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Phase-field crystal model for a diamond-cubic structure
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We present a structural phase-field crystal model [M. Greenwood et al., Phys. Rev. Lett. 105, 045702 (2010)]
that yields a stable dc structure. The stabilization of a dc structure is accomplished by constructing a two-body
direct correlation function (DCF) approximated by a combination of two Gaussian functions in Fourier space.
A phase diagram containing a dc-liquid phase coexistence region is calculated for this model. We examine the
energies of solid-liquid interfaces with normals along the [100], [110], and [111] directions. The dependence of
the interfacial energy on a temperature parameter, which controls the heights of the peaks in the two-body DCF,
is described by a Gaussian function. Furthermore, the dependence of the interfacial energy on the peak widths of
the two-body DCF, which controls the excess energy associated with interfaces, defects, and strain, is described
by an inverse power law. These relationships can be used to parametrize the phase-field crystal model for the dc

structure to match solid-liquid interfacial energies to those measured experimentally or calculated from atomistic
simulations.
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I. INTRODUCTION

The phase-field crystal (PFC) model was developed to
study atomistic-scale phenomena that occur at experimen-
tally observable time scales. Since its first demonstration
in 2002, the model has been applied to study important
materials phenomena such as dislocation dynamics [1–3],
nucleation [4,5], and grain boundary energy anisotropy [6,7],
albeit on a qualitative level. A step toward a more quantitative
PFC model was undertaken by Elder et al. in 2007 when
they derived the free energy of the PFC model from that
of the classical density functional theory (cDFT) of freezing
via several approximations [8]. The link between PFC and
cDFT provided a microscopic interpretation of the PFC model
parameters and established a connection between the PFC
model and experimentally measured structure factors through
the two-body direct correlation function (DCF).

The two-body DCF dictates the spatial configuration of
the order parameter in the PFC model, which is important
for describing elastic and plastic deformations, as well as the
anisotropy of solid-solid and solid-liquid interfaces. Therefore,
much research in the PFC literature has been focused on
modifying the two-body DCF to improve the predictive
capability of the model. As a result, several new formulations
for representing the two-body DCF have been developed. For
example, Jaatinen et al. fit the two-body DCF in Fourier
space up to the first peak using an eighth-order polynomial
function to quantitatively study body-centered cubic (bcc)
Fe [9]. Pisutha-Arnond et al. fit the two-body DCF beyond
the first peak with a rational function to examine the pre-
dictive capability of the cDFT of freezing [10]. Furthermore,
Greenwood et al. constructed two-body DCFs in Fourier space
using Gaussian peaks to systematically stabilize various crystal
structures [11,12].
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In this work we focus on the structural PFC (XPFC)
model developed by Greenwood et al. [11,12] because of the
model’s capability to produce a range of crystal structures
in a systematic and straightforward manner. This model
has been shown to stabilize crystal structures such as bcc,
face-centered cubic (f cc), simple cubic (sc), and hexagonal
close-packed (hcp) structures [12] and has been used to
study many phenomena including solute drag effects on grain
boundary motion [13], clustering and precipitation in an Al-Cu
alloy [14,15], and the stability of stacking faults and partial
dislocations [16]. However, a diamond-cubic (dc) structure, to
the knowledge of the authors, has not been shown to be stable
within the PFC model. As a result, semiconductor materials,
such as Si and Ge, have not been studied in three dimensions.

Therefore, we have developed a PFC model with a stable
dc structure, which is based on the XPFC approach. To this
end, we approximate a two-body DCF with a combination
of two Gaussian functions in Fourier space, with the first
and second peak positions centered at k1 = 2π

√
3/a and

k2 = 2π
√

8/a, respectively, where a is the lattice constant
of a cubic structure, and k1 and k2 are magnitudes of wave
vectors. A temperature-density phase diagram that contains
a dc solid-liquid coexistence region is then calculated for
this model. It is worth noting that a recent model for self-
assembly [17], which resembles the PFC model, was shown
also to stabilize a dc structure with a long-range interaction
term that enforces the coordinates of a desired structure in
Fourier space. Although the ability to explicitly enforce the
coordinates of a structure provides the capability of stabilizing
very complex structures (e.g., a double-helix structure [17]),
the orientation of the crystal is fixed by the orientation of the
coordinates. Therefore, rotational invariance, which is retained
in the PFC model and is important for studying polycrystalline
systems, is lost.

