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of the sampled experimental data
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Modeling physical data with linear discrete-time series, namely, the autoregressive fractionally integrated
moving average (ARFIMA) model, is a technique that has attracted attention in recent years. However, this
model is used mainly as a statistical tool only, with weak emphasis on the physical background of the model.
The main reason for this lack of attention is that the ARFIMA model describes discrete-time measurements,
whereas physical models are formulated using continuous-time parameters. In order to eliminate this discrepancy,
we show that time series of this type can be regarded as sampled trajectories of the coordinates governed by
a system of linear stochastic differential equations with constant coefficients. The observed correspondence
provides formulas linking ARFIMA parameters and the coefficients of the underlying physical stochastic system,
thus providing a bridge between continuous-time linear dynamical systems and ARFIMA models.
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I. INTRODUCTION

Discrete time-series methods based on the autoregressive
fractionally integrated moving average (ARFIMA) model
[1–3], provide powerful and flexible statistical tools that are
successful in analyzing data in econometrics, finance, and
engineering [4–6]. Let us note that acronym ARFIMA is used
interchangeably with FARIMA in the scientific literature. It
is a model that fully describes the behavior of time series
using a small number of parameters, which can be estimated
from the data using well-established techniques and widely
available statistical packages [2,7]. Moreover, these techniques
allow for control of the estimation’s quality, checking the
correctness of the model or even forecasting future values of
the time series. In recent years, new physical [8,9], biological
[10], and medical [11] applications of the ARFIMA model
were found, allowing for empirical description of complex
systems with long- (powerlike), short- (exponential), and
finite-range dependences [7,12] (see Fig. 1). Autoregressive
moving average processes were also studied as models of
physical data governed by discrete-time Langevin equations
[13,14].

The main physical interpretation of this model was based on
the fact that the ARFIMA model approximates processes such
as fractional Brownian motion, Lévy stable motion [7,15],
and the corresponding noises, whereas its special case, the
ARMA model, can model properties of various stationary
processes with finite or exponentially decaying memory [2,3].
However, most of these continuous-time processes themselves
reflect the behavior of the process rather than its internal
physical dynamics. On the other hand, the mathematical theory
proposed by Phillips [16], and in recent years developed further
by Brockwell et al. [17], established a connection between
the ARMA model and a class of continuous-time stochastic
dynamical systems. Here we show that the physical importance
of these results is significant and, after suitable refinement, this
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connection establishes a reliable physical basis for the ARMA
and ARFIMA models.

II. THE ARFIMA MODEL

The studied model ARFIMA(p, d, q) states that the con-
sidered time series Xn fulfills the recursive relation [7]

�d

(
Xn −

p∑
k=1

φkXn−k

)
= ξn +

q∑
j=1

θj ξn−j , (1)

where φk,θj ,d are deterministic coefficients and ξn is white
noise that generates the stochastic dynamics; it is Gaussian
or non-Gaussian, e.g., α stable [7,18], which determines the
distribution of Xn. Equation (1) is comprised of three basic
building blocks: the autoregressive (AR) part (the term in
parentheses on the left-hand side), the fractionally integrated
(FI) part (the operator �d ), and the moving average (MA) part
(the term on the right-hand side). Each of these blocks models
a different type of memory and has a distinct interpretation. If
no memory is present we deal with ARFIMA(0,0,0), which is
a white noise: Xn = ξn.

The term in parentheses on the left-hand side of Eq. (1)
is AR(p) (the AR part), in which coefficients φk determine
how the present value of the time series Xn depends linearly
on the past values Xn−k; in other words, it models the
internal dynamics of the system. Because this dynamics is
linear, it describes the exponential components of the memory.
The most basic process from this class is called AR(1)
or ARMA(1,0), which is the simplest exponential memory
process with the correlation function [2]

ρX(k) = 〈XnXn+k〉√〈
X2

n

〉〈
X2

n+k

〉 = e−φ1k. (2)

More general AR(p) models have memory functions that are
mixtures of exponential decays [2]. These processes have great
importance for statistics because AR(p) are maximal entropy
processes for the fixed first p + 1 values of the correlation
function [19].
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FIG. 1. (Color online) Power-law (circles), exponential
(squares), and finite (diamonds) memory functions of the ARFIMA
processes.

