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Anomalous diffusion in neutral evolution of model proteins
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Protein evolution is frequently explored using minimalist polymer models, however, little attention has been
given to the problem of structural drift, or diffusion. Here, we study neutral evolution of small protein motifs
using an off-lattice heteropolymer model in which individual monomers interact as low-resolution amino acids.
In contrast to most earlier models, both the length and folded structure of the polymers are permitted to change.
To describe structural change, we compute the mean-square distance (MSD) between monomers in homologous
folds separated by n neutral mutations. We find that structural change is episodic, and, averaged over lineages
(for example, those extending from a single sequence), exhibits a power-law dependence on n. We show that
this exponent depends on the alignment method used, and we analyze the distribution of waiting times between
neutral mutations. The latter are more disperse than for models required to maintain a specific fold, but exhibit a
similar power-law tail.
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In recent work, we investigated the evolution of small
protein motifs using a simplified off-lattice heteropolymer
model [1]. The model is analogous to a commonly used
lattice model in which individual monomers interact as low-
resolution amino acids [2] and evolves according to a Markov
process in which sequences are subjected to replacements,
insertions, and deletions, and are selected to fold reproducibly
into ordered globules capable of supporting a small binding site
against thermal fluctuations. The Markov process describes the
gradual fixation of selectively neutral mutations in a population
when the typical time to fixation or loss is smaller than
the time between mutation events, and is commonly used to
approximate population dynamics in evolutionary models [3].
Earlier, we found that polymers evolved by this process fold
into soluble globules of similar length and complexity to
small protein motifs. The folded states, or ensembles of the
polymers are often less well ordered than those of small
proteins, however, many of the results we obtain from the
model are in good agreement with protein data [4–6]. In
particular, rates for structural drift as a function of mutational
distance and sequence identity agree closely with proteins
when structural distance is measured using similar alignment
methods. Here, we continue our analysis of structural change
in the Markov model from the standpoint of a conventional
diffusion problem [7–10].

Below, we first provide a summary our results and describe
how they were obtained. The polymer model and the Markov
process are described in Ref. [1] and in the Appendix to this
Rapid Communication.

A trajectory, or lineage generated by the Markov process
can be pictured as a series of flights between nodes of a neutral
network [11], each node corresponding to a viable sequence,
and each edge connecting a pair of sequences linked by a
single (neutral) mutation. At any node visited along a lineage,
the probability of obtaining a neutral mutation in a single
iteration of the Markov process is a constant, independent of
time, determined by the local connectivity of the network and
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the attempt frequency for each type of mutation. As a result,
the waiting time distribution at each node of the network is
binomial. However, because neutral connectivity varies from
point to point in the network, the ticks of the “polymer clock”
can become episodic [12]. Bastolla was the first to recognize
the significance of this effect for proteins [13], and has
argued that variations in neutral, or nearly neutral connectivity
can account for the observed dispersion in mutation rates
relative to the molecular clock (i.e., binomial, or Poisson)
approximation [14]. Later, Wilke considered evolution of an
explicit population of polymers to explore the range of validity
of Bastolla’s model and arrived at similar conclusions [15]. In
both models, polymers were required to fold and maintain
a specific structure. Here, both the length and the folded
structures of the polymers are permitted to change.

To describe the polymer clock, we compute the probability,
P (T � τ ), of waiting times T � τ both for individual
lineages and for combinations of lineages such as the star
phylogeny [16] depicted in Fig. 1. We find that P (T � τ )
typically follows a power law:

P (T � τ ) � 1

1 + (τ/τm)β
(1)

with exponents β ∼< 1.3 well into the episodic regime, where
the index of dispersion (variance divided by the mean) of the
distribution function,

P (T ) = − ∂

∂τ
P (T � τ ) , (2)

is infinite. Using Eq. (2), we fit Eq. (1) to the data reported
by Bastolla and obtain a similar result: Although the scale
parameter, τm, differs in our model (our results are more
disperse than those of Bastolla), the distribution function
decays by a similar power of τ/τm.