For the model to be applied to a specific material, it is
critical that it reproduces material properties such as interfacial
energies and elastic behavior, as well as the bulk energetics
reflected in the phase diagram. In the latter part of this paper,
we focus on the interfacial energies, including the interfacial
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anisotropy that arises naturally in the PFC model. We examine
how the solid-liquid interfacial energy of the dc structure
depends on the shape of the DCF within the dc-PFC model.
A relationship for solid-liquid interfacial energy as a function
of temperature is developed for the dc structure by taking
the peak heights of the Gaussian functions in the two-body
DCF to change with a temperature parameter according to the
functional form of the Debye-Waller factor [11]. Additionally,
since the energy change due to interfaces, defects, and strain
is controlled by the peak width of the Gaussian functions [11],
relationships for the dependence of interfacial energies on
peak widths are also determined. These relationships can be
used to parametrize the dc-PFC model to match interfacial
energies to those measured experimentally or calculated from
atomistic simulations.

The paper is outlined as follows. We begin by providing
background of the XPFC model in Sec. II, where the
parameters of the DCF are discussed in detail. A procedure for
constructing phase diagrams in the PFC model is described
in Sec. III and is used to calculate a phase diagram for
the dc structure. The phase diagram contains a dc-liquid
coexistence region, enabling us to numerically examine the
solid-liquid interfacial properties of the dc structure in Sec. IV.
Relationships between the interfacial energy and the peak
widths and heights of the Gaussian functions in the DCF are
also developed in Sec. IV. Finally, we summarize the results
of our work and present potential directions for future work in
Sec. V.

II. THE STRUCTURAL PHASE-FIELD CRYSTAL MODEL

The PFC free energy is based on a free-energy difference
with respect to a liquid reference state and can be derived from
the cDFT of freezing [8]. The free energy is written in terms of
an ideal-gas contribution, �Fid[n(r)], which is derived from a
noninteracting system of particles, and an excess contribution,
�Fex[n(r)], which contains the description of the interactions
between particles

�F[n(r)] = �Fid[n(r)] + �Fex[n(r)]. (1)

The � symbol in Eq. (1) indicates a free-energy difference
from a state that is at a reference liquid density, ρ0. The variable
n(r) is the scaled dimensionless number density and is related
to the atomic-probability density, ρ(r), by n(r) ≡ ρ(r)/ρ0 − 1.

The ideal-gas contribution,

�Fid [n(r)] = ρ0kBT

∫ [
n(r)2

2
− n(r)3

6
+ n(r)4

12

]
dr, (2)

where kB and T are the Boltzmann constant and temperature,
respectively, is minimized by n(r), which is equal to a constant
value. Regions where n(r) is constant are considered to be in
the liquid state. On the other hand, depending on the choice of
a two-body DCF, C(2), the excess contribution,

�Fex[n(r)] = −ρ2
0kBT

2

∫
n(r)

×
[∫

C(2)(| r − r′ |)n(r′)dr′
]

dr, (3)

is minimized by n(r), which contains peaks with the periodicity
of a crystal lattice. Regions where n(r) takes this form are
considered to be a crystalline solid. In expressing the two-body
DCF as C(2)(| r − r′ |), an assumption has been made that the
two-body DCF is isotropic [8].

The two-body DCF, which is the key quantity that gives
rise to stability of crystalline phases in Eq. (3), is typically
expressed in Fourier space [8–11]. As a result, the convolution
theorem can be used to evaluate the inner integral (with respect
to r′) of Eq. (3) in the form of the inverse Fourier transform of
the product of Fourier transforms,

�Fex[n(r)] = −ρ2
0kBT

2

∫
n(r)F−1[Ĉ(2)(k)n̂(k)]dr, (4)

where k = |k|, the notation F−1[ ] is the inverse Fourier-
transform operation, and the hat symbols denote Fourier
transforms of the quantities.

In the XPFC model, the two-body DCF is approximated
by a combination of modulated Gaussian functions in Fourier
space via [11,12]

ĉ(2)(k) = ρ0Ĉ
(2)(k) = max (Gi(k),Gi+1(k), . . . ,GN (k)),

(5)

where N is the total number of Gaussian functions used in the
approximation of the DCF, and

Gi(k) = exp

(
− σ 2k2

i

2λiβi

)
exp

(
− (k − ki)2

2α2
i

)
(6)

is the modulated Gaussian function (i.e., a Gaussian func-
tion with its height modified by an exponential function).
The subscripts and superscripts i denote the ith family of
crystallographic planes that are being considered; the families
of planes are typically enumerated in order of decreasing
interplanar spacings, where i = 1 corresponds to the family
of crystallographic planes with the largest interplanar spacing.
The parameter ki specifies the position of the ith Gaussian peak
and the value of k1 corresponds to the reciprocal lattice spacing
of a crystal structure; αi corresponds to the root-mean-square
width of the ith Gaussian peak and controls the excess
energy associated with defects, interfaces, and strain [11]; σ

controls the heights of the Gaussian peaks and is related to
temperature [11]; and λi and βi are the planar atomic density
and the number of planar symmetries of the ith family of
crystallographic planes, respectively, and control how much
the height of the Gaussian functions changes when σ is
adjusted. Since the parameter ki also exists in the exponential
term in front of the Gaussian functions in Eq. (6), ki also affects
the change in the height of the Gaussian functions when σ is
adjusted. Note that σ is a parameter related to temperature but
should not be interpreted to be equal to temperature.

