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Weightless experiments to probe universality of fluid critical behavior
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Near the critical point of fluids, critical opalescence results in light attenuation, or turbidity increase, that can
be used to probe the universality of critical behavior. Turbidity measurements in SF6 under weightlessness
conditions on board the International Space Station are performed to appraise such behavior in terms of
both temperature and density distances from the critical point. Data are obtained in a temperature range, far
(1 K) from and extremely close (a few μK) to the phase transition, unattainable from previous experiments
on Earth. Data are analyzed with renormalization-group matching classical-to-critical crossover models of the
universal equation of state. It results that the data in the unexplored region, which is a minute deviant from
the critical density value, still show adverse effects for testing the true asymptotic nature of the critical point
phenomena.
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Thermodynamic and transport properties show singularities
asymptotically close to the critical points of many different
systems. The current theoretical paradigm on critical phenom-
ena using the renormalization-group (RG) approach [1] has
ordered these systems in well-defined universality classes [2]
and has characterized the asymptotic singularities in terms
of power laws of only two relevant scaling fields [3]. The
modern theory of critical phenomena has been reasonably
well validated in earlier experimental studies, in particular
along the so-called critical paths where one expects that
only a single field variable determines the distance to the
critical point [see, for example, the studies of the specific
heat singular behaviors in Refs. [4,5] for the O(1) and
O(2) universality classes [6], respectively]. Simultaneously,
the quest for such a true asymptotic behavior has been a
conundrum to the experimentalists performing experiments
closer and closer to the critical point, especially for the
case of the gas-liquid critical point of simple fluid systems.
For example, gravity effects on Earth bound experiment and
long density equilibration times are some of the encountered
experimental difficulties in studying the fluid’s asymptotic
critical behavior [7], which belongs to the universality class of
the (N = 1)-vector model of three-dimensional (3D) Ising-like
systems and the O(1) symmetric (�2)2 field theory [2,6,8].
In fact, Earth-based experiments are typically restricted to a
temperature range �τ ∗ = T

Tc
− 1 � 10−4, with (Tc) T being

the (critical) temperature. In this situation, the analytical
backgrounds and the classical-to-critical crossover behavior
due to the mean-field-like critical point further hindered the test
of the asymptotic Ising-like fluid behavior. Such difficulties
are intrinsically unavoidable, even along the true critical
paths where the crossover contribution due to one additional
irrelevant field [9] can be accounted for correctly in the field
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theory framework [10,11]. This intrinsic difficulty associated
with the above limited finite-temperature range has been shown
in the recent reanalysis of critical xenon data [12] from the
Earth’s experiment performed by Güttinger and Cannell [13].

Practically, the experiments performed even in microgravity
environments to avoid gravity effects are never exactly on these
critical paths. Even though the temperature can be made much
closer to Tc, the mean density of the fluid cell is never at its
exact critical density value. The error bar related to this latter
critical parameter was never contributing to the discussion
of the results in terms of true experimental distance to the
critical point. As a result, the experimental control of the
exact value of the second relevant field was never carefully
accounted for in the expected asymptotic Ising-like behavior
of the fluid in the close vicinity of its gas-liquid critical point.
For instance, in our previous light transmission and turbidity
(τ ) measurements [14] performed in near-critical SF6 under
microgravity environments, it was noted that the finite small
value (∼0.8%) of the off-density criticality could be one of
the explanations of the increasing small differences between
the experimental data and the theoretical estimates, referred
to as the Ornstein-Zernike (OZ) theory [15] along the critical
isochoric path.

Here we probe critical point universality along a noncritical
path by using over 300 data points obtained in 12 runs
of near-critical SF6 turbidity measurements in weightless
condition. More precisely, the 327 new turbidity data were
obtained from March 2011 to February 2014 using the SF6

sample at constant (∼1%) off-critical, liquidlike density (see
below) of the ALI insert in the CNES NASA DECLIC facility
onboard the International Space Station (ISS). This cell was
purposefully filled at a slightly liquidlike density to study boil-
ing phenomena in the two-phase range (see [16] for details),
using thus the benefit of the liquid wettability on the cell walls
and sapphire windows. Nonetheless, the light transmission
and τ measurements on the one-phase domain have provided
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a unique set of data valuable to check our approach of the theo-
retical estimates referring to the fluid singular behavior along a
noncritical path. The DECLIC instrument [17] is an advanced
optical, thermal, and mechanical facility that uses different
inserts dedicated to the studies, without the gravity effects, of
the critical point phenomena and the boiling, the solvation-
precipitation, and the solidification mechanisms in transparent
media.

