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Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics
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We formulate a smoothed-particle hydrodynamics numerical method, traditionally used for the Euler equations
for fluid dynamics in the context of astrophysical simulations, to solve the nonlinear Schrödinger equation in
the Madelung formulation. The probability density of the wave function is discretized into moving particles,
whose properties are smoothed by a kernel function. The traditional fluid pressure is replaced by a quantum
pressure tensor, for which a robust discretization is found. We demonstrate our numerical method on a variety
of numerical test problems involving the simple harmonic oscillator, soliton-soliton collision, Bose-Einstein
condensates, collapsing singularities, and dark matter halos governed by the Gross-Pitaevskii-Poisson equation.
Our method is conservative, applicable to unbounded domains, and is automatically adaptive in its resolution,
making it well suited to study problems with collapsing solutions.
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I. INTRODUCTION

Quantum mechanics is one of the basic pillars of modern
physics. The Schrödinger equation describes the quantum
mechanical evolution of the wave function of a particle over
time. The nonlinear Schrödinger equation (NLSE), also called
the Gross-Pitaevskii equation, is a nonlinear extension of the
Schrödinger equation, which describes the ground state of a
quantum system of identical bosons using a single-particle
wave function approximation and a pseudopotential model
for interaction. It is ideal for describing a Bose-Einstein
condensate (BEC): a dilute gas of bosons in a low-temperature
state very close to absolute zero. BECs were first predicted
in the early days of quantum theory by Bose and Einstein.
The first realization in the laboratory [1,2] marked a new
era in atomic, molecular, and optical (AMO) physics and
quantum optics [3]. The NLSE has applications and extensions
to entirely different physical systems as well, including the
propagation of light in nonlinear fiber optics [4], Langmuir
waves in plasmas [5], and self-gravitating BEC models
for dark matter, governed by the Gross-Pitaevskii-Poisson
equations [6].

The NLSE is challenging to solve and almost always
requires numerical solutions. Ongoing research has led to the
development of a variety of methods to solve these systems
in various contexts, such as those for solving time evolution
of BEC systems [3,7–10] and obtaining their ground states
[11–14]. These methods solve for the solution to the NSLE
in the standard form, and typically employ finite-difference,
finite-element, or spectral methods. Other nonstandard
methods for solving quantum systems have been proposed
as well, such as lattice Boltzmann [15,16] and unitary qubit
lattice algorithms [17,18]. Each method has different strengths
and limitations when applied to different systems [19].
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We propose a conservative numerical approach for solving
the NLSE that is quite different from the standard approaches.
We solve the NLSE in Madelung hydrodynamic form, us-
ing a smoothed-particle hydrodynamics (SPH) algorithm.
The Schrödinger equation, as well as the NLSE, can be
reformulated under the Madelung transformation to take a
different form that resembles the fluid equations [20]. The
equation in Madelung form describes the evolution of the
quantum probability density of the wave function under a
quantum pressure tensor, and is equivalent to the standard
form.

SPH is a particle-based method for computational fluid
dynamics. It was originally invented to simulate polytropic
stellar models under nonaxisymmetric conditions [21,22].
It has since been extended and coupled with additional
physical processes and plays a central role in astrophysical
and cosmological simulations [23–25]. SPH operates inde-
pendently of any grid, unlike finite-difference, finite-volume,
or finite-element methods, and interactions between volume
elements, such as the pressure gradient, are represented as
a force between particles. The method is purely Lagrangian,
meaning that interactions and derivatives are evaluated in a
coordinate system attached to a moving fluid element. The
two fundamental ideas of SPH are (i) to evolve the positions
and velocities of particles according to the calculation of the
forces on each particle at each time step, and (ii) to use
an interpolating or smoothing kernel to calculate forces and
spatial derivatives.

SPH has some desirable inherent features for quantum
systems. The method is conservative, so the normalization
condition on the wave function is preserved to machine preci-
sion. Also, the SPH method also has no domain restrictions;
the wave function is free to travel anywhere in physical space,
which is an advantage grid-based methods do not possess. The
Lagrangian nature of SPH also makes the method useful for
the study of highly dynamic solutions, such as rapidly rotating
wave functions. Furthermore, the SPH method is automatically
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adaptive in its resolution, making it possible to easily resolve
collapsing features in the solution, and this is one of the
primary reasons it often is used in cosmological simulations
of structure formation.