Each value of ki sets the interplanar spacing, Li , for a
family of crystallographic planes within a crystal structure;
specifically, ki = 2π/Li . For example, the k1 and k2 values for
a bcc structure corresponds to the {110} and {200} families
of planes, respectively, and have values of k1 = 2π

√
2/abcc

and k2 = 4π/abcc, where abcc is the lattice constant of the
bcc structure. On the other hand, the k1 and k2 values for an
f cc structure correspond to the {111} and {200} families of
planes, respectively, and have values of k1 = 2π

√
3/af cc and
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k2 = 4π/af cc, where af cc is the lattice constant of the f cc

structure.
As demonstrated by Greenwood et al. [12], the XPFC model

for the bcc structure can be constructed with a two-body
DCF that is approximated with a single Gaussian function
centered at k1 = 2π

√
2/abcc in Fourier space. On the other

hand, the f cc structure is stabilized by two Gaussian functions
centered at k1 = 2π

√
3/af cc and k2 = 4π/af cc at sufficiently

low temperatures. Note that the ratio of the peak positions of
the f cc structure, k2/k1 = √

4/3, is independent of af cc.

III. PHASE STABILITY OF A DIAMOND-CUBIC
STRUCTURE

In this section, we demonstrate that the XPFC model
can be used to stabilize the dc crystal structure. We also
examine the phase stability between dc and other phases
to construct a temperature-density phase diagram. First, we
describe the procedure for constructing a phase diagram with
the PFC model [11,12,18], which is used in this work. We then
introduce a two-body DCF that stabilizes a dc structure and
construct a temperature-density phase diagram that consists of
the bcc, dc, and liquid phases based on the model.

A. Procedure for constructing a phase diagram

A phase diagram for the PFC model is constructed by
finding the average of the scaled dimensionless number
density, n̄, that corresponds to the phase boundaries as a
function of σ [11,12,18]. The procedure for identifying the
phase boundaries for each value of σ is divided into two steps.
First, free-energy densities as a function of n̄ are calculated for
each phase by minimizing the free-energy density, �f α(n̄,a),
with respect to a, where the superscript α denotes the phase
(e.g., α = bcc, f cc, dc). The quantity �f α(n̄,a) is calculated
via

�f α(n̄,a) ≡ �Fα[na(r)]

Va

, (7)

where Va ≡ a3 is the unit-cell volume, a is the lattice
parameter of a cubic unit cell, and na(r) is the relaxed density
profile. The relaxed density profile is obtained by evolving
a (nonrelaxed) density profile that is approximated with the
one-mode approximation with an average of n̄ using conserved
dissipative dynamics [6,8,19],

∂n(r)

∂t
= ∇2 δ�Fα[n(r)]

δn(r)
, (8)

until a steady state is reached. The quantity �f α(n̄,a) is a
function of only n̄ and a because �f α(n̄,a) is the free-energy
density of a system with na(r), which is periodic with a
uniform amplitude. For convenience, we denote the value of
�f α(n̄,a) that is minimized with respect to a as �f α

a∗ (n̄)
and the corresponding lattice spacing as a∗. This process
is schematically illustrated in Fig. 1(a), where the point
(a∗,�f α

a∗ (n̄)) is marked by an X.
Second, phase boundaries are determined with a common-

tangent construction on the convex hull [20] of �f α
a∗ (n̄) for all

phases. The common-tangent construction is mathematically
stated as a set of conditions:

∂�f α
a∗ (n̄)

∂n̄

∣∣∣∣
n̄=n̄α

= ∂�f
β
a∗ (n̄)

∂n̄

∣∣∣∣
n̄=n̄β

(9)

and

�f
β
a∗ (n̄) − �f α

a∗ (n̄) = ∂�f α
a∗ (n̄)

∂n̄

∣∣∣∣
n̄=n̄α

(n̄β − n̄α). (10)

The additional superscript, β, denotes a phase different from
that indicated by α (e.g., α = bcc and β = f cc) and the partial
derivatives are evaluated at the specified value of n̄, as indicated
by the subscripts on the vertical line. Equations (9) and (10)
ensure that the chemical potentials and pressures of the coex-
isting phases, respectively, are equal [18]. The conditions of
Eqs. (9) and (10) are illustrated in Fig. 1(b), where an X marks
the common-tangent points. The procedure described above is
repeated for different values of σ to construct a phase diagram.

