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Permeability of porous materials is an important characteristic which is extensively used in various engineering
disciplines. There are a number of issues that influence the permeability coefficient among which the porosity, size
of particles, pore shape, tortuosity, and particle size distribution are of great importance. In this paper a C++ GPU
code based on three-dimensional lattice Boltzmann method (LBM) has been developed and used for investigating
the effects of the above mentioned factors on the permeability coefficient of granular materials. Multirelaxation
time collision scheme of the LBM equations is used in the simulator, which is capable of modeling the exact
position of the fluid-solid interface leading to viscosity-independent permeabilities and better computational
stability due to separation of the relaxations of various kinetic models. GPU-CPU parallel processing has been
employed to reduce the computational time associated with three-dimensional simulations. Soil samples have
been prepared using the discrete element method. The obtained results have demonstrated the importance of
employing the concept of effective porosity instead of total porosity in permeability relationships. The results
also show that a threshold porosity exists below which the connectivity of the pores vanishes and the permeability
of the soils reduces drastically.
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I. INTRODUCTION

The prediction of the permeability of porous media has
been a challenge for engineers and scientists because of
its essential role in solving problems of seepage, drainage,
consolidation and its application in the industry. For instance,
knowledge of flow through a porous material is required
for a good understanding of problems in oil recovery, the
flow of groundwater, and contaminant transport in aquifers.
Permeability is defined as the process of transfer of fluid, gas,
or solutes through porous media which is governed mainly
by the porous media’s structure or the geometry of pore
space in porous media, which is considered to be the key
in understanding of this process. However, a quantitative and
explicit characterization by means of a physical interpretation
is difficult because of the complexity of the pores shapes and
pore connectivities. It has been an old challenge to scientists to
relate the direct features of porous media to permeability with-
out conducting expensive or time-consuming experiments. The
experimental methods used in the studies have varied from
rather straightforward measurements [1–4] to sophisticated
approaches, which utilize, for example, mercury porosimetry,
electrical conductivity, nuclear magnetic resonance, acoustic
properties of the medium, also using constant or variable
head permeameter [4–10] for measuring the permeability.
Theoretical works have often involved models with simplified
pore geometries, which allows development of analytical
solutions for microscopic flow patterns [11–13]. More so-
phisticated theoretical models based on statistical methods
have also been used [1,12,13]. However, due to the extremely
complex nature of the phenomena, many basic questions
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have remained unanswered. Following such a morphological
path, the characterization of the geometrical properties of the
soil structure should be quantitative to allow the results to
be incorporated into the analyses. As another requirement,
the interpretation of the results towards the physics of the
processes should be possible. The latter was critical in the
previous attempts of relating soil structure and the developed
function [14,15].

The typical problem of the permeability of porous media
emerges when considering saturated flow of water in soil.
The intrinsic permeability of the soil can be determined by
the arrangement of the solid particles, the pores, and solid
space geometry. One important geometrical aspect is the
distribution of the pore volume over a range of effective
pore diameters which corresponds to the hydraulic diameter
according to the capillary rise equation. For precise description
of fluid flow through soil and computing the permeability of a
given medium, if one knows the structure of the medium,
a combination of Newton’s second law with the Navier-
Stokes equations of hydrodynamics can be used. Having
determined the steady-state velocity field for a given pressure
gradient one then has the mean flow velocity and hence
the permeability. Unfortunately, neither of these two steps
is necessarily easy. Most porous media of practical interest
have extremely complex three-dimensional (3D) geometries
that are difficult to be determined in detail. Assuming that
some way can be found for determining the geometry of
the solid matrix, solving the Navier-Stokes equations in the
presence of highly irregular solid-fluid boundaries has proved
to be a difficult task. As a result, obtaining purely theoretical
formulae is very cumbersome and thus impractical for normal
engineering problems. Therefore, engineers often follow the
simpler empirical method given by Darcy’s law, which says
that as long as we consider saturated flow at a low Reynolds
number, the mean flow rate of a viscous fluid through a porous
medium is proportional to the applied pressure difference and
inversely proportional to the viscosity. Darcy’s law is valid
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for laminar flow through porous media, which is found to be
applicable to a wide range of soil types, from clays to coarse
sands. The general 3D form of Darcy’s law is as follows [16]:

vi = kij

ν

∂P

∂xj

= Kij

∂P

∂xj

, i, j = 1, 2, 3, (1)