Our method may be extended in a relatively straightforward
manner to various other quantum systems, such as multicom-
ponent, rotational, dipolar, or spin-orbit coupled BECs; to
Euler-Korteweg systems for capillary fluids; or to the study
of the semiclassical limit of the Schrödinger equation [26,27].
Such applications are left to future study.

The remainder of this paper is organized as follows. In
Sec. II we discuss the theory of the NLSE and the Madelung
formulation. In Sec. III we describe our numerical SPH method
for the NLSE. In Sec. IV we demonstrate the accuracy and
results of our method on some numerical test problems. In
Sec. VI we offer concluding remarks and list physics areas of
applications for the numerical method.

II. THEORY

The Schrödinger equation for quantum mechanics may be
written in dimensionless form (� = 1) as

i∂tψ(x,t) = [− 1
2∇2 + V (x)

]
ψ, x ∈ R3, t > 0. (1)

The dynamics of a BEC is well described by the NLSE.
The NLSE in dimensionless form [8] may be written as

i∂tψ = [− 1
2∇2 + V + g|ψ |2] ψ. (2)

In this form, the normalization is
∫ |ψ |2 d3x = 1. g ∈ R

is treated as an arbitrary dimensionless parameter, which
measures the strength of nonlinear interactions.

Under the Madelung transformation [20], the NLSE resem-
bles the fluid equations:

∂tρ + ∇ · (ρu) = 0, (3)

∂tu + u · ∇u = − 1

ρ
∇ · P − g

ρ
∇ρ2

2
− ∇V, (4)

where ρ = |ψ |2 is the quantum probability density of the
wave function, and u = ∇θ , where ψ ≡ |ψ |exp [iθ (x,t)]. The
variable

P = − 1
4ρ∇ ⊗ ∇ ln ρ (5)

is the quantum pressure tensor. Often in the literature, the
quantum pressure term is instead written in terms of a quantum

potential Q = − 1
2

∇2√ρ√
ρ

, but it turns out that for the purposes
of discretizing the equations to obtain an SPH method, the
pressure tensor formulation is more useful.

Optionally, one may add artificial damping to the equations,
with damping parameter γ , as

∂tu + u · ∇u = − 1

ρ
∇P − 1

ρ
∇gρ2

2
− ∇V − γ u. (6)

This can be useful to bring solutions to a steady state. Such
a term describes dissipative quantum systems [20] where the
system loses energy with time. For our purposes, the damping

term is useful in relaxing an arbitrary wave function to its
ground state.

The NLSE has been coupled with self-gravity to form the
Gross-Pitaevskii-Poisson equation. These equations describe
models for BEC dark matter halos [6]. In this case, the potential
is computed from the wave function according to Poisson’s
equation:

∇2V = M24πGρ. (7)

(Note that there is a factor of M2, where M is the total mass
of the system, because we are using units where ρ = |ψ |2 is
dimensionless.)

Another variant of the NLSE is the focusing NLSE

i∂tψ(x,t) = [−∇2 − |ψ |2σ ]ψ, x ∈ Rd (8)

where solutions exist that self focus and become singular
in finite time for the case σd � 2. Numerically solving
such a blow-up solution is challenging because the spatial
and temporal gradients grow arbitrarily large while small
perturbations may arrest the critical collapse. Standard grid
methods break down and more sophisticated methods, which
involve dynamical rescaling, have been resorted to in order to
handle blow-up solutions [28].