The ALI DECLIC turbidity measurements were performed
very close to the critical point, nearly three orders of magnitude
in temperature distance beyond what has been achieved
previously on Earth, by taking advantages of the high-level per-
formances of the facility. These turbidity measurements along
a noncritical path, comparable to the ones reported in Ref. [14],
can now be analyzed with a much improved theoretical
understanding over earlier OZ framework studies. The two data
sets are in fact different and independently essential in testing
our crossover models of the equation-of-state [12] based on
the RG approaches of the critical phenomena universality.
Indeed, the crossover parametric model (CPM) [18] of the
equation of state, although phenomenological, presents the
main advantage in calculating the singular thermodynamic
properties in any point of the density-temperature phase sur-
face in the close vicinity of the gas-liquid critical point. Despite
small numerical differences between universal quantities, the
massive renormalization crossover functions and CPM both
showed similar Ising-like critical behaviors, only characterized
by three fluid-dependent parameters (de facto Ising-like in
nature). Moreover, it was also shown in the critical xenon
case [12] that the CPM can be modified into the crossover
master model (CMM) with no adjustable Ising-like critical
parameter since the phenomenological master forms of the
crossover functions and the CMM only involve the known
critical point coordinates [11]. The CMM can then also be used
to predict the asymptotic singular behaviors in the near-critical
phase region surrounding a well-localized gas-liquid critical
point of any one-component fluid.

Turbidity measurements. We briefly recall that the ALI
DECLIC turbidity experiments used the attenuation of the in-
tensity of the DECLIC laser light (wavelength λ0 = 632.8 nm,
focal beam size 0.3 mm, and maximum attenuation of 1-mW
power), crossing the central axis of the direct observation
cell (DOC) of the ALI insert. Therefore, τexpt = − ln(RI )

e
+ Bτ

expresses the light intensity attenuation per unit length through
the measurements of the intensity ratio RI = I2/I1, where I1

is the incident laser light intensity from the entrance optics,
I2 is the related transmitted one through the fluid layer,
e is the fluid layer thickness, and Bτ is an adjustable
constant that accounts for components in the optical path
(Bτ � 100 ± 0.5 m−1 for the DECLIC optical design). The
DOC (ten years old at near-critical density filling) was
described in [16]. Three main DOC characteristics are of
present interest. (i) The DOC has a fixed cylindrical-like fluid
volume of D = 10.6 mm in diameter and e = 4.115 mm in
thickness. (ii) The fluid under study was SF6 of electronic
quality, corresponding to a 99.98% purity (from Alpha Gaz,
Air Liquide). (ii) The DOC was initially filled at a mean
liquidlike density 〈ρ〉, i.e., 〈ρ〉 > ρc, with well-controlled
relative off-critical density 〈δρ̃〉 = 〈ρ〉

ρc
− 1 = (1 ± 0.2)% from

Earth-based filling and checking processes. This last point will

be detailed in a separate analysis including recent postflight
data.

The laser light transmission measurements were also used
to determine the relative coexistence temperature Tcoex < Tc.
The temperature difference Tc − Tcoex � 55 μK was esti-
mated using the power law �ρ̃LV = B(�τ ∗)β describing the
symmetrized top of the coexistence curve, with �ρ̃LV = 〈δρ̃〉
and �ρ̃LV = ρL−ρV