(a) (b)

FIG. 1. (a) Schematic of the free-energy density of a relaxed system as a function of the lattice spacing for a given n̄. The point at which
�f α(n̄,a) is minimized with respect to a is marked by an X. (b) Schematic of the free-energy densities that satisfy ∂�f α(n̄,a)/∂a = 0 at each
n̄ [as illustrated in (a)]. The solid curve shows the free-energy density for the crystalline phase, and the dashed curve shows the corresponding
values for the liquid phase. An X denotes the comment-tangent points of the free-energy density curves, which satisfy Eqs. (9) and (10).
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FIG. 2. (Color online) (a) Schematic of a unit cell of the dc structure where the shift of af cc/4 in each direction between the lattice-site
positions of two f cc structures [one solid (blue) colored and the other colored (red) with white crosses overlain] is denoted by arrows.
Schematics of the (b) (111) and (c) (220) crystallographic planes, where the lattice points that are intersected by the atomic planes are colored
(red) overlain with white crosses. Each plane of the {111} and {220} families of planes intersects two atoms for the dc structure.

B. A diamond-cubic structure

A dc structure is an f cc derivative structure that consists
of the lattice sites of two f cc structures that are shifted from
one another by af cc/4 in each direction [21]. The lattice-site
positions of the two f cc structures are specified by two basis
vectors. The two f cc structures within a single dc unit cell are
illustrated in Fig. 2(a).

We find that a two-body DCF approximated with the combi-
nation of two Gaussian functions centered at k1 = 2π

√
3/adc

and k2 = 2π
√

8/adc will stabilize a dc structure. The values
of k1 = 2π

√
3/adc and k2 = 2π

√
8/adc correspond to the

{111} and {220} families of crystallographic planes, which
are associated with the first two peaks of the dc structure
factor [21]. As in the f cc structure, the ratio of peak positions
of the dc structure, k2/k1 = √

8/3, is independent of adc.
An f cc structure is not stable for this DCF because it does
not contain a peak corresponding to the {200} family of
crystallographic planes, which is required for the stabilization
of an f cc structure [12].

To construct a phase diagram for the dc structure, we choose
adc = 1Å and α1 = α2 = 1.0. The {111} and {220} families
of crystallographic planes of the dc structure contain 8 and
12 equivalent planes, respectively. Therefore, the parameters
β1 and β2, which are the number of planar symmetries of
the {111} and {220} families of crystallographic planes, are
8 and 12, respectively. Each plane of the {111} and {220}
families of planes have an area of

√
3/2 × a2

dc and
√

2/2 × a2
dc,

respectively, and intersects 2 atoms in the dc structure, as
shown in Figs. 2(b) and (c). Therefore, the parameters λ1

and λ2 are 2/(
√

3/2) = 4/
√

3Å−2 and 2/(
√

2/2) = 2
√

2Å−2,
respectively.

The dc DCF in Fourier space is plotted for σ = 0.0,
0.2, and 0.4 in Fig. 3(a) for the values of ki , λi , βi , and
αi mentioned above. The stability of the dc structure was
verified by comparing the unit-cell free-energy density of the
dc structure to those of the bcc, f cc, sc, hcp, rod, and stripe
phases [18]. Additionally, the stability of the dc structure for
calculations beyond a unit cell was demonstrated by the growth
of an 18 (2 × 3 × 3) unit-cell dc seed into a 64 unit-cell
system for σ = 0.01 and n̄ = 0.02 via Eq. (8); the initial
seed was generated by appending relaxed unit cells of the
dc structure. The isosurface of the relaxed 64 unit cell system

is shown in Fig. 3(b) and a small portion of the system is
extracted in Fig. 3(c) to illustrate two overlapping f cc lattices
in the dc structure. It is important to note that a metastable
bcc structure forms when the initial seed size is smaller
than 18 unit cells for the 64 unit-cell system considered in
Fig. 3(b). This suggests that the density profile can converge
to a metastable structure (bcc) instead of the stable structure
(dc) when the dynamics described by Eq. (8) is used to evolve
the density field. The formation of a metastable bcc phase
prior to forming a stable dc phase was also observed in a
recently proposed self-assembly model [17]. An investigation
of different dynamics for the PFC model is outside the scope

(a) (b)

(c) (d)

FIG. 3. (Color online) (a) Two-body DCF for a dc structure for
σ = 0.0, 0.2, and 0.4. The parameters used are α1 = α2 = 1.0, λ1 =
4/