III. NUMERICAL METHOD

We discretize the quantum probability density ρ = |ψ |2
of the wave function as a collection of N particles. Each
particle is assigned a mass mj = 1/N so that we satisfy the
normalization condition

∫ |ψ |2 d3x � ∑
j mj = 1 to machine

precision.
We wish to solve for the dynamics of ρ using the

Madelung formulation. Equation (3) is just a statement about
the conservation of the normalization condition, which is
automatically satisfied by our discretization. Equation (4)
describes the equation of motion of the particles. The left-hand
side is a convective (Lagrangian) derivative of the velocity: du

dt
,

namely, the acceleration.
The main goal of the SPH method is to evaluate the

acceleration of each particle and update the velocities and
positions of the particles with each time step using an integrator
scheme (Sec. III D).

With SPH, the value of a field at any point in the domain
is obtained by smoothing out the values associated with the
particles. Consider the (trivial) identity:

A(x) =
∫

A(x′)δ(x − x′) dx′, (9)

where A(x) : R3 	→ R is any arbitrary function and δ(x) is the
Dirac δ function. In the SPH scheme, δ is replaced with an
approximation: a smoothing kernel W (x; h), where h is the
smoothing length scale. The smoothing kernel must have the
properties ∫

W (x; h) d3x = 1, (10)

lim
h→0

W (x; h) → δ(x) (11)

and must be non-negative and invariant under parity.
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For our purposes, we choose the Gaussian kernel:

W (x; h) =
(

1

h
√

π

)3

exp(−‖x‖2/h2), (12)

where h is a smoothing-length parameter. Alternate choices in-
clude cubic splines, which have compact support and can make
pairwise-interaction calculations more efficient. For our pur-
poses, we will most often use a fixed value for h, but more so-
phisticated formulations of SPH exist, which use adaptive val-
ues based on particle number density [24,29] (see Sec. III G).

Hence, an approximation to the field A(x) in Eq. (9) is

A(x) �
∫

A(x′)W (x − x′) dx′. (13)

To this equation, we apply a second approximation, namely
discretization: we sum over the N particles. The SPH approx-
imation to A(x) is thus

A(x) �
∑

j

mj

ρj

A(xj )W (x − xj ; h), (14)

where xj is the location of particle j in physical space and
ρj = ρ(xj ) [calculated via Eq. (16)].

Similarly, gradients of fields can be approximated as
follows

∇A(x) �
∑

j

mj

ρj

A(xj )∇W (x − xj ; h). (15)

Note that the gradient operator shifts to the kernel, whose
derivative is analytically known.

A. Calculating density

Given a distribution of N particles in physical space, the
density ρi at each particle i is required to estimate any field
quantity, because it appears in Eq. (14). This is calculated
straightforwardly by substituting A(x) = ρ(x) into Eq. (14):

ρi =
∑

j

mjWij , (16)

where we have defined

Wij ≡ W (xi − xj ; h). (17)

B. Calculating pressure tensor

In classical fluid dynamics applications, the pressure Pi

at a particle location is calculated using an equation of state,
which depends on quantities such as the density and/or the
internal energy of the fluid. One example is the polytropic
equation of state P = kρ1+1/n, where k is a constant and n is
the polytropic index.

In the case of quantum mechanics, the pressure is replaced
by a symmetric pressure tensor [Eq. (5)], which is a nonlocal
quantity because it depends on gradients of the density.

First, the derivatives of the density field are calculated at
the location of each particle, along the lines of Eq. (15):

∂xρi =
∑

j

mj∂xWij , (18)

similarly for ∂y , ∂z.

The second derivatives can be calculated in similar
fashion as

∂xyρi =
∑

j

mj∂xyWij , (19)

and similarly for ∂xx , ∂xz, ∂yy , ∂yz, ∂zz. But this is not the only
discretization. They may also be calculated using the (more
accurate) second-order discretization [30]:

∂xyρi =
∑

j

mj

ρj

(ρj − ρi)∂xyWij . (20)

Other alternate discretizations exist in the literature as well,
such as the difference scheme, and are widely used for
applications such as heat conduction [31,32].

Finally, the components of the quantum pressure tensor of
Eq. (5) are computed as:

Pi,xy =
∑

j

mj

ρj

1

4

[
(∂xρj )(∂yρj )

ρj

− ∂xyρj

]
Wij (21)

and similarly for the rest of the components of the tensor. This
is one of the main equations of our paper, which provides
a robust discretization for the quantum pressure tensor that
yielded well-behaved solutions in all our test problems.