The right-hand side of Eq. (1) is the MA(q) process, which
determines the external dynamics through modification of the
white noise. It models finite-range components of the memory
that depend on coefficients θj . The actual value of the MA(q)
process depends only on the q last values of the generating
noise ξn and because of that it does not contain any information
about the history of the process older than q�t . For example,
the process called MA(1) or ARMA(0,1) is the simplest type
of colored noise with ultrashort memory and the correlation
function ρMA(1)(1) = θ1, ρMA(1)(k) = 0 for k > 1 [2,20].

The last part of Eq. (1), the operator �d denoting the FI part,
reflects both nonstationarity and fractional memory. The sym-
bol � denotes the discrete difference operator �Xn = Xn+1 −
Xn. When d is a natural number, the nonstationary process
ARFIMA(p,d,q), in this case also called ARIMA(p,d,q),
is understood as a process that after d differentiations is
stationary ARMA(p,q). A basic example is ARFIMA(0,1,0),
which is summed white noise. It is a sampled trajectory of
Brownian motion.

In a situation when d is real, it can be decomposed into
a natural-number part dn and a fractional remainder df ,
−1/2 � df � 1/2, such that �d = �dn�df . This remainder
accounts for the power-law type of memory common, e.g.,
for anomalous diffusion [21]. This operator is understood as a
series [7]

�df Xn =
∞∑

k=0

df (df − 1) · · · (df − k + 1)

k!
(−1)kXn−k. (3)

Applying �−df to both sides of Eq. (1), it can be confirmed
that ARFIMA(p,d,q) can be interpreted as a modification
of ARFIMA(p,dn,q) generated by noise �−df ξn. This noise,
which is denoted by FI(df ) or ARFIMA(0,df ,0), is a station-
ary process with a power-law memory function that has a tail
∼n2df −1; when ξn are Gaussian this time series is very similar
to the fractional Brownian noise [15,22,23].

III. CONTINUOUS- VERSUS DISCRETE-TIME
PROCESSES IN EXPERIMENTS

A continuous-time process X(t) in a natural way contain
much more information than its discrete-time counterpart
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FIG. 2. (Color online) Continuous-time process (blue line) and
sampled process (red dots) for the trajectory of the stochastic
harmonic oscillator.

Xn = X(n�t) (see Fig. 2). During sampling we lose infor-
mation, e.g., about the geometrical properties of trajectories.
Memory functions become discrete and do not contain in-
formation about the dependence within intervals smaller than
the sampling rate �t . However, only in discrete case we can
define some more refined memory functions, such as the partial
autocorrelation function, which is a correlation of Xn and Xn+k

with the influence of all in-between Xn+j removed [2,20]. In
many cases it has a simple form that leads to greater usability.

Some state functions, such as power spectral density (PSD),
differ considerably for discrete time and continuous time.
These are memory functions of the considered process in the
Fourier space. Continuous time PSD (CPSD) of the process
X, fX, is most easily defined as a Fourier transform of the
covariance function

fX(ω) =
∫ ∞

−∞
dτ 〈X(t)X(t + τ )〉e−iωτ . (4)

However, in contrast to the PSD fX, discrete-time power
spectral density (DPSD) is a Fourier series of the sampled
covariance function

f �t
X (ω) = 1

�t

∞∑
k=−∞

〈XnXn+k〉e−iω�tk (5)

and is a periodic function that repeats after 2π/�t . The relation
between these two functions is given by the Poisson summation
formula [24,25]. It allows us to calculate DPSD numerically or
analytically given the CPSD, but for the processes considered
in this paper it is not a very practical tool. However, using
the Poisson summation formula, one can prove that the DPSD
converges to the CPSD as �t → 0 [20,24],

lim
�t→0

f �t
X = fX; (6)

this fact can be interpreted as convergence of the time series
Xn to the process X(t) as �t → 0 (this limit is often called
infill asymptotics). However, in realistic conditions, we often
are far away from this limit and only the discrete-time model
properly reflects the behavior of the observed system. Note
also that all distortions of the data caused by the measurement
equipment are changes of the sampled series Xn as this is
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the object that is actually processed by the hardware. Thus,
accounting for unwanted effects such as blur or measurement
noise must be performed in the discrete-time setting [26]. In
order to perform this procedure, a discrete-time model of the
undistorted observations is needed.