√
3Å−2, λ2 = 4/

√
2Å−2, β1 = 8, β2 = 12, k1 = 2π

√
3Å−1, and

k2 = 2π
√

8Å−1. (b) The isosurface of a 64-unit-cell dc structure
calculated for n̄ = 0.02 and σ = 0.01. (c) A small portion of Fig.
(b) showing two overlapping f cc lattices in a dc structure. The black
arrow denotes the shift of a lattice site from one f cc lattice to the other.
(d) Phase diagram containing body-centered-cubic (bcc), diamond-
cubic (dc), and liquid (L) phases.
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of this paper. We refer the readers to Ref. [22] for an overview
of various PFC dynamics.

A density-temperature phase diagram, shown in Fig. 3(d), is
constructed according to the procedure presented in Sec. III A.
The phase diagram shows a stable liquid phase at low densities
and solid phases at higher densities. The coexistence between
liquid and dc, liquid and bcc, and bcc and dc phases is also
shown in Fig. 3(d). Since k1 corresponds to the {111} family of
planes in the dc structure and the {110} family of planes in the
bcc structure, the lattice constants of the dc and bcc structures
are different and related to one another by abcc/adc = √

2/3.
The small gap between the bcc and the dc coexisting

densities is due to the similarity between the free-energy
densities of the two solid phases. The similarity in the
coexisting densities is undesirable, for example, when studying
solid defects in a two-phase system. To alter the energy
of each phase and thus potentially increase the gap of the
solid-coexistence densities, one can modify, in addition to
the two-body DCF, the ideal-gas contribution to the free
energy in Eq. (2) [9]. This will be investigated in the
future.

An important feature of the phase diagram in Fig. 3(d)
is the dc-liquid coexistence at lower temperatures and the
bcc-liquid coexistence at higher temperatures. A bcc phase
becomes stable for a two-peak DCF when the the first peak
is significantly taller than the second peak, as described in
Ref. [12]. When the parameters in Eq. (6) are chosen to be

λ1β1

λ2β2
>

(
k1

k2

)2

, (11)

the first peak of the DCF becomes taller than the second peak
as σ increases [e.g., see Fig. 3(a)]. The parameters used to
construct the phase diagram in Fig. 3(d) has (λ1β1)/(λ2β2) =
1.45(k1/k2)2, and thus a transition from the dc phase at
lower temperatures to the bcc phase at higher temperatures
is observed.

On the other hand, the bcc phase can be suppressed at all
temperatures if the heights of the first and second peaks of a
two-peak DCF are constrained to be equal for all values of σ .

FIG. 4. Phase diagram containing diamond-cubic (dc) and liquid
(L) phases. The parameters of the two-body DCF used to construct
this phase diagram are α1 = α2 = 1.0, λ1 = 4/

√
3Å−2, β1 = 8, k1 =

2π
√

3Å−1, k2 = 2π
√

8Å−1, and λ2β2 = 8/3λ1β1.

This occurs when

λ1β1

λ2β2
=

(
k1

k2

)2

. (12)

A phase diagram where Eq. (12) is satisfied is plotted in Fig. 4;
as expected, the bcc phase has been suppressed.

IV. SOLID-LIQUID INTERFACIAL ENERGY

We examine the solid-liquid interfacial energies of the dc

structure described in the previous section. First, we describe
a numerical procedure for calculating the interfacial energy
between two phases. Second, we determine a relationship for
the interfacial energy as a function of the Gaussian peak width
because the peak widths of the Gaussian functions in the DCF
were shown to account for the excess energy due to inter-
faces [11]. Third, we develop a relationship for interfacial en-
ergy as a function of the temperature by adjusting peak height.
Finally, we consider the more general case of two-body DCFs
where the first and second peaks of the Gaussian functions
have different widths. This analysis provides an approximate
relationship between the interfacial energy and the peak width
of the Gaussian functions when the peak widths are not equal.
For the analysis below, ki , λi , and βi are set to the values that
were used to construct the phase diagram in Fig. 3(d).

A. Procedure for numerical calculation of solid-liquid
interfacial energy

The interfacial energy of a system that is in the solid-liquid
coexistence state can be calculated from the energy of the
two-phase system minus the bulk energy of each phase [9]. In
this section, the solid-liquid interfacial energy of an interface
having a normal pointing in the direction p, γp, is evaluated
by constructing a long slab of 1 unit cell in the plane of the
interface and 128 unit cells in the direction of the interface
normal. The slab is initialized with 64 unit cells of solid and
64 unit cells of liquid, with the interface at the midpoint of
the computational domain. Periodic boundary conditions are
applied to all boundaries, which places another interface at
the ends of the length of the computational domain. The slab
is then numerically relaxed via Eq. (8). The value of γp is
determined from the numerically relaxed slab by subtracting
the free energy of the bulk phases from the total free energy
of the slab and dividing by the cross-sectional area of the
solid-liquid interface.