We note here an analogy between the quantum pressure
tensor P = − 1

4ρ∇ ⊗ ∇ ln ρ and the equations for inviscid cap-
illary fluids. Such classical, nonideal fluids can be described
by the Euler-Korteweg equations, which have the form:

du
dt

= ∇
(

κ(ρ)�2ρ + 1

2
κ ′(ρ)|∇ρ|2

)
. (22)

Taking κ(ρ) = 1/(4ρ) leads back to the NLSE. In the classical
case, the pressure tensor would act as a surface tension term,
and its sign would act to add decoherence into the solution
(which is a typical quantum phenomenon). An opposite sign
would lead to cohesion.

C. Calculating acceleration

A key guiding principal in formulating an SPH method for
obtaining robust results is to choose discretizations for the
forces the particles experience such that the forces between
pairwise particles obey Newton’s third law, i.e., are equal and
opposite. This allows for the particles to quasiregularize as they
sample the true solution of the field [25]. This leads to better-
than-random Monte Carlo sampling in the reconstruction of
field quantities.

In the standard SPH formulation with scalar fluid pressure,
the acceleration of a particle due to the pressure gradient
− 1

ρ
∇P is calculated in symmetric fashion as:

dui

dt
= −

∑
j

mj

(
Pi

ρ2
i

+ Pj

ρ2
j

)
∇Wij . (23)
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The force due to the pressure tensor can also be calculated
in a similar fashion:

dui

dt

= −
∑

j

mj

[(
[Pi,xx, Pi,xy, Pi,xz]

ρ2
i

+ [Pj,xx, Pj,xy, Pj,xz]

ρ2
j

)

·∇Wij ,

(
[Pi,yx, Pi,yy, Pi,yz]

ρ2
i

+ [Pj,yx, Pj,yy, Pj,yz]

ρ2
j

)

·∇Wij ,

(
[Pi,zx, Pi,zy, Pi,zz]

ρ2
i

+ [Pj,zx, Pj,zy, Pj,zz]

ρ2
j

)

·∇Wij ,

]
. (24)

Obeying Newton’s third law between pairwise particles is one
of the key reasons we chose to discretize a version of the
Madelung equations that uses the pressure tensor. Note the
inner square brackets here denote a vector, and we have written
out the entries explicitly.

We can also calculate the additional acceleration due to the
nonlinear term − 1

ρ
∇ gρ2

2 in Eq. (4) by setting Pi = gρ2
i

2 in the
right-hand side expression of Eq. (23).

Optionally, one may artificially damp the solutions by
adding the damping term γ ui to the right hand side of Eq. (24).
Damping is useful for obtaining steady-state solutions: eigen-
states and/or ground states of the system. Is is also useful for
generating initial conditions.

D. Leap frog time integration

The particles are initialized with positions and velocities
dictated by the initial conditions of the problem (in problems
that use damping to reach a steady state, the initial conditions
can be chosen to be a random or uniform distribution of
particles with 0 velocity; the particle configurations of such
steady-state solutions can then be used for problems with
dynamics). Then, Eq. (4) may be solved with a time-integration
method, such as Runge-Kutta or leap frog. The leap frog
method is often preferred because it is explicit and symplectic.
In our implementation, we use the second-order leap frog
scheme as follows:

u(t + �t/2) = u(t − �t/2) + a(t)�t (25)

x(t + �t) = x(t) + u(t + �t/2)�t, (26)

that is, we calculate positions and velocities at interleaved time
points. We note that at the start of the simulation we only know
the initial conditions x(0) and u(0), and must use first-order
Euler to step back half a time step and find u(−�t/2).

To find the velocities at the same time step intervals as the
positions, we use the approximation:

u(t) = 1
2 [u(t − �t/2) + u(t + �t/2)] . (27)

E. Pseudocode

A pseudocode of the main loop of the SPH algorithm is
shown below.

