
holds at the 1/

√
N neighborhood of these edges. For the sake

of simplicity of the exposition, we formulate the result for the
outer edge and then discuss its extension to the inner edge.

Main result. Let �(N) be an infinite sequence of open
quantum graphs with S(N)�φ and F (N) being their N × N

quantum and classical evolution, respectively. For the matrix
F (N) we denote by λ, χ̄ , and χ the largest eigenvalue
and the corresponding left and right eigenvectors normal-
ized by (χ̄ ,χ ) = N . We will consider the spectrum {zk}Nk=1

of the rescaled quantum propagator S�φ , S ≡ 1√
λ
S(N) in

the limit N → ∞, under the following conditions: (i) the
large spectral gap of F ≡ F (N)/λ, with the next to the
largest eigenvalue λ2 satisfying 1 − |λ2| = O(N−κ ) for κ < 1

2 ,
and (ii) the strong nonunitarity of S, with the parameter
μ(N) = 1

N
Tr[(SXS†X̄ )2 − (XX̄ )2] having a strictly positive

limit μ = limN→∞ μ(N) > 0, where Xi,j = χiδi,j and X̄i,j =
χ̄iδi,j are the diagonal matrices constructed from χ and χ̄ .
Assuming conditions (i) and (ii) hold, the spectral density
ρ̃(z) = 1

N
〈∑N

k=1 δ(z − zk)〉φ is a function of r = |z| only and
ρ(r) ≡ 2πrρ̃(r) has a universal form at 1/

√
N in the vicinity

of the edge |z| = 1:

ρ

(
1 + s√

N

)
= 1

μ
erfc

(
s√
2μ

)
+ O(N−ε) (1)

for ε > 0. In particular, ρ(1) = μ−1 + O(N−ε). The form
factor K(n) = 1

N
〈|Tr(S�)n|2〉φ demonstrates the universal

asymptotics

√
NK(n) = 2

μt
sinh

(
μt2

2

)
+ O(N−ε) (2)

in the limit where t = n/
√

N is fixed and N → ∞.
A few remarks are in order. First, note that the spectral

density of the Ginibre unitary ensemble [17] and of other
strongly nonunitary ensembles [18,19] with rotationally in-
variant measures demonstrate the same soft edge universal
form (1). Only the scaling parameter μ depends on the
specifics of these ensembles. Second, for finite values of μ

the mean distance between eigenvalues of S is of order 1/
√

N

(recall that in the unitary case it is 1/N). Because of the

differences in the mean level distance, the semiclassical limit
n ∼ √

N and N → ∞ considered here differs from the limit
n ∼ N and N → ∞ usually considered in the unitary case.
Third, the asymptotics for the inner edge can be established
by considering inverse matrices (S(N))−1�∗

φ whose spectrum

{z−1
k }Nk=1 has the density ρ ′(r) = r−2ρ(1/r). This inversion

maps the inner edge to the outer and (1) and (2) become
applicable to ρ ′ with the parameter μ being defined by the
matrices S−1. Fourth, by Eq. (1) the outer and the inner
edges of the nonrescaled quantum maps S(N)�φ are given
by

√
λ and 1/

√
λ′, respectively, where λ and λ′ are the highest

eigenvalues of the classical maps |S(N)|2i,j and |(S(N))−1|2i,j . If
λ′ = ∞ (e.g., S is not invertible) then the inner edge does not
exist. Fifth, condition (i) on the spectral gap of the classical
map is analogous to Tanner’s condition [20] in the unitary
case. The difference between κ < 1/2 (nonunitary) and κ < 1
(unitary) is due to the different time scales involved. Condition
(i) is satisfied for many important classes of graphs (see,
e.g., [12] and examples below). Condition (ii) implies strong
nonunitarity of S. If, for instance, the number of open channels
in a scattering graph is fixed, then limN→∞ μ(N) = 0 and
condition (ii) is violated. Note that μ(N) � 0 always holds
and μ(N) ≡ 0 if S is unitary.