2ρc
, B = 1.596, β = 0.325 75, and Tc(SF6) =

318 733.000 mK [14]. Here ρL and ρV are the coexisting
liquid and vapor densities, respectively. Note that the absolute
calibration of the temperature sensors of the thermostat was not
required to determine Tcoex(SF6)ALI, which can then be used as
a relative reference for the temperature scale associated with
the ALI DECLIC setup. In this case, the thermal monitoring by
the DECLIC facility gives a relative temperature uncertainty
of the order of 15 μK, with a temperature resolution of
1 μK over the complete duration of the experimental run.
Therefore, our turbidity data were obtained from a few μK
to 1 K above Tcoex (i.e., 10−7 � �τ ∗

coex = T
Tcoex

− 1 � 3.1 ×
10−3). Note that the methodology for performing these ALI
DECLIC turbidity experiments remains similar to the one
for ALICE2 experiments in the MIR station (see Ref. [14]).
The major improvement results from the use of an upgraded
temperature timeline in DECLIC, which has greatly benefited
from the CADMOS and NASA teleoperational managing of
this facility. That was especially noticeable over the (at least)
2-d duration of the final part of the timeline where the last
decade T − Tcoex � 1.2 mK was covered by performing a
series of −100-μK temperature depth quenches, of at least
4-h relaxation period each. Therefore, by combining the μK
resolution with the 15-μK uncertainty, a typical error bar
of 30 μK can be attributed to the data point in the closest
temperature range. A detailed description of this preparation
of a homogeneous thermodynamic state of a near-critical fluid
sample in weightlessness conditions at the closest temperature
above the two phase domain (i.e., a few μK to ∼50 μK above
Tcoex, typically) is beyond the scope of the present paper.

Our 327 τexpt data are reported as functions of T − Tcoex in
Fig. 1, noting that 85 data are in the range T − Tcoex � 1 mK
and that the temperature range not affected by gravity in a
similar Earth experiment is restricted to T − Tcoex � 38 mK
[19]. The symbols defined in the legend of Fig. 1 correspond
to the 12 series of ALI DECLIC turbidity data. Each series
corresponds to a typical, about 5-d-duration, temperature
timeline, performed during the different sequences, which
covers the temperature range Tcoex + 1 K → Tcoex. In Fig. 1
we have also added our previous turbidity data (in the
form of red closed circles) obtained from the ALICE2
turbidity experiments [14], using a cell with off-critical density
〈δρ̃〉ALICE2 = (0.8 ± 0.1)%.

Turbidity functional forms for a near-critical fluid. Tur-
bidity of a fluid close to its gas-liquid critical point is
most essentially due to Rayleigh light scattering by density
fluctuations. Measurements of τ as a function of the distance
from the critical point allow Ising-like asymptotic formulations
for the static isothermal compressibility (κT , governed by
the critical exponent γ along the critical isochore) and the
correlation length (ξ , governed by the critical exponent ν along
the critical isochore) to be checked. Indeed, from the detailed
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FIG. 1. (Color online) A lin-log plot of turbidity τ (expressed in
m−1) as a function of T − Tcoex (expressed in mK) obtained from
the present ALI DECLIC and previous ALICE2 light transmission
measurements in SF6 (symbols are defined in the legend) and
compared to the predicted turbidity from Eq. (2), using the CMM
equation-of-state model with calculated parameters from column 3 of
Table I. The black dashed curve represents Eq. (2) for 〈δρ̃〉 = 0 (exact
critical isochore). The additional four (red solid, red double-dot–
dashed, blue dotted, blue dot-dashed) curves represent Eq. (2) for 〈δρ̃〉
covering the 0.7%–1.0% range, by using 0.1% steps, respectively. The
typical 30-μK temperature error bar is only indicated by a horizontal
red bar for the closest data point (T − Tcoex ∼ 3 μK).

analysis given in [12], τ can be written in the scaling form

τ = πA0kBT κT

y2
H (η,y), (1)

where A0 = π2

λ4
0
[ (n2−1)(n2+2)

3 ]2, n is the fluid refractive index, kB

is the Boltzmann constant, y = k0ξ is universal (independent
of the normalization), k0 = 2πn