Main Loop

for t=1:N_time_step
% leap frog
v_phalf = v_mhalf + a*dt;
x += v_phalf*dt;
v = 0.5*(v_mhalf+v_phalf);
v_mhalf = v_phalf;
% update densities, pressures, accelerations
rho = GetDensity(x, m, h);
P = GetPressure(x, rho, m, h);
a = GetAcceleration(x, v, m, rho, P, b, beta, lambda, h);

end

Our implementation is O(N2) because we calculate all
pairwise interactions between particles. Alternative imple-
mentations have been developed in literature to make the
computations more efficient [O(N log N )], such as computing
interactions only between the k nearest neighbors using a
hierarchical tree algorithm [33].

F. Gross-Pitaevskii-Poisson

The resulting equations of motion from self-gravity
[Eq. (7)] can be calculated using an N -body technique (here
M = 1):

dui

dt
=

∑
j �=i

mj (rj ri)

(|rj ri |2 + ε2)3/2
, (28)

where ε is a smoothing length, used to avoid numerical
problems of close particle encounters (where the acceleration
blows up) in collisionless dynamics. In SPH, ε is typically
equated with the kernel’s smoothing length h. SPH couples
naturally with the Poisson equation, making our method well
suited for finding solutions of the Gross-Pitaevskii-Poisson
equations.

G. Adaptive smoothing lengths

In some applications it is advantageous to use an adaptive
smoothing length hi for each particle i for improved numerical
accuracy. The variable smoothing length depends on the
density at the fluid and allows the algorithm to handle regions
with high and low densities more precisely [34].

The adaptive smoothing length and the density can be
calculated self-consistently using an iterative scheme as
follows. The density estimator becomes:

ρi =
∑

j

mjW (xi − xj ; hi). (29)

There is a correction factor to the momentum equation to
allow for the spatial variation in smoothing lengths in the
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equation of motion [Eq. (23)]

dui

dt
=

∑
j

mj

(
Pi

iρ
2
i

+ Pj

jρ
2
j

)
∇W (xi − xj ; hi). (30)

where [for the three-dimensional (3D) case]

i = 1 + hi

3ρi

∑
j

mj

∂W (xi − xj ; hi)

∂hi

. (31)

An analogous correction correction applies to Eq. (24).
The value for hi is determined by solving for the root of

ζ (hi) = mj

(
η

hi

)3

−
∑

j

mjW (xi − xj ; hi) (32)

using a Newton-Raphson iterator (or alternate technique). η is
an order unity constant; for our applications, we use η = 1.4.
This constraint ensures that ρih

3
i = const., i.e., it maintains a

constant mass within the smoothing kernel. Given an initial
guess for hi , the Newton-Raphson iterator gives an updated
value hi,new according to:

hi,new = hi − ζ (hi)

ζ ′(hi)
= hi

(
1 + ζ (hi)

3ρii

)
(33)

until a tolerance threshold is reached: |hi,new − hi |/hi < εtol.
We choose εtol = 10−3.

IV. RESULTS

Here we present a number of simple numerical tests to
demonstrate our SPH method for the Schrödinger equation
and the NLSE. The aim of these tests is to demonstrate the
accuracy of our method (in capturing steady-state solutions
and dynamics) and highlight different physical regimes well
suited for our numerical method to handle (such as systems
with self-gravity or collapsing solutions).

A. 1D simple harmonic oscillator ground state

First, we demonstrate the algorithm’s ability to recover the
ground state of the Schrödinger equation with a 1D simple
harmonic oscillator potential. This is a very simple test, but
can be used to demonstrate our code’s convergence properties.
The particles are initially drawn from a uniform distribution in
the range [−4,4], and we add a damping term with γ = 4 to
relax the system to the ground state. We evolve the system in
the potential V (x) = 1

2x2 until a steady-state configuration is
found. We use a smoothing length of h = 200/N and a time
step of 0.004. The exact solution is given by

ρ0 = π−1/2exp(−x2). (34)

Figure 1 demonstrates the convergence rate and solution.
This method of obtaining the ground state is also useful for
generating initial conditions for future tests.