Next, we consider structural change along lineages ratio-
nalized as flights between folded structures coordinated by the
neutral network [7,8]. In each iteration of the Markov process,
a structure ensemble � is generated by folding N ∼ 100
polymer replicas on a parallel computer (see Appendix).
From this ensemble, a smaller ensemble, ���, consisting
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FIG. 1. (Color online) Polymer length, N (τ ), for several lineages
initiated from the same sequence. τ is the number of iterations of the
Markov process (mutation attempts). Lineage 1 is evolved under the
constraint δN � 15, lineage 2 under the constraint δN � N/2, and
lineage 3 under the constraint δN � 16, where δN is the number
of solid-ordered monomers in the folded ensemble of a polymer
as determined by the Lindemann melting criterion (see Appendix).
Unmarked lineages are evolved under the constraint δN � 15.

of 3N /4 replicas is selected to define the dominant energy
basin recovered by the replicas. This procedure also selects
a reference fold, x�, closest to the center of the ensemble
���. Each neutral mutation is then viewed as a flight between
reference folds, analogous to a simple random walk.

Let x(τ ) denote the coordinates of the reference fold in a
particular lineage after τ neutral mutations (for clarity, we drop
the superscript on the reference fold in the discussion below).
Because indels are permitted, polymers at distant points along
a lineage can have different lengths. For this reason, it is
necessary to establish a correspondence, or homology between
the monomers at τ and τ ′ in order to compare the structures
x(τ ) and x(τ ′). To establish monomer homology, we construct
a complete alignment of the sequences along each lineage.
Each alignment results in an array of (gapped) sequences,
s(τ ), of equal length (i.e., including gap positions). A pair
of monomers in structures x(τ ) and x(τ ′) are considered
homologous when their positions in sequences s(τ ) and s(τ ′)
are aligned. LetA(τ,τ ′) denote the set of homologous positions
in a pair of homologous sequences (i.e., sequences from the
same lineage). To measure the distance between x(τ ) and x(τ ′),
we compute a structural alignment by rotation, translation,
and reflection to minimize the mean-square distance (MSD)
between monomers in a subset of homologous sequence
positions Q(τ,τ ′) ⊂ A(τ,τ ′). The distance between x(τ ) and
x(τ ′) is defined as the resulting root-mean-square distance
(RMSD).

Below, we consider two basic methods to select the set
Q(τ,τ ′): In method (i), the setQ(τ,τ ′) is selected fromA(τ,τ ′)
iteratively to minimize the distance between x(τ ) and x(τ ′),
but the cardinality of Q(τ,τ ′) (i.e., the number of positions
ultimately compared to measure MSD) is held constant along
a lineage. This method is similar to the “core alignment”

procedure used by Illergard et al. [6] and Chothia and Lesk [5]
to align protein domains, and generates similar results for
RMSD as a function of evolutionary distance (i.e., neutral
mutations) and sequence identity if the number of monomers
compared in alignments is comparable to the number of
ordered monomers required in folded ensembles [1]. A more
sophisticated version of this method is outlined in Ref. [17].
In method (ii), a single set of “tracer” positions is selected
for the entire lineage from the set M = ⋂2T

τ=1 A(0,τ ), for
comparison with theoretical models [7,8]. Here, M consists of
all positions that are conserved (i.e., have not encountered a
deletion) along an interval of length 2T , where T is about half
the length of typical lineage (see below). The setQ is defined as
the set of conserved, hydrophobic and charged positions in the
ancestral sequence, s(0), which typically occupy the nucleus
of compared monomers in ensembles ���. An alignment of
structures by method (ii) along lineage 3 is provided in the
Supplemental Material file [18].

To describe structural diffusion along a lineage, we compute
averages over sub-paths,

〈�x2〉(n) = 1

T

T −1∑

τ=0

�x2(τ,τ + n), (3)

where �x2(τ,τ + n) is the mean-square distance between x(τ )
and x(τ + n) computed by either method, n � T denotes the
length of a sub-path measured in neutral mutations, and T =
100 corresponding to about three mutations per monomer. For
a number of lineages studied in this work, 〈�x2〉 can be fit by
a power law [19],

〈�x2〉 � A + B nα (4)

over a substantial part of the interval n � T , however,
more often 〈�x2〉 exhibits a mixture of behaviors. To typify
structural drift for a particular method, we average over groups
of lineages

〈�x2〉 = 1

L

L∑

l=1

〈�x2〉l , (5)

where L is the number of lineages considered. Below, we
average over the lineages depicted in Fig. 1, and those evolved
under the constraints δN � 15 and δN � N/2, respectively,
where δN is the number of solid-ordered monomers in the
folded ensemble of a sequence (see Appendix). Averages
over groups of lineages are fit closely by Eq. (4), however,
the exponents obtained for each method are quite different,
and both depart from case of normal diffusion considered in
theoretical models [7,8] : For method (i), structural change is
super-diffusive, with exponents α ∼ 1.6, suggesting Lévy-like
behavior. [19]. For method (ii), structural change is sub-
diffusive, with exponents α ∼ 0.5, similar to kinetic diffusion
of small proteins [20,21].