The bulk free energy, �Fbulk, is calculated from the free
energies of solid with the same volume as the computational
domain, �Fs , and liquid with the same volume as the
computational domain, �Fl . These free energies are weighted
by the volume fraction before they are summed. Therefore,
with the average of the scaled number densities of the solid
and liquid at the coexistence density, n̄s and n̄l , respectively,
�Fbulk is given by

�Fbulk = �Fs(n̄ − n̄l) + �Fl(n̄s − n̄)

n̄s − n̄l

, (13)

where the weighing of �Fs and �Fl is determined according
to the volume fractions of the solid and liquid in the system
in terms of the respective densities. The value of γp is then
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FIG. 5. (Color online) Plots of the natural logarithms of
γ100(0,α0,α0) [(blue) X’s], γ110(0,α0,α0) [(green) circles], and
γ111(0,α0,α0) [(red) squares] for the dc free energy used to construct
the phase diagram in Fig. 3(d) as a function of the natural logarithms
of α0. Here, α1 = α2 = α0 and σ = 0. Dashed lines are the best fits
to the data in the form of Eq. (15).

calculated by subtracting �Fbulk from the total free energy
of the slab containing the solid-liquid interfaces, �F slab

p , and
dividing by the cross-sectional area, Ap,

γp = 1

ρ0kBT

(
�F slab

p − �Fbulk

2Ap

)
, (14)

where the factor, 1/(ρ0kBT ), nondimensionalizes the value of
γp and the factor of 2 accounts for the additional interface
at the edge of the computational domain due to the periodic
boundary conditions. The length of the slab in the direction of
the interface normal is chosen such that the two solid-liquid
interfaces that form as a result of periodic boundary conditions
do not interact. In this work, we examine the γp of interfaces
with normals pointing in the [100], [110], and [111] directions,
where p = 100, 110, and 111, respectively. This analysis is
performed on an XSEDE computing cluster [23].

B. Solid-liquid interfacial energy dependence on the peak width

We use the procedure described in Sec. IV A to compare
the solid-liquid interfacial energies, γp(σ,α1,α2), for different
peak widths, αi , of the Gaussian functions in the two-body
DCF. The calculations presented here are for the dc DCF used
to construct Fig. 3(d) with σ = 0, which leads to both peak
heights’ being 1, and α1 = α2 ≡ α0, which sets the peak widths
equal. The value of γp(0,α0,α0) for the (100), (110), and (111)
interfaces for values of α0 ranging from 0.25 to 1.0 are plotted
in Fig. 5. These interfacial energies decrease with increasing
values of α0. For the range of α0, the (111) interface has the
lowest energy, while the (100) interface has the highest energy.
This is in qualitative agreement with the solid-liquid interfacial
energies calculated for dc Si using atomistic simulations [24].

The dashed lines in Fig. 5 are plots of an inverse power law
given by

γp(0,α0,α0) = Dp

α0
, (15)

where D100 = 4.62 × 10−2, D110 = 4.17 × 10−2, and D111 =
3.90 × 10−2. Figure 5 demonstrates that the simulation results
fit well to Eq. (15), with R2 values of 1.00, 0.999, and 0.999
for D100, D110, and D111, respectively.

C. Solid-liquid interfacial energy dependence
on the temperature parameter

In this section, we investigate the dependence of
γp(σ,α0,α0) on the peak height of the Gaussian functions in
the two-body DCF by adjusting σ . Again, we consider the
(100), (110), and (111) interfaces. First, we examine the effect
of changing σ , while keeping α0 fixed to 1. The results for
these simulations are plotted in Fig. 6. The results show that
γp(σ,1.0,1.0), decreases with increasing σ .

The dashed curves in Fig. 6 are the best-fit curves to the
data, with a Gaussian function given by

γp(σ,α0,α0) = γp(0,α0,α0) exp (−bp(α0)σ 2), (16)

where γp(0,α0,α0) can be determined from Eq. (15) and bp(α0)
is a fitting parameter, which depends on the peak width of the
Gaussian function, α0. Note that since the magnitudes of the
σ values considered in this analysis are small, a quadratic
equation will provide an equally good fit to the data. The
plot in Fig. 6(a) shows that the simulation results fit well
to Eq. (16), where the fitting constants are determined to be
b100(1.0) = 25.06, b110(1.0) = 26.66, and b111(1.0) = 24.62,
with R2 values of 1.00. These values of bp(1.0) show that the
dependence of γp(σ,1.0,1.0) on σ is weakest for the (111)
interface and strongest for the (110) interface.