B. 1D simple harmonic oscillator dynamics

We consider the time evolution of a wave function in the
potential V (x) = 1

2x2 with initial conditions:

ρ0 = π−1/2exp(−x2), (35)

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

N−2

N

L
2

er
ro

r(
ρ
)

FIG. 1. (Color online) Convergence properties of the SPH code
for obtaining the ground state of the Schrödinger equation with a
one-dimensional (1D) simple harmonic oscillator potential. Second-
order convergence is achieved by increasing particle number N (and
decreasing smoothing length as 1/N ). The obtained ground-state
solution for ρ at the various resolutions is shown in the inset
(the shades of teal correspond to the shades of the circles in the
convergence plot: higher resolution approaches the analytic answer,
which is shown with the thick gray line).

and

u0 = 1. (36)

The evolution has analytic solution

ρ(t) = π−1/2exp{−[x − sin(t)]2}. (37)

Our simulation used N = 300 particles, smoothing length
h = 0.2667, and time step dt = 0.01. The initial conditions
are obtained by damping a random configuration of particles
to the ground state, as in Sec. IV A. Figure 2 shows the
evolution of the wave function with time, which matches the
analytic solution very well, showing exact agreement with
the periodicity of the solution. We note the tiny offset in the
peak of the wave function compared to the analytic result is due
to the finite number of particles we use, and this discrepancy
is reduced with increasing particle number and decreasing
smoothing length.

We also demonstrate the dynamics of two solitons in
a harmonic potential evolved under the linear Schrödinger
equation. Two copies of the initial condition in the previous
setup are superimposed on top of each other. One soliton is
given initial velocity v = +1 and the other v = −1. In this
simple example, the solitons do not interact and just pass
through each other. This example demonstrates the algorithm’s
ability to capture multiple phase dynamics. Our simulation
used N = 800 particles, smoothing length h = 1, and time
step dt = 0.001. Figure 3 shows the evolution of the wave
function with time, which matches the analytic solution very
well.
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analytic

FIG. 2. (Color online) Time evolution of oscillating wave func-
tion in simple harmonic oscillator potential. The SPH approach
captures the dynamics well. The analytic solution is shown in thin
gray lines.

C. 1D NLSE soliton-soliton collision

We simulate the collision of two solitons that are solution to
the NLSE to show the stability and accuracy of the precollision
and postcollision nonlinear states with our method. We
initialize two bright solitons [35] with analytic profile

ψ0(x) = 1
2 sech(x ± x0)e±ivx (38)

(such an initial condition is initialized by damping an ini-
tially uniform distribution of particles under the appropriate
potential that gives rise to the profile as the steady-state
solution.) A single bright soliton moves at constant velocity
v, with peak initially determined by x = x0. We simulate the
interaction of two solitons initially located at x = ±x0 = ±5

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2
V (x) = 1

2x
2

x

|ψ
|2

t = 0
t = π/8
t = π/4
t = 3π/8
analytic

FIG. 3. (Color online) Evolution of two solitons in simple har-
monic oscillator potential. The SPH code captures the profile well,
which consists of two solitons oscillating in opposite directions.

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

x

|ψ
|2

t = 0
t = 5
t = 8

FIG. 4. (Color online) Collision of two bright solitons evolved
under the NLSE. Collision occurs at t = 5, during which fringes are
formed. The solitons return to their original profile after interaction.

and each traveling with speed v = 1 towards each other,
evolved under the NLSE with g = −1. During interaction,
oscillations are created, and at collision the peak value of
the amplitude doubles from the initial peak values of the
single soliton, as expected in soliton-soliton collisions [35].
After interaction, the solitons return to their original profile
shape and continue traveling at velocity v. The results of our
simulation, demonstrating the mentioned behavior, is shown
in Fig. 4. The simulations use N = 100 particles, smoothing
length h = 1, and time step dt = 0.001. The precollision and
postcollision profile is preserved very well under evolution: our
initial condition has profile peak 0.2529 and velocity 1, and
the postcollision profile at t = 8 has peak 0.2526 and velocity
1.0043 (note that the analytic solution has initial peak 0.2500,
so there is a small numerical offset in the initial conditions
due to the truncation errors associated with relaxing the SPH
particles in a potential that yields the initial conditions).