A sample of our results for individual lineages are provided
in Figs. 2–4. The data included in these figures are obtained
from a set of 14 lineages generated in Ref. [1]. Half of the
lineages were generated under each of the two constraints on
δN noted above. Each lineage begins from a sequence folding
to one of five distinct structures.
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FIG. 2. (Color online) Distribution of waiting times, P (T � τ ),
for lineage 1 (circles) and lineage 2 (squares) in Fig. 1. The solid line
is a fit to the data for lineage 1 using Eq. (1). The dashed line is fit of
Eq. (1) to the data reported by Bastolla using Eq. (2). The exponents
of both fits are β � 1.2.

Figure 2 plots the distribution, P (T � τ ), for lineage 1
(circles) and lineage 2 (squares) in Fig. 1. The solid line is a
fit to the data for lineage 1 according to Eq. (1) in the region
τ � 100. The exponent of the fit is β � 1.2. The dashed line
describes the distribution P (T � τ ) obtained by fitting P (T )
to the data reported by Bastolla [13] which leads to essentially
the same exponent. The exponents for individual lineages vary
from about β � 1.0 to about β � 1.7. Each lineage includes
between 6 and 12 mutations per monomer, exceeding the
typical “lifetime” of a protein in Ref. [6]. For combinations of
lineages (such as those in Fig. 1) we obtain β � 1.3.

Figure 3 plots the average (circles) and the width (squares)
of the distribution for �x2(τ,τ + n) along lineage 3 computed
according to method (i). The number of monomers partici-
pating in structural alignments is N‖ = 16, or about half the
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FIG. 3. (Color online) Average (circles) and width (squares) of
the distribution of aligned distances, �x2(τ,τ + n), along lineage 3
computed by method (i). The solid line is a fit to the data using Eq. (4).
The exponent of the fit is α � 1.0.
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FIG. 4. (Color online) Length of structural flights, �x(τ,τ + 1),
along lineage 3 computed by method (i). The longest flight in the
figure is the result of a single amino acid replacement.

typical length of a polymer. The solid line is a fit to the
data according to Eq. (4) with exponent α � 1.0, indicating
normal diffusion. However, structural flights along lineage 3
are episodic, similar to fluctuations within folded ensembles,
punctuated by longer flights corresponding to more collective
changes in structure (Fig. 4). This result is somewhat typical,
and for combinations of lineages, the distribution of flight
lengths is Lévy-like, resembling a Gaussian with an extended
tail [22].

Finally, Fig. 5 plots the average (circles) and the width
(squares) of the distribution for �x2(τ,τ + n) along lineage
1 computed by method (ii). The solid line is a fit to the
data for n � T according to Eq. (4) yielding an exponent
α � 0.5. The number of monomers compared in structural
alignments is typically N‖ ∼ 20. Here, structural flights are
larger and more erratic than those in Fig. 4 since the pattern
of ordered, nuclear monomers can change along a lineage. For
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FIG. 5. (Color online) Average (circles) and width (squares) of
the distribution of aligned distances, �x2(τ,τ + n), along lineage 1
in Fig. 1 computed by method (ii). The solid line is a fit to the data
for n � 80 according to Eq. (4). The exponent of the fit is α � 0.5.
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this reason, we also examined a variant of method (ii) in which
tracer positions are instead determined by the earlier sequence
in an alignment, with conservation required over the next
n � T neutral mutations. For this variant, we obtain similar
exponents, α � 0.5, and similar agreement with Eq. (4).

To summarize, our results suggest that the evolution of
small protein motifs is both temporally and structurally
episodic. For method (i), in which compared monomers are
selected to optimize MSD, structural change is, on average,
super-diffusive. Here, individual lineages consist of many
small structural changes, comparable to fluctuations within
folded ensembles, punctuated by larger, more collective
changes involving the entire nucleus. For method (ii), in which
compared monomers are defined by the ordered nucleus of an
ancestral sequence, structural change is sub-diffusive, with an
exponent similar to small proteins. This result appears to be a
general consequence of structural comparison through a fixed
set of monomer positions. For example, if the set of compared
monomers is defined locally (i.e. by the earlier sequence in an
alignment), structural drift remains sub-diffusive.