where vi is discharge velocity in direction i,kij is intrinsic per-
meability, Kij is hydraulic conductivity matrix, ν is dynamic
viscosity, P is applied pressure, and xj is distance in direction
j . It is well known that independent estimates of hydraulic
conductivity are not, in general, very reliable [17–19]. The
hydraulic conductivity value may be either assessed using
predictive methods or measured using laboratory or field
testing. The objective of predictive methods is most often
to reduce the cost of tests; however, they usually give a
rough prediction of hydraulic conductivity value [17]. In many
instances, attention should be paid to correct estimation of k.
Because an examination of Eq. (1) shows that the intrinsic
permeability has units of length squared. On the reasonable
assumption that this length will be something typical of the
system under study, it is clear that the permeability is a quantity
that can vary enormously, and no other property of importance
in geotechnical problems is likely to exhibit such a great range
of values, up to 10 orders of magnitude, from coarse to very
fine-grained soils [20].

As mentioned, many factors affect the hydraulic conduc-
tivity of granular soils such as soil structure, fluid physical
properties, and degree of fluid saturation. However, the focus
of this study is on the effects of soil structure on the soil
permeability. Conventional predictive relationships are usually
correlations between intrinsic permeability and porosity. Other
than this, there are also some factors that have major influences
on soil permeability such as specific surface of particles, shape
of particles, and tortuosity; a number of them are included in
some correlations. Statistical models for the permeability of
soil are based on the distribution of pore sizes [21,22]. But
the models should include matching parameters defined as
connectivity and tortuosity. Without these factors the pore size
distribution models would just mimic the permeability of a
bundle of straight capillary tubes. However, the reality in a
soil is much more complex, with twisted and crooked pores
that are dead-end or connecting to other pores. This means
that there is a need to scale down the permeability to the
capillary tube model to include the increased path length due
to crookedness of the path (tortuosity) or considering the lack
of connection between certain points in the soil (connectivity).
Although there are some approaches available for estimating
specific surface of granular soils, direct measurements of
tortuosity, connectivity, and shape factor from usual laboratory
tests are difficult. Due to the complexity of flow in porous
media, pure analytical solutions cannot be obtained except
for very few problems such as fluid flow through a cubic
array of spheres of equal radius [23,24]. Recently, numerical
simulation of fluid flow through porous media at the pore scale
has been of interest. Because of the complexity of the pore
geometry, most of the previous pore-scale simulations of fluid
movement in soils were based on simplifications that idealized
the complicated soil structures into models such as fractal
structures [25] and network models [26]. Simulations based
on those idealizations provides insight into the pore-scale

fluid movement and some of network models are even able
to include topological features, but it is not easy to obtain
the geometrical parameters to construct the ideal soil structure
that has to be hydraulically equivalent to the real soil [27]. In
the past few decades with rapid development of techniques of
visualization and quantification of pore geometry of porous
media, the increase of computational power and the advances
in fluid modeling capacities, direct simulation of pore-scale
water movement in soils without idealizing the pore geometry
has been feasible [27]. Therefore, fluid flow simulation at pore
level has received considerable attention as a powerful tool for
the permeability prediction.

One of the numerical methods which seem ideal for
simulating fluid flows in complicated geometries such as
particulate media is lattice Boltzmann method (LBM) [28].
LBM was applied to porous media flow soon after its emer-
gence in Ref. [29]. The geometrical versatility of this method
makes it particularly useful for simulating flows in irregular
geometries [30–34]. Later studies confirmed the reliability of
LBM in modeling seepage around solid particles [35,36]. Heijs
and Lowe [37] investigated the flow in a random array of
spheres and a clay soil sample using the LBM. They used
the bounce-back scheme for modeling the solid wall boundary
condition and found that the LBM yields acceptable results
even with very coarse lattice. Most of the conducted research
using LBM has been two-dimensional (2D) endeavors.

In this paper, a multirelaxation time 3D lattice Boltzmann
numerical simulation of fluid flow through a soil pack compris-
ing spherical rigid particles is considered. Packing of particles
with certain grading distribution characteristics was created
by a random particle generator and isotropic compression
technique using the discrete element method (DEM). By
using this numerical approach, correlations between various
macroscopic parameters such as porosity, effective porosity,
specific surface area, tortuosity, and particle size distribution
with intrinsic permeability for monosized and multisized
samples were investigated. The variation of permeability
near the percolation threshold was also analyzed. Since 2D
simulations cannot consider the real spatial pore connectivities
and 3D flow paths, 3D simulations have been carried out
throughout this research.