We point out that, as is inherent in SPH, in regions where
density is low, the profile may be dominated by the shape of
the kernel (e.g., the slight bump in density at x = 0, t = 8).
Additionally, there are truncation errors in the initial conditions
generated by relaxing the SPH particles in a constructed
potential to generate the initial conditions. This can potentially
lead to additional small amplitude waves propagating in the
time evolving solution.

We also demonstrate that the SPH method can cap-
ture collision of dark solitons. In the case, the profile we
consider is

ψ0(x) = iv ± tanh(x ± x0) (39)

with initial positions determined by x = ±x0 = ±5, and
velocity v = 2. Like the bright soliton, the profile for a single
dark soliton remains unchanged under evolution of the NLSE.
The velocity of the SPH particles making up the soliton is

u(x) = ∓ vsech2(x ± x0)

v2 + tanh2(x ± x0)
. (40)
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FIG. 5. (Color online) Collision of two dark solitons evolved
under the NLSE. Collision occurs at t = 2.5.

Thus, unlike the bright soliton, the initial Lagrangian velocities
of the SPH are not constant (note, the soliton profile still moves
at constant velocity). Thus, this test demonstrates dynamics
and ability to maintain a soliton profile under a continuum
of phase velocities. The system is evolved by the NLSE with
g = 1. The results of our simulation are shown in Fig. 5. The
simulation uses N = 100 particles, smoothing length h = 0.4,
and time step dt = 0.001, and periodic boundary conditions
on the domain [−10,10]. The simulation preserved the profile
well after interaction.

We point out that a general issue with the fluidlike approach
of the Madelung equations is that the quantum pressure term
can be a problem from the singularity point of view. This is
certainly an issue for grid-based methods that attempt to solve
the Madelung equations. The density can approach zero and the
corresponding velocity can be infinite (so that the momentum
is finite). However, with an SPH approach the situation is
improved. The velocities are always calculated at the locations
of the particles, at which there is always a minimum density
determined by the smoothing kernel. Regions with tiny or
0 valued wave function have no particles at the location
representing the solution.

D. 2D BEC ground states

We calculate the ground state of a 2D BEC by relaxing
a random initial condition evolved under the NLSE, with
damping damping γ = 4. We calculate the states for BECs
with g = 0,10,50,100,250,500 in a potential V (x) = 1

2 (x2 +
y2). The simulations use N = 100 particles, smoothing length
h = 1, and time step dt = 0.1.

The results are shown in Fig. 6, and are compared to the
high-resolution numerical simulations in Ref. [8], showing
good agreement.

E. 2D self-focusing NLSE

We simulate a blow-up solution of the 2D focusing NLSE.
The initial condition is given by a Gaussian ψ = 2.99e−(x2+y2).

0 2 4 6
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r

|ψ
gs
|2

 

 

g = 0

10

50
100

250

500

Bao and Cai [8]

FIG. 6. (Color online) Ground state of 2D BEC with various
values of the parameter g, as obtained by the SPH approach and
compared to results from high resolution numerical simulations in
Ref. [8].

We use N = 36 particles and adaptive smoothing lengths.
Figure 7 shows the evolution of the peak of the wave function
as a function of time, which agrees well with the blow-up
solution scaling of the problem |ψ |max ∝ (−t)−1/2 (t = 0
corresponds to blow up) [28]. In contrast, a finite-difference
approach shows focusing-defocusing oscillations once the
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SPH

FIG. 7. (Color online) Comparison of the blow-up solution of
the focusing NLSE with numerical solutions obtained via our SPH
method and a second-order finite difference scheme for comparison.
The SPH solution produces a collapse with the right scaling while the
finite difference scheme shows focusing-defocusing oscillations early
on due to discretization effects. In the insets, we show the location
of the SPH particles at three different times, and draw circles around
each that have radii proportional to the adaptive smoothing length of
the particle. The inset at the third time frame has an aggregation of
12 particles near the singularity.
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FIG. 8. (Color online) 3D BEC dark matter halo profiles calcu-
lated with our SPH method for various values of the parameter g. The
profiles approach the Thomas-Fermi approximation for increasing
values of g.