IV. LINEAR DYNAMICAL SYSTEMS

To link the continuous- and discrete-time processes us-
ing the ARFIMA model we consider a linear stochas-
tic system with the N -dimensional state vector S(t) =
[S1(t),S2(t), . . . ,SN (t)]T, which evolves in continuous time
according to the stochastic differential equation of the first
order [27]

d

dt
S(t) = AS(t) + F(t), (7)

where A is an N × N matrix with constant coefficients and
F(t) is some stationary noise, acting as a random force.
This general model describes a class of systems with a time-
independent environment and additive stochastic disturbance.
Note that if we study a state vector S(t) in which some
coordinates Si(t) are described by differential equations of
order bigger than one, we can complement the state vector
S(t) by auxiliary coordinates { d

dt
Si(t), d2

dt2 S
i(t), . . .} and also

reduce the problem to the form (7). One well-known property
described by Eq. (7) is the position of a particle trapped in the
harmonic potential within liquid [28]

m
d2

dt2
X(t) = −κX(t) − β

d

dt
X(t) + F (t), (8)

where m is the mass of particle, κ is the stiffness of the
harmonic trap, β is the friction coefficient of the liquid, and
F (t) is white noise modeling the exchange of momenta with
surrounding particles. A phase plot of this equation is shown
in Fig. 3. Other examples include evolution of the charge Q(t)
in a linear RLC circuit disturbed by the noise electromotive
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FIG. 3. (Color online) Phase plot of Eq. (8) (blue lines with
arrows) for coordinates X and P and the stochastic solution of
Eq. (8) (red line) for m = 1, κ = 1/4, and β = 1/4.

force E(t),

L
d2

dt2
Q(t) + R

d

dt
Q(t) + 1

C
Q(t) = E(t), (9)

as well as other types of linear disturbed circuits [29], harmonic
heat bath models [30], and Brownian magnetic particles in a
constant magnetic field [31].

V. TIME DISCRETIZATION PROCEDURE (SAMPLING)

In any of these cases the real system evolves in continuous
time, but the experimental observations must be discrete and
usually have the form of a time series Sn sampled with constant
sampling time �t : Sn = S(n�t). The necessary condition for
S(t) and Sn to be stationary is for the matrix A to be negative
definite, in other words, it needs to have eigenvalues with
a negative real part. In such a case there exists a stationary
solution of (7) given by convolution of the force F(t) with the
matrix exponential eAt [27],

S(t) =
∫ t

−∞
ds eA(t−s) F(s). (10)

From elementary properties of the matrix exponential and
integration it follows that

S(n�t) = eA�t

∫ (n−1)�t

−∞
ds eA(t−s) F(s)

+
∫ n�t

(n−1)�t

ds eA(n�t−s) F(s), (11)

that is, the sampled process Sn fulfills the equation

Sn = ESn−1 + �n. (12)

The obtained recursive formula is a vector counterpart of the
process AR(1) and is called VAR(1) [2]. The VAR(1) process
Sn can be explicitly expressed in terms of the generating noise
�n as

Sn =
∞∑

k=0

Ek�n−k. (13)

This equation is a discrete counterpart of the convolution
formula (10).

From Eq. (13) it follows that neither matrix A directly nor
all values of F(t) affect the state Sn; they do this only through
their discrete-time counterparts

E = eA�t , �n =
∫ n�t

(n−1)�t

ds eA(n�t−s) F(s). (14)

The first of Eqs. (14) defines the discretized evolution operator
E, which is responsible for the deterministic part of the
transition from state Sn−1 to Sn. The stochastic deviation from
the deterministic path is described by the second of Eqs. (14),
which defines the packing operator F(t) �→ �n. The whole
influence of the process F(t) on Sn is fully determined by
the packed force �n. Each value of �n gathers values of
F(t) from the interval ((n − 1)�t,n�t). If F(t) is stationary,
also the discrete noise �n is stationary. The packed force
process inherits most of the properties of the underlying
continuous-time F(t): the same type of distribution (Gaussian
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F(t) gives Gaussian �n and α-stable F(t) gives α-stable
�n) and the same type of memory (white noise, finite range,
exponential, or power law).