In Fig. 6(b), we also plot the scaled values of the interfacial
energy, γp(σ,1.0,1.0)/γp(0,1.0,1.0), for the same set of data.
When scaled in this manner, all interfacial energies have a simi-
lar dependence on σ , which is expected from the similar values
of bp(1.0). While the decrease in γp(σ,1.0,1.0)/γp(0,1.0,1.0)
with respect to σ is greatest for the (110) interface and least
for the (111) interface, the differences are very small. This
demonstrates that the orientation of the interface normal alters
primarily the magnitude of the interfacial energies, but not its
dependence on σ .

Next, we examine the dependence of γ100(σ,α0,α0) on σ and
α0. The results for these simulations are plotted in Fig. 7(a). It
is evident that the interfacial energies decrease with increasing
α0, which is consistent with our previous results in Sec. IV B.
The energies for the (100) interface for α0 = 0.25, 0.5, and
1.0 all decrease with increasing σ , although the changes with
respect to σ over the range examined are much smaller than
the changes due to the different values of α0.

The dashed curves in Fig. 7 are the best fits to the data
with the Gaussian function, Eq. (16). As shown in Fig. 7(a),
the simulation results fit well to Eq. (16), with b100(α0)
being approximately 25.13 (specifically 25.13, 25.24, and
25.11, with R2 values of 1.00 for α0 = 0.25, 0.5, and 1.0,
respectively). The decrease in the values of b100(α0) with
increasing α0 indicates that the dependence of γ100(σ,α0,α0)
on σ becomes weaker as α0 increases.

In Fig. 7(b) we also plot the scaled values of the interfacial
energy, γ100(σ,α0,α0)/γ100(0,α0,α0), for the same set of
data. As expected, the values of γ100(σ,α0,α0)/γ100(0,α0,α0)
are essentially identical for all values of α0; the largest
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(a) (b)

FIG. 6. (Color online) (a) γp(σ,1.0,1.0) and (b) γp(σ,1.0,1.0)/γp(0,1.0,1.0) as a function of σ for the (100) [(blue) X’s], (110) [(green)
circles], and (111) [(red) squares interfaces. Calculations are for α0 = 1.0 and dashed curves show best fits to the data in the form of Eq. (16).

difference among the values of b100(α0) for α0 = 0.25, 0.5,
and 1.0 is less than 1%. Although the analysis in Fig. 7
is for the (100) interface, the negligible dependence of
γ100(σ,α0,α0)/γ100(0,α0,α0) on α0 is expected to hold for other
interface orientations (other values of p) because γp(0,α0,α0)
depends on α0 by the same relationship [Eq. (15)] for all
orientations of the interface normal considered.

The negligible dependence of γ100(σ,α0,α0)/γ100(0,α0,α0)
on α0 suggests that the expression in Eq. (16) can be simplified
to

γp(σ,α0,α0) = γp(0,α0,α0) exp (−Rpσ 2), (17)

where Rp is independent of α0 for each value of p. For the dc

DCF used in this analysis, R100 = 25.06, R110 = 26.66, and
R111 = 24.62. Note that the heights of the Gaussian peaks in
the two-body DCF also depend on σ by a Gaussian function,
as seen in Eq. (6). The fact that the dependence of γp(σ,α0,α0)
on σ is also described by a Gaussian function suggests that
the value of γp(σ,α0,α0) is strongly influenced by the height
of the peaks in the two-body DCF.

In the analysis of Figs. 6 and 7, the values of γp(σ,α0,α0) are
calculated within the solid-liquid coexistence region, where n̄s

increases with σ , as shown in Fig. 3. An increase in n̄s can only
arise by adding atoms into the system (by filling vacant sites)
because the position of the primary peak of the two-body DCF,
k1, is assumed to be constant, resulting in a fixed lattice spacing
for all values of n̄ and σ . As a result, γp(σ,α0,α0) calculated
for each value of σ in Figs. 6 and 7 is for a system containing
a different number of atoms. Therefore, the dependence of
γp(σ,α0,α0) on σ obtained above can be interpreted as that
of an open system. We believe the addition of atoms into the
system as σ increases is the cause for a decreasing solid-
liquid interfacial energy, which is in disagreement with the
trend measured experimentally [25,26] and calculated using
atomistic simulations [27–29] for closed systems. In order to
directly compare the dependence of γp(σ,α0,α0) on σ from the
PFC model to the dependence of γp(σ,α0,α0) on the melting
temperature from experiments and atomistic simulations, it is
required to keep the number of particles constant as σ is varied,
which is similar to what has been implemented for calculating
elastic constants [30]. Therefore, a quantitative comparison