focusing becomes too strong [28] (i.e., the oscillatory behavior
of the peak of the wave function shown in Fig. 7). Additionally,
such methods require a large number of resolution elements.
Figure 7 also shows the configuration of the SPH particles
at different times in the simulation, as well as their adaptive
smoothing lengths. Many of the particles cluster at the center
because of the collapse, while some of the particles are
maintained farther out to represent the extent of the wave
function at these locations. The inset at showing the particle
configuration at the third time frame has an aggregation of 12
particles near the singularity.

F. 3D BEC dark matter halo

We compute solutions to the Gross-Pitaevskii-Poisson
equation that describes self-gravitating BEC dark matter halos
by relaxing an initial condition using a damping parameter
γ = 4. Our simulations use N = 300 particles, adaptive
smoothing lengths, and units with G = 1. The solutions, for
various values of g, are shown in Fig. 8. The length scale is
normalized by r0 = √

πc/4G in the figure. We simulate the
cases of g = 4,10,40,100. In the limit of large g, the numerical
solution approach the Thomas-Fermi approximation: ρ ∝
sinc(πr/r0).

The Gross-Pitaevskii-Poisson equation describes one possi-
ble physical model for the nonbaryonic dark matter that forms
a large fraction of the content in our Universe. In this model
a fundamental scalar field plays the role of dark matter, and
the model is a competitor to the standard � cold dark matter
model [36]. Large cosmological simulations with the BEC
model for dark matter have been performed on an adaptively
refined mesh to study nonlinear cosmic structure formation of
gravitationally collapsed objects [37,38].

The Gross-Pitaevskii-Poisson equation describes other
physical systems as well, such as dipolar BECs.

V. COMPUTATIONAL EFFICIENCY

Our SPH approach to find solutions to the NLSE maintains
the simplicity and computational efficiency of the original
hydrodynamic SPH method. The method only requires that the
particle positions, velocities, masses, and smoothing lengths
be stored in memory. More advanced techniques, standard in
the field of SPH, can be used to make the method O(N log N ),
whereas our simple implementation to calculate pairwise
interactions is O(N2). The SPH technique has successfully
been implemented with over 1010 particles on standard central
processing unit (CPU) clusters with the use of message passing
interface (MPI) routines [39]. In addition, the algorithm is
well suited to the modern graphics processing unit (GPU)
and GPU cluster architectures [40,41], which have shown
an order of magnitude increase in efficiency compared to
CPU approaches. These methods can simulate a time step
of over 106 particles per second. In solving the NLSE, the
computations per communication are increased due to the
computation of a pressure tensor rather than a simple pressure,
which boosts the computational efficiency of the original
hydrodynamic SPH method. A number of numerical methods
exist to calculate the self-gravity term, which shows up in
the Gross-Pitaevskii-Poisson equation, that are O(N log N ).
These include tree- and multipole-based methods and will
make the subject of future investigations.

VI. CONCLUDING REMARKS

We have demonstrated a simple numerical method to solve
the NSLE using SPH. The method conserves the normaliza-
tion condition on the wave function to machine precision.
Additionally, the computational domain is unlimited, which
is very natural for a wave function. The SPH particles
that represent the probability density of the wave function
automatically adapt to regions where the density is the largest.
This makes our method ideal for solving collapsing and
singular solutions, an area where standard grid methods face
difficulties. One limitation of our method is that the the
hydrodynamic equations and the Gaussian kernels are not
well suited for handling systems with singularities, such as
scalar quantum vortices (at the vortex core the density is zero),
leading to singular hydrodynamic equations [42]. Investigation
of such systems is beyond the scope of the present work, and
may require alternate kernel functions to prevent smoothing
out the singularities.

The implementation is relatively simple and easily extend-
able to modifications of the NSLE. The numerical method
can be applied to a variety of physical systems, including
BECs, nonlinear optics, capillary fluids, dark matter that
obeys the Gross-Pitaevskii-Poisson equations, and collapsing
singularities.
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