λ0
is the amplitude of the

incident light wave vector (∼10−7 m−1 for λ0 ∼ 632.8 nm),
and H (η,y) is the turbidity scaling function, which is universal
as y is, the critical exponent η satisfying thus the hyperscaling
law γ = 2ν − ην. As shown in [12], when T → Tc, i.e.
y � 1 or x → ∞, only the asymptotic critical behavior of
H (η,y) must be explicitly a function of the critical exponent
η. In terms of the usual Ising-like power law along the
critical isochore, i.e., for y � 1 and �τ ∗ → 0, H (η,y) ∝
F × (�τ ∗)−ην , where F is a universal quantity. Thus F is
related to the saturated finite turbidity at the exact critical
point, such as τ ∼ cte

η
, as shown by the asymptotic analysis of

Ferrell [20]. However, Ferrell’s asymptotic analysis, as well
as its confirmation by the Monte Carlo simulation of a simple
cubic Ising lattice by Martin-Mayor et al. [21], leads to Ising-
like limiting forms of the turbidity expected to be valid only
for �τ ∗ < 10−5, i.e., very close to the critical temperature.
At large distance from Tc, when x � 1, the turbidity reduces
to Puglielli and Ford’s [19] estimation from the OZ theory.

In such a second limiting case, Eq. (1) takes the practi-
cal functional form τPF = πA0kBT κT

y2 HPF(y), with HPF(y) =
1

8y4 [(8y4 + 4y2 + 1) ln(1 + 4y2) − 4y2(1 + 2y2)]. The ratio
HPF(y)

y2 reaches the constant value 8
3 for y � 1, leading to

τPF = τ0(1 + �τ ∗)(�τ ∗)−γ ∝ T κT far away from Tc. Here
τ0 = πA0kBTc�

+
0 is a temperature-independent quantity, only

proportional to the leading amplitude �+
0 of the singular

behavior of χ∗
T = κT pc, where pc is the critical pressure.

Unfortunately, for a 3D Ising system, H (η,y) always remains
unknown between the above two limiting behaviors. There-
fore, in our modeling we consider the phenomenological fitting
formulation proposed by Martin-Mayor et al. [21] to reproduce
the crossover between the turbidity results of the Monte Carlo
simulation (close to Tc) and the ones of the PF approximation
(far from Tc), such as

τMM,fit = τPF[0.666 421 + 0.242 339(1 + 0.008 793 6y2)η/2

+ 0.091 180 1(1 + 0.09y4)η/4]. (2)

This fitting form recovers the condition τMM,fit ∼ τPF far from
the critical temperature (y � 1 or �τ ∗ � 10−5).
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FIG. 2. (Color online) Joint fit result for the free parameters l0,
m0, and u of the CPM fitting the SF6 χ∗

T = κT pc, c∗
V , and �ρ̃LV

measurements of Refs. [22], [4], and [23], respectively, as functions
of |�τ ∗| along the critical isochore (see Ref. [18] for the amplitude
notation and inserted labels for the curves and the symbols).
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TABLE I. Sulfurhexafluoride values of the Ising-like parameters
l0, m0, and u for the CPM joint fit (see Fig. 2), the CMM [see
Eq. (3) and the text], and fitting the turbidity data with ū = 0.166,
�/(ct )1/2 = π (fixed), and l0, m0, and 〈δρ̃〉 as free parameters (see
the text).

SF6 CPM joint fit CMM Turbidity fit (this work)

l0 38.303 ± 0.110 36.1923 36.472±0.694
m0 0.4877 ± 0.001 0.48568 0.4915±0.001
ū 0.166 ± 0.0001 0.124284 0.166 (fixed)
�/(ct )1/2 π (fixed) π (fixed) 〈δρ̃〉ALI = (0.95 ± 0.05)%
g1/2 0.5215 ± 0.0001 0.39045 〈δρ̃〉ALICE2 = (0.75 ± 0.17)%