Because of the above correspondence, the statistical meth-
ods available for the VAR(1) model [32] can be used in
physical applications. Using estimators for the matrix E and
taking matrix logarithm, we obtain estimates for the underlying
matrix A = ln(E)/�t . The properties of force F(t) can be
studied through analysis of �n, which can be estimated as
�n = Sn − ESn−1.

VI. SINGLE-COMPONENT ANALYSIS

The above approach has a huge disadvantage: it requires
that we can observe the whole sampled state vector Sn, which
is unrealistic for more complex systems. To avoid this difficulty
we want to analyze the behavior of one chosen component of
Sn; without loss of generality we will assume that it is S1

n .
The evolution of this component is coupled with the evolution
of the rest of the state vector by the action of nondiagonal
components of the evolution matrix E.

In order to decouple the component S1
n , we use the

Cayley-Hamilton theorem, which states that if an N × N

matrix E has a characteristic equation p(λ) = det(E − λI ) =
λN − ∑N

k=1 φkλ
N−k = 0, then the matrix E itself fulfills this

equation, that is,

p(E) = EN −
N∑

k=1

φkE
N−k = 0. (15)

This polynomial equation of order N has coefficients φk

determined by the eigenvalues λi of the matrix E,

φk = (−1)k+1
∑
Dk

∏
i∈Dk

λi, (16)

where Dk denotes the family of all k-element subsets of the
set {1,2, . . . ,N}. The eigenvalues νi of matrix A from (7) and
the eigenvalues of matrix E are related by formula λi = eνi�t .
Therefore, E fulfills (15) with the coefficients

φk = (−1)k+1
∑
Dk

exp

⎛
⎝�t

∑
i∈Dk

νi

⎞
⎠ . (17)

As a preparation for using the Cayley-Hamilton theorem, we
recursively use (12) and express the variables Sn−k as functions
of Sn−N ,

Sn−N = Sn−N,

Sn−N+1 = ESn−N + �n−N+1,

Sn−N+2 = E2 Sn−N + E�n−N+1 + �n−N+2, (18)

Sn−N+3 = E3 Sn−N + E2�n−N+1 + E�n−N+2 + �n−N+3,

...

Sn = EN Sn−N +
N−1∑
j=0

Ej�n−j ,

thus coupling them to only this one variable. After multiplying
these equations by φk in order to obtain terms φkE

N−k Sn−N

and subtracting them from the last one, we remove all action
of the matrix E on the time series Sn using the equality
(EN − ∑N

k=1 φkE
N−k)Sn−N = 0 obtained from the Cayley-

Hamilton theorem. The cost of this decoupling is performing
complicated transformations of the discretized force �n along
the way. The equation that we obtain after this procedure has
the form

Sn −
N∑

k=1

φk Sn−k = �n +
N−1∑
k=1

Rk�n−k. (19)

The left-hand side of Eq. (19) is the AR(N ) part described by
the coefficients φk , which depend only on the deterministic
matrix A. The left-hand side acts as an effective noise ηn,

ηn = �n +
N−1∑
k=1

Rk�n−k, (20)

which generates the stochastic dynamics of the vector Sn. The
behavior of this noise is determined by the matrices Rk ,

Rk = Ek −
k∑

j=1

φjE
k−j , (21)

composed of mixtures of time-shifting operators Ek−j . They
affect the evolution by mixing different �n−k; as a result, the
first component S1

n fulfills the recurrence relation

S1
n −

N∑
k=1

φkS
1
n−k = η1

n. (22)

There is a deep connection between this formula and the
classical Mori-Zwanzig theory [30,33]. Equation (22) can be
written in a slightly different manner

�S1
n

�t
−

N∑
k=1

φ′
kS

1
n−k = η1

n

�t
, (23)

where φ′
1 = (φ1 + 1)/�t , φ′

k = φk/�t , and k > 1. Now it
becomes clear that this is the discrete-time analog of the
generalized Langevin equation [23,30,33]. It is no coincidence,
as derivations in both cases use the same ideas, decoupling
most of the coordinates of freedom, at the same time
introducing the memory kernel and effective noise. Despite
many similarities, this analogy has its limitations, e.g., there is
no clear discrete-time equivalent of the fluctuation-dissipation
theorem.