II. POROUS MEDIA

A. Permeability

A number of methods for predicting intrinsic permeability
of soils can be found in the literature. Among all methods, a
general relationship which is known as the KC equation was
first proposed by Kozeny as [38]

k = φ3

cS2
, (2)

where φ is the soil porosity and S is the specific surface area,
and c is the Kozeny coefficient. One of the most widely
accepted attempts to generalize Eq. (2) was proposed by
Carman [39,40] who noticed that the streamlines in a porous
medium are far from being straight and parallel to each other.
This effect can be described by a dimensionless parameter T
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called hydraulic tortuosity [41]:

T = 〈λ〉
L

� 1, (3)

where 〈λ〉 is the average length of the fluid paths and L is
the geometrical length of the sample. Using the tortuosity,
Kozeny’s equation can be generalized to [42]

k = φ3

cT 2S2
. (4)

By fitting the experimental data, Carman concluded that T 2

is a constant factor over a wide range of porosities. Later it
was found that T 2 does vary with φ. However, considering
flow through a porous medium, only the interconnected pores
are of interest, as the occluded pores (pores not connected to
the main void space) do not contribute to the flow. The dead-
end pores are another type of pores that contribute very little
to the flow. These pores belong to the interconnected pores,
but, owing to their geometry, no global path lines intersect
them. The occluded pores and the dead-end pores form the no
conducting pore space of the medium. The effective porosity
φeff of a porous medium can be defined as the ratio of the
volume of the conducting pores to the total pore volume [43].
In the porous media with high porosity, all of the void spaces
usually contribute to the flow. The effective porosity of the
medium is then equal to the porosity. On the contrary, for
low-porosity materials, a large part of the total void space
may be no conducting. For such media the effective porosity
may, therefore, be significantly smaller than the geometrical
porosity. At the percolation threshold φc, defined as the point
where the medium becomes completely blocked, permeability
and effective porosity both vanish. It is therefore clear that the
KC equation, as given by Eq. (4), is not valid when φ → φc.
The simplest way to modify Eq. (4) to include the effect of no
conducting pores is to replace the porosity φ with the effective
porosity φeff . So, as Ref. [43] proposed we can obtain

k = φ3
eff

cT 2S2
. (5)

Assuming spherical particles, and substituting for S in
Eq. (4) leads to

k = φ3

36cT 2(1 − φ)2 d2
p, (6)

where dp is the particle diameter, and c = 2.5 is given
for beads of spherical particles [44]. Carman proposed a
constant tortuosity of T = √

2 based on his experimental
measurements of permeability [39]. As a result, the widely
used form of the KC correlation for monosized sphere packing
is obtained as [16]

k = φ3

(1 − φ)2

d2
p

180
. (7)

This is considered as a simple, yet practical, correlation
for expressing the permeability of granular media in terms of
particle size and porosity. If we substitute φ by φeff in Eq. (7)
we obtain

k = φ3
eff

(1 − φeff)2

d2
p

180
. (8)

Bear and Bachmat [45] proposed another equation, which
for comparison purposes after some substitutions becomes

k = 1 − 1.209(1 − φ)2/3

60φ

φ3

(1 − φ)2 d2
p. (9)

Recently, Ahmadi et al. [46] by analytical derivation
provided the following relationship:

k = 1 − 1.209(1 − φ)2/3

30[1 − 1.209(1 − φ)2/3 + 2φ]

φ3

(1 − φ)2 d2
p . (10)

It can be concluded from the above relations that the
effective porosity, tortuosity, and particles’ diameter or specific
surface of particles have great influence on the permeability of
porous media.

B. Tortuosity

As mentioned, tortuosity is defined as the ratio of an average
length of microscopic flow paths to the length of the soil
sample in the direction of the macroscopic flux [Eq. (3)].
The tortuosity of the packed media is rarely a constant value;
rather, it varies according to the factors related to the motion
of fluid coupled with certain geometrical characteristics of the
packing. Tortuosity is always greater than one and decreases
with increasing the porosity, so that as the porosity approaches
one, the tortuosity also tends to unity. There is a large scatter
in the existing tortuosity correlations, especially in their form
and their range of applicability due to porosity. Some of the
tortuosity functions available in the literature are as follows.