A group of measures we have not yet considered are those
based on shared contacts [23]. A potential advantage of this
approach is that the elements compared to measure distance
(i.e., contacts) are purely determined by the folded ensembles
of the sequences, and can be measured (for example) using the
Etters-Kaelberer parameter [24]. In addition, protein sequence
alignments can be constructed using a reliable algorithm
based on alignment of internal contact patterns [25], which
provides for a more consistent comparison of the model with
protein data. We intend to explore this problem in future work,
including the genetic code, and more realistic functional
constraints to model explicit binding of a target molecule.

The authors would like to thank Ugo Bastolla for helpful
suggestions during the review of this work.

APPENDIX

The polymer model is a freely jointed chain of point
monomers which interact according to spherically symmetric
pair potentials. The potentials for unit strength attractive and
repulsive interactions are plotted in Fig. 6. The strengths
and forms of the potentials for a particular sequence are
determined by empirical amino acid contact energies [26,27].
The polymers evolve kinetically by Langevin dynamics with
parameters adjusted to obtain diffusive kinetics and room
temperature folding transitions.

The viability of a sequence is determined by folding
N ∼< 100 replicas of the mutated polymer on a parallel com-
puter. The folding procedure consists of a series of temperature
jumps which transfer the replicas between random coil,
ordered globule, and melting temperatures for a typical viable
sequence. The structures recovered at the lower temperature
are collected, along with their N (energetically equivalent)
mirror images into an ensemble, �, and the ensemble is
analyzed using the Lindemann melting criterion [28,29].

In general, the energy landscape of a polymer can contain
many deep energy basins. As the replicas are cooled they can
become trapped in these basins, so that � contains disparate
clusters of structures. However, occasionally a sequence is
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FIG. 6. (Color online) Potential functions, Uε ε′
(r), for cross-

chain interactions at unit core strength, ε = 1, unit attraction, ε′ = −1
(dashed line) and unit repulsion, ε ′ = 1 (dotted line). The polymers
are linked by stiff quadratic potentials of equilibrium length l. In
the model, the parameter ε ′ is determined by empirical amino acid
contact energies [26,27].

encountered in which most, or all of the replicas recover
a single dominant energy basin (i.e., in each image space)
corresponding to a narrow cluster of structures. In order to
select for this situation, we search for a structure x� ∈ � to
represent the native ensemble of the mutated polymer, and
we require that a significant fraction of the replicas fold into
structures that are close to x�.

The reference structure, x�, plays a role analogous to
the equilibrium (lattice) positions in a crystal in the usual
formulation of the Lindemann parameter. Here, the Lindemann
parameter measures the typical distance of a monomer in
a structure xμ ∈ � aligned to x� from its corresponding
monomer in x�. Ideally, we would want to select the ref-
erence structure to minimize the average displacement of
every monomer over the closest N replica structures in
�. However, here it is necessary to allow for misfolding,
and for weakly interacting (typically, uncharged hydrophilic)
monomers which occupy the surfaces of the globules and
are disordered in folded ensembles. For this reason, we use
a reductive procedure to align the structures in which the
most distant monomer pairings are removed, iteratively, until a
nucleus of 2N/3 optimally aligned pairs of monomers remain.
These nuclear alignments are used to compute a nuclear
Lindemann parameter, λ, for every structure xμ ∈ � using
the closest 3N /4 remaining structures. This process results in
an ensemble ��� aligned to a structure x� yielding a minimal
value of λ (i.e., in each image space). This alignment is then
used to compute Lindemann parameters, λj , for each monomer
j individually, and the number of solid-ordered monomers is
determined by the Lindemann criterion, λj

∼< 0.15 l where l is
the length of a polymer link. If the number of solid-ordered
monomers, δN , exceeds a specified value, the sequence is
accepted—otherwise, it is rejected.

The data presented in this work are obtained from 14
lineages of length ∼3–5 × 102 mutations generated under
the constraints δN � 15–16 and δN � N/2 in Ref. [1].
The attempt frequencies for random monomer replacements,
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insertions, and deletions are adjusted to approximate protein
data; For this set of lineages, amino acid replacements are

accepted at a rate of about 0.05–0.10 per mutation attempt.
Indels are accepted at about one-tenth this rate.
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