Estimations of ξ , κT , and τ for near-critical SF6. Our
calculations of κT (�τ ∗,〈δρ̃〉), ξ (�τ ∗,〈δρ̃〉), and τ (�τ ∗,〈δρ̃〉)
for the near-critical (〈δρ̃〉 �= 0) SF6 case are similar to the
critical (〈δρ̃〉 = 0) Xe case reported in [12]. First, the CPM free
adjustable parameters (l0, m0, and u) for SF6 are obtained from
a joint fitting of isothermal compressibility [22], heat capacity
at constant volume [4], and coexisting density curve [23]. The
results are shown in Fig. 2, where only the reduced temperature
range of the cV data obtained in microgravity reaches the
10−5–10−4 decade. Second, the corresponding CMM fixed
parameters are obtained from the relations [12]

l0 = 3.383 17

Z+
χ

ZM

3.286 13
(Zc)1/2(Yc)β+γ ,

m0 = ZM

3.286 13
(Zc)−1/2(Yc)β,

[uπ ]−2�s (1 − u) = Z1+
�

0.590
(Yc)�

(3)

neglecting quantum effects for the SF6 case and using
the arbitrary relation �

(ct )1/2 = π initially adopted by the
authors in Ref. [18]. Here Z+

χ = 0.11975, ZM = 0.4665, and
Z1+

� = 0.555 [11], while Zc = pcm/(kBρcTc) = 0.2795 and
Yc = (Tc/pc)γ

′
c − 1 = 6.0896 [14] are the two scale-factors

estimated from the generalized critical coordinates of SF6 (m
is the molecular mass and γ

′
c is the common critical slope, in

the p,T diagram, of the critical isochore and the saturation
pressure curve at the critical point). Table I shows that the free
(column 2) and fixed (column 3) values are in close agreement.

Our theoretical estimation of τ using Eq. (2) with CMM
parameters (column 3, Table I) to calculate ξ and κT for 〈δρ̃〉 =
0 corresponds to the black dashed curve on a log-lin scale in
Fig. 1. The additional four curves correspond to the similar
predictive modeling for four near-critical isochores covering
the 〈δρ̃〉 = 0.7%–1.0% range, using four 0.1% steps (see the
legend in Fig. 1). This 〈δρ̃〉 range includes the experimental
central values 〈δρ̃〉ALI = 1% and 〈δρ̃〉ALICE2 = 0.8%.

Discussion. Figure 1 indicates that the τ calculations from
Eq. (2), without adjustable parameters, are in agreement
with our experimental data using 〈δρ̃〉 ≈ 0.9% (blue dotted
curve) for the present ALI DECLIC case and 〈δρ̃〉 ≈ 0.7%
(red solid curve) for the previous ALICE2 case. This good
agreement is noticeable in the temperature range T − Tcoex �
25 mK, investigated experimentally now as a function of 〈δρ̃〉,
whereas the estimated small differences (∼0.1%) from the
above central values are of the same order of magnitude
as the experimental error bar. In addition, complementary
fits of the τ data (ALI DECLIC plus ALICE2), fixing
u = 0.166 (joint fit value) with l0, m0, and 〈δρ̃〉 as the
free parameters, lead to the results reported in column 4 of
Table I. The l0 and m0 differences from column 2 could be
easily understood by considering the limited available data
range of the joint fit compared to the one of the turbidity
data. Similarly, the 〈δρ̃〉 values agree with an uncertainty
of ∼0.1%.

The current analysis shows that the off-critical density of
the cell is the dominant effect that explains the observed
increasing deviation from the critical singular behavior of
the turbidity approaching Tc. This conclusion benefits from
the microgravity environment and the high-level capabilities
of ALI DECLIC for experimenting accurately at temperature
distances closer than 1 mK from Tcoex. The multiple-scattering
effect is considered to be a negligible factor (<10%) in
our forward-scattering case (θ < 2.7◦) [24]. The intrinsic
gravitational effects in the sample fluid at the size of the laser
beam, which could limit the growth of the correlation length
on Earth, are also insignificant in microgravity conditions even
at the reduced temperature of 10−7 [7].

The modeling of τ is comparable (in amplitude and
uncertainty) to the three sets of Ising-like parameters given in
Table I. In addition, the estimated values of the cell densities are
in agreement with Earth-based experimental determinations.
Finally, in a temperature-density range very close to ρc and
Tc, the turbidity behavior is reasonably well understood from
the use of the parametric form of the equation of state without
any adjustable parameter. This modeling approach is made
in conformity with the Ising-like universality features of
the massive renormalization scheme, only knowing the SF6

generalized critical coordinates.
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