VII. ANALYSIS OF THE STOCHASTIC FORCE

The effective noise η1
n is a mixture of the various compo-

nents of the last N − 1 vectors �n. If the underlying force
F(t) is white Gaussian noise, then the resulting η1

n are a
mixture of Gaussian white noises that forms a time series with
an N − 1 finite-range dependence. When analyzing only one
component, we can ignore its internal structure and represent
it as the MA(N − 1) process

η1
n = ξ 1

n +
N−1∑
j=1

θ1
j ξ 1

n−j , (24)
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generated by a white noise ξ 1
n , which is in fact the or-

thogonalized series η1
n [34]. Such orthogonalization can be

always performed and the coefficients θ1
j may be obtained by

solving the system of equations resulting from comparing the
covariance function of the process defined by the left-hand side
of the Eq. (24) and the effective noise η1

n from Eq. (22) [2].
Thus, we arrive at the conclusion that the coefficient S1

n is
the ARMA(N,N − 1) process with the coefficients φk and θ1

j .
Similar statements hold for more complex models of the force
F(t).

If the force F(t) has a finite range of memory smaller
than K�t , then η1

n by the same reasoning as above can be
regarded as the MA(N − 1 + K) process. In such a case S1

n is
ARMA(N,N − 1 + K).

If the force F(t) has power-law memory tails ∼t2df −1,
then η1

n is a composition of finite-range mixing introduced
by the operators Rk and the power-law behavior. The best
approximation of such time series is FIMA(df ,q), i.e., a
process similar to (24), but where ξ 1

n are FI(df ) time series
[7]. So the component S1

n is ARFIMA(N,df ,q).
If the force F(t) has exponential tails of memory, that is, if

it can be represented in a form similar to (10), then we may
treat it as a time-dependent state of the same class as S(t),
which confirms that η1

n is ARMA(L,L − 1 + N ) for some L;
added N results from the mixing of �n−k . The AR(L) part,
understood as an operator, can be freely moved from acting on
η1

n to acting on S1
n , leading to the ARMA(N + L,N + L − 1)

model. The operator AR(N + L) can be easily calculated as
the composition AR(L)AR(N ).

In our considerations we assumed that S(t) was stationary.
However, we may observe the possibly nonstationary integral
of the stationary coordinate X(t) = ∫ t

0 dτ S1(τ ), X(t) being
position, charge, etc. In this case the process of differ-
ences �Xn = ∫ n�t

(n−1)�t
dτ S1(τ ) is ARFIMA(p, df , q + 1),

which follows from the fact that S1(τ + n�t) is some
ARFIMA(p, df , q) for any τ , with p,df ,q determined by
the proper model from the description above. An increase
by one order in the MA part accounts for additional short-time
memory introduced by the integral

∫ n�t

(n−1)�t
ds and so Xn is

ARFIMA(p, df + 1, q + 1).
An analogous statement holds for all other components

Si
n. The AR coefficients φk are identical for all of them and

the MA coefficients θ i
j and noises ξ i

n from Eq. (24) vary.
The equations governing the evolution of different Si

n were
decoupled; however, these components are dependent because
ξ i
n are mixtures of the �n components, so they are dependent

set of variables with respect to i.
We stress that all modeling is performed at the level of the

discretized stochastic force; the obtained ARFIMA model of
the observed coordinate is by no means phenomenological as
is often the case for discrete-time models, but derived from the
theory of the continuous-time dynamical system. For all cases
except the power-law memory, the correspondence is exact;
in the latter case the FIMA approximation must be made for
the discretized stochastic force and the AR part is still exact.
As the FI part can reflect any type of power-law long-time
memory asymptotics and the MA part can account for any
finite-range deviations, such a model is most often sufficient
[7,10].

In our reasoning we used the fact that the Gaussian process
is fully determined by its covariance structure at the moment
when we orthogonalized the effective noise series η1

n. For
non-Gaussian processes it is no longer true, as they can
have richer than linear memory structure [18]. Therefore,
for non-Gaussian forces F(t), the obtained ARFIMA model
reflects only the linear aspect of the memory. In this case it
is approximate, but has the same autocovariance and power
spectral density as the original process.