Koponen et al. [47] studied the permeability and tortuosity
of 2D random porous media using the lattice gas automata. The
tortuosity was correlated with porosity as a linear relationship
as follows:

T = p(1 − φ) + 1, (11)

where p is a fitting parameter. Later they found that this relation
is not consistent with the results obtained for the porosity range
0.4 < φ < 0.5, and suggested [43] to replace it with

T = p
1 − φ

(φ − φc)m
+ 1, (12)

in which φc ≈ 0.33 was used as the percolation threshold and
p and m are empirical parameters.

Weissberg [48] proposed the below relation:

T = 1 − 0.40 ln(φ), (13)

which was later validated empirically [49]. Du Plessis and
Masliyah [50] provided the following analytical function
for isotropic granular media based on the concept of a
representative unit cell:

T = φ

1 − (1 − φ)2/3 . (14)

Boudreau [51] has proposed this empirical equation:

T =
√

1 − ln(φ2). (15)

The Comiti and Renaud [52] relation is as follows:

T = 1 − p ln(φ). (16)

053301-3



BAHMAN SHEIKH AND ALI PAK PHYSICAL REVIEW E 91, 053301 (2015)

Ref. [53] suggested the following equation:

T =
√

1 + 2(1 − φ). (17)

In a recent attempt, Ref. [46] proposed an equation based
on analytical derivation as follows:

T =
√

2φ

3
[
1 − 1.209(1 − φ)

2
3
] + 1

3
. (18)

Besides all of these functions Refs. [42,54–56] proposed
similar simple function as follows:

T = 1

φp
, (19)

where p is a fitting parameter.
Although most of the above correlations are validated in

conductivity experiments and are highly accredited by several
researchers, they have very different mathematical forms. The
same inconsistency is observed for correlations derived from
numerical simulations. Reference [57] suggested a correlation
of the form given by Eq. (11) from 2D simulations using
the LBM, while similar numerical simulations in Ref. [41]
showed a correlation of the form 1 + lnφ, which is different
from Eq. (11). Besides all of this, one thing seems obvious,
that the 2D numerical simulations cannot adequately account
for tortuosity variations. Due to the 3D nature of tortuosity, it
may not be limited to in-plane flow paths. However, since the
3D numerical flow simulations are usually computationally
cumbersome, they have rarely been used in the literature.

III. NUMERICAL TECHNIQUES

A. Lattice Boltzmann method (LBM)

Conventional techniques such as finite elements use pre-
fixed laws to calculate fluid flux or pressure. The laws usually
are derived from the Navier-Stokes equation via some sim-
plifying assumptions such as homogenization and empirical
modifications. These methods have some uncertainty for
investigating phenomena such as fluid flow in porous media
because of the nature of assumptions and parameters.

During the last two decades, particle-based methods such as
lattice Boltzmann have been developed as a robust numerical
approach in computational fluid dynamics. LBM, which
numerically solves the Navier-Stokes equation in a general
condition, has emerged as a powerful alternative tool for
simulation of fluid flows. Its strength lies in the ability to
easily represent complex physical phenomena. The method
finds its origin in a molecular description of fluid and can
directly incorporate physical terms stemming from knowledge
of the interaction between molecules. For this reason, it is an
invaluable tool for fundamental research, as it keeps the cycle
between the elaboration of a theory and the formulation of
its corresponding numerical model short. On the other hand,
a distinct advantage of the LBM in geotechnical problems
lies in its capability of modeling problems with complex pore
geometry and with a large number of particles such as soil. The
fundamental idea of the LBM is to construct simplified kinetic
models that incorporate the essential physics of microscopic
or mesoscopic processes, so that the microscopic averaged
properties obey the desired macroscopic equations [28].

The most popular LBM is Bhatnagar-Gross-Krook (BGK)
model [58] with a standard bounce-back (SBB) scheme for
fluid–solid boundaries. In BGK the collision operator is ap-
proximated by a single-relaxation-time (SRT) approximation,
which has some defects such as numerical instability and
viscosity dependence of boundary locations, especially in
underrelaxed situations [59]. The viscosity-dependent bound-
ary conditions pose a severe problem for simulating flow
through porous media because the permeability becomes
viscosity dependent, while it should be a characteristic of the
physical properties of the porous medium alone. This issue is
reported by some authors [41,60]. The deficiencies inherent
in the BGK model can be significantly reduced by using
a multiple-relaxation-time (MRT) approach [60,61], which
separates the relaxation times for different kinetic modes and
allows tuning to improve numerical stability and accuracy.
In addition, the BGK model may experience numerical
instability when simulating elevated Reynolds number flow
or when the relaxation time approaches 0.5. One remedy is to
increase the grid density to alleviate the excessive reduction