Comparison with numerics. Before turning to the derivation
of Eqs. (1) and (2), let us compare these results with the
numerically calculated spectral density and form factor of S�φ

averaged over φ. We consider several families of matrices S

(or, equivalently, quantum graphs). (a) Connectivity graphs.
Given a graph � let S be its edge-connectivity matrix, i.e.,
the element Si,j is either 1 if the ith edge of � is connected
to the j th edge through some vertex or 0 otherwise. This
choice is of special interest due to the connection with the
problem of length degeneracies in metric graphs [21]. When �

is a d-regular connected graph it is straightforward to see that
λ = d andX = X̄ = 1, implying μ = d − 1. The comparison
of (1) and (2) with numerics for such a graph is shown in
Figs. 1(a) and 1(b). (b) Doubly stochastic graphs [Fig. 2(a)].
Let S be such that F is a doubly stochastic matrix i.e.,∑

i Fi,j = ∑
j Fi,j = 1. This can be achieved, for instance, by

taking σv
i,j = |uv

i,j |, where uv are arbitrary unitary matrices. It
is known that these matrices almost surely satisfy the required
spectral gap condition [22]. As in the previous example, the
highest eigenvector χ of F is uniform, while λ = 1. This gives
μ(N) = 1

N
Tr(SS†)2 − 1 (compare with the result of [19] for

RMEs with unitary invariant measures). (c) Damped quantum
maps were suggested in [23] as toy models for open quantum
systems. They are represented as products UM · D, where the
N × N unitary matrix UM is a quantization of a classical map
M and D is a smooth diagonal matrix modeling absorption.
Here we checked a particular case of Walsh’s quantized
baker’s map whose quantization for N = 2p can be written as
U (p)�φ , where U

(p)
i,j = 1√

2
(δi,2j−1modN − δi,2j + δi,2j−N ) and

φ is arbitrary (see [24]). The matrix S(p) = U (p)D can in turn
be interpreted as the scattering matrix for the de Brujin graph
with absorption. We compared the spectral density of matrices
S(p)�φ with (1) and found good agreement for both inner and
outer edges [see Fig. 2(b)]. Note that in this case, as follows
from numerics, the parameter μ(N) grows with N and the
spectral density at the edges converges to zero at N → ∞.
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FIG. 1. (Color online) Shown on the left is the spectral density of 2-regular connectivity graphs (μ = 1) vs the universal function (1) [solid
(blue) line]; the two dashed lines are analytic results from [18] for RMEs of truncated unitary matrices of the same dimensions. On the right
are the spectral form factors for the same family of graphs plotted as dashed lines vs (2) [solid (blue) line].

This observation agrees with the phenomenon of eigenvalue
clustering near a typical value shown in [23].

Derivation of Eqs. (1) and (2). By definition the form factor
K(n) can be represented as the double sum over n-periodic
trajectories γ and γ ′ of the graph having the same length:

N

n
K(n) =

〈∣∣∣∣∑
γ

Aγ ei(nγ ,φ)

∣∣∣∣
2〉

φ

=
∑
γ,γ ′

Aγ A∗
γ ′δnγ ,nγ ′ . (3)

Here nγ is an integer-valued N -dimensional vector whose
elements nb indicate the number of times γ visits the bond b

(
∑

b nb = n). The amplitudes Aγ are products of the matrix
elements Sij taken along the path γ and include the multiplicity
factors that are 1 for prime periodic orbits. Following the
standard semiclassical prescription [25], we analyze first
the diagonal γ = γ ′ contribution in (3). Leaving out only
prime periodic orbits and assuming a long trajectory limit

(n ∼ √
N � 1) yields∑

i1...in

|Si1i2 |2 · · · |Sini1 |2 = TrFn = 1 + O(N−1/2+κ ),

where we used condition (i) on the spectral gap of F .
To calculate the next contribution one takes into account

pairs of self-crossing trajectories. In each pair the partners γ

and γ ′ possess the same vectors nγ = nγ ′ , but traverse the
bonds in a different order (see Fig. 3). Note that, because of
broken time-reversal symmetry, only trajectories with an even
number of encounters contribute in (3). Furthermore, since n

is set to be of the same order as
√

N , only encounters with two
entering and two exiting loops should be considered. In sharp
contrast to the unitary case (where the relevant scale is n ∼ N ),
here the diagrams with l-encounters for l > 2 contribute to the
subleading order N−ε only.

The contribution from trajectories with 2m encounters can
be split into a product of three factors coming from encounters
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FIG. 2. (Color online) The (nonrescaled) spectral densities of quantum maps S(N)�φ vs asymptotics (1) (solid blue lines) for (a) doubly
stochastic 10-regular graph with N = 1000, where each vertex matrix σ v is fixed by a random choice of 10 × 10 unitary matrix uv , and
(b) a damped de Brujin graph with N = 27, Di,j = δi,j f (2jπ/N ), and f (x) = 3.2 + sin(x) + sin(2x) + sin(3x). The parameters are μ =
0.1542 and λ1 = 12.6578 for the outer edge and μ′ = 0.3133 and λ′

1 = 0.1952 for the inner edge. The inner
√

1/λ′
1 and outer

√
λ1 radii are

depicted by vertical solid (red) left and right lines. The (red) line in the middle shows the mean value of log f (x), the point, where ρ clusters
at N → ∞ (see [23]).
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FIG. 3. (Color online) Diagram of periodic orbits with two
2-encounters e1,e2 and four loops a,b,c,d (m = 1) contributing to (3).
The two orbits of the same length are represented by the sequences
[ae1ce2be1de2] and [ae1de2be1ce2].