VIII. PARTICLE IN A HARMONIC POTENTIAL

Let us return to Eq. (8), which is the second-order
differential equation describing the particle trapped in a
harmonic potential. An approximation in which the inertial
term m d2X/dt2 is considered negligible simplifies analysis. In
such conditions the state of the particle evolves according to the
force-balance equation βdX/dt = −κX + ξ . Its stationary
solution

X(t) = 1

β

∫ t

−∞
ds e−(κ/β)(t−s)ξ (s) (25)

is called the Ornstein-Uhlenbeck process [35,36] and has a
well-known Lorenzian continuous-time power spectral density
[26,28]

fOU(ω) = 1

β2

σ 2

(κ/β)2 + ω2
, (26)

where σ 2 is the variance of the noise F (t); when the
fluctuation-dissipation theorem holds σ 2 = 2kBTβ [30]. The
sampled trajectory of (25) is the AR(1) process with a
coefficient φ1 = e−�tκ/β . The discrete-time power spectral
density can be calculated from the general formula for all
ARFIMA processes [3,24], which for AR(1) yields [26]

f �t
AR(1)(ω) = (

φ−2
1 − 1

) 1

2κβ

σ 2�t

1 + φ2
1 − 2φ1 cos(ω�t)

. (27)

We can see that the CPSD and DPSD functions differ when �t

is not considerably smaller than β/κ (see Fig. 4), which is often
the case for mesoscopic objects observed in normal conditions

fAR 1
0.20

fAR 1
0.15

fAR 1
0.10

fAR 1
0.05

fAR 1
0.01

fOU

1 2 3 4
Ω

0.5

1.0

1.5

psd

FIG. 4. (Color online) Comparison of the DPSD and CPSD of
the process (25) for decreasing sampling times �t in nondimensional
units κ = β = σ = 1.
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[26]. As we provide an exact formula for the observed spectral
density, there is no reason to use approximate Eq. (26).

In the case when the mass is not negligible, the effects of
sampling become more complex. The full state vector S is then
composed of position and momentum S(t) = [X(t),P (t)]T.
The stochastic force affects the change of momenta F(t) =
[0,F (t)]T. Note that because of the identical forms of
Eqs. (8) and (9), all further results would follow also for the
RLC circuit (9) after a simple change of letters. In this case
the state vector would consists of charge and electric current.

Calculating the eigenvalues

ν1,2 = − β

2m
±

√(
β

2m

)2

− κ

m
(28)

of the evolution matrix A = [ 0 1/m

−κ −β/m

]
, we obtain the AR

coefficients of the sampled position process Xn, which, if F (t)
is a white noise, is ARMA(2,1) with AR(2) coefficients

φ1 = 2 exp

(
−�t

β

2m

)
cosh

⎛
⎝�t

√(
β

2m

)2

− κ

m

⎞
⎠ ,

φ2 = − exp

(
−�t

β

m

)
.

(29)

The MA coefficient θ1
1 is also determined by the calculated

eigenvalues and is given by a complicated formula, but can

be easily calculated numerically. By estimating the AR(2)
coefficients from the data, the ratios κ/m and β/m of the
underlying process can be assessed and the parameter m can
be subsequently estimated from the variance of the sampled
process Xn. If F (t) is not white noise, the MA part may differ
and if F (t) would have the power-law dependence it would be
reflected in the FI part of the ARFIMA model.

IX. SUMMARY

In our work we tried to construct a bridge between
continuous-time linear dynamical systems and the discrete-
time ARMA model or, more generally, ARFIMA model.
The studied correspondence for many cases might serve as a
physical interpretation of the ARFIMA model and justification
for its usage. Additionally, we have shown what order the
physical ARFIMA model should have for a given dynamical
system and we have given explicit formulas for its AR
coefficients, which allows for estimation of the dynamical
system’s parameters using standard statistical tools. Its MA
and FI coefficients can also be calculated, but they depend on
the assumed model of the stochastic force. The coefficients
of the ARFIMA model determine its characteristics, such as
power spectral density, linking the basic dynamical system
model with functions that can be estimated from the sampled
data measured during experiment.
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