(a) (b)

FIG. 7. (Color online) (a) γ100(σ,α0,α0) and (b) γ100(σ,α0,α0)/γ100(0,α0,α0) as a function of σ for α0 = 0.25 [(blueX’s], α0 = 0.5 [(green)
circles], and α0 = 1.0 [(red) squares]. Dashed curves show best fits to the data in the form of Eq. (16).
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FIG. 8. (Color online) Natural logarithms of γ100(0,α1,α2)
[(blue) X’s], γ110(0,α1,α2) [(green) circles], and γ111(0,α1,α2) [(red)
squares] plotted as a function of the natural logarithms of the ratio
α2/α1. In these calculations α1 = 0.625 and σ = 0. Dashed lines
show fits to Eq. (18) and the solid vertical line marks the position
where α2/α1 = 1.

between our results and experimental values or those from
atomistic calculations cannot be made currently due to the
lack of framework for calculations of interfacial energies that
are equivalent.

D. Solid-liquid interfacial energy for unequal peak widths

In this section, we investigate how the solid-liquid interfa-
cial energy changes with respect to α2, when α1 �= α2. For our
calculations, we set α1 = 0.625 and σ = 0, while adjusting the
values of α2. These results are plotted in Fig. 8, which shows
that γp(0,α1,α2) decreases as the ratio of α2/α1 increases for
all directions.

The dashed lines in Fig. 8 are the best fits for the interfacial
energies in the form of an inverse power law given by

γp(0,α1,α2) = γp(0,α0,α0)

(
α2

α1

)−Cp

, (18)

where Cp has values of 0.583, 0.611, and 0.463, with R2

values of 0.982, 0.986, and 0.985 for p = 100, 110, and 111,
respectively, and γp(0,α0,α0) can be calculated with Eq. (15).
Figure 8 demonstrates that Eq. (18) captures the trend of
the simulation results; however, the simulation data deviates
significantly from the best-fit line when α2/α1 is far from unity.

These results suggest that Eq. (18) is too simple to fully
describe the relationship for the solid-liquid interfacial energy
when α1 �= α2. Nonetheless, Eq. (18) provides an approxi-
mation for γp(0,α1,α2) when α1 �= α2 and reduces to Eq. (15)
when α1 = α2. As shown in Fig. 8, γp(0,α1,α2) < γp(0,α0,α0)
when α2 > α1, and γp(0,α1,α2) > γp(0,α0,α0) when α2 < α1,
for all orientations. However, the degree by which γp(0,α1,α2)
changes with α2/α1 depends on the interfacial orientation. As
a result, the relative energies of interfaces will change when
the value of α2/α1 is far from unity.

V. SUMMARY AND DISCUSSION

We have developed a PFC model with a stable dc structure,
which is based on the XPFC approach. In this model, we
approximate a two-body DCF with a combination of two
Gaussian functions in Fourier space, where the first and
second peak positions are centered at k1 = 2π

√
8/a and

k2 = 2π
√

3/a, respectively, and a is the lattice constant of a
cubic structure. A temperature-density phase diagram, which
contains dc-liquid, bcc-liquid, and dc-bcc phase coexistence
regions, was calculated for the model.

We found that the interfacial energies, γp(σ,α1,α2), for the
(100), (110), and (111) interfaces depend on α0 according to
an inverse power law when the temperature parameter, σ , is
set to 0 and the first and second peaks of the DCF are equal,
α1 = α2 = α0. In the case where α1 �= α2, we found that the
trend of γp(σ,α1,α2) as a function of α2/α1 is approximated
by an inverse power law. The dependence of γp(σ,α1,α2) on σ

is well described by a Gaussian function when α1 = α2 = α0,
via Eq. (17). For all peak widths and interface orientations, the
fitting parameter for the Gaussian function, Rp, was found to
be within 8% of one another. Therefore, it would be worthwhile
to examine whether the dependence of γp(σ,α1,α2) on σ for
other structures will also exhibit a similar value of Rp.

The relationships developed in our analysis can be used to
parametrize the dc-PFC model to match interfacial energies
to those measured experimentally or calculated with atom-
istic simulations. However, in order to directly compare the
dependence of γp(σ,α0,α0) on σ from the PFC model to the
dependence of γp(σ,α0,α0) on the melting temperature from
experiments and atomistic simulations, the calculations must
be performed for closed systems as σ is varied (i.e., by keeping
the number of atoms constant). Such direct comparisons will
enable validation of the temperature dependence assumed in
the XPFC model.
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