Nenc, loops Nloop connecting them, and the combinatorics
Ncomb. The latter takes into account all possible reconnections
of loops and encounters, i.e., the number of different diagrams.
For the diagrams with 2-encounters it is known [26] to be
Ncomb = (4m)!

22m(2m+1)! . Given 2m encounters there are n4m

(4m)! (to
the leading order of n) choices to fix the lengths �1, . . . ,�4m

of the loops connecting them such that the total length is fixed∑4m
i=1 �i = n − 2

∑2m
i=1(ki + 1), where ki is the length (i.e.,

the number of vertices) of the ith encounter. The contribution
from all possible paths of the length � � 1 connecting j th
and ith bonds is given by

∑
i1···i�−1

Fii1 · · · Fi�−1j = χ̄iχj +
O(N−1/2+κ ). This yields, for the total contribution from 4m

loops with fixed entering and exiting bonds,

Nloop = n4m

(4m)!

(
2m∏
r=1

χ̄ir χjr

)
+ O(N−1/2+κ ).

Given that incoming (i1,i2) and outgoing (j1,j2) bonds of
an encounter are fixed, the total contribution from all possible
paths connecting them is

N (1)
enc = (

1 − δi1,i2

)(
1 − δj1,j2

)
Si1j1S

∗
i1j2

Si2j2S
∗
i2j1

,

N (k)
enc =

∑
i,j

(
1 − δi1,i2

)(
1 − δj1,j2

)
Fi1iFi2i[Q

k]ijFjj1Fjj2

for encounters of the lengths k = 1 (containing a single
vertex) and k > 1, respectively. Here Q is an axillary matrix
with the elements Qij = F 2

ij . Combining these expressions
with the factors χ̄i1 χ̄i2χj1χj2 from Nloop and taking the sum
over the indices gives for each encounter of the length k the
following result:

∑
j1,j2,i1,i2

χ̄i1 χ̄i2χj1χj2N (1)
enc = Tr[(SXS†X̄ )2 − 2(X̄X )2

+ X̄ 2QX 2] for k = 1,

∑
j,j1,j2,i,i1,i2

χ̄i1 χ̄i2χj1χj2N (k)
enc = Tr[X̄ 2QkX 2 − 2X̄ 2Qk+1X 2

+ X̄ 2Qk+2X 2] for k > 1.

After summing up over all k, taking into account Ncomb and
the remaining combinatorial factor from Nloop we arrive at

K(n) = n

N

∞∑
m=0

n4m(μ(N))2m

(2N )2m(2m + 1)!
+ O(N−1/2+κ ), (4)

which is the Taylor expansion of Eq. (2). Finally, the spectral
density can be restored through the relationship

ρ(r) = 2

πr
lim
ε→0

ImRε(r−2), Rε(r) =
∞∑

n=1

(reiε)nK(n)

by substituting (2) and transforming the sum into an integral.
The saddle-point approximation to this integral in the regime
n ∼ √

N results in Eq. (1).
Formally, Eqs. (1) and (2) can be derived also using the

supersymmetry approach of [16]. To this end, the function
Rε(r) is represented as the integral over supersymmetric fields.
The result then follows by leaving out only the zero-mass mode
in the saddle-point approximation. Contrary to the setup of
unitary S, however, even in the best case scenario of graphs
with finite spectral gaps in their classical evolution maps, the
contribution of massive modes cannot be discounted on the
basis of the rough estimation suggested in [16]. Due to a lack
of space, we omit the detailed discussion of the supersymmetry
approach.

We have shown that the spectral density and the form factor
of the quantum evolution map for strongly open quantum
graphs demonstrate universal behavior at the spectrum edges
at the scale of the mean distance between eigenvalues. We
conjecture that higher-order spectral correlations exhibit
similar universality as well. In a sense, our result can be
seen as an extension of the well established universality
for closed quantum graphs. From the semiclassical point of
view, the strongly nonunitary case differs from the unitary
one in the time scales involved:

√
N rather than N . This

results in the exclusion of all diagrams with l-encounters for
l > 2. In a transitional case with weak unitarity breaking,
where μ(N) ∼ N−1, these diagrams must be actually taken
into account since they contribute to the same order
(in n/N ) as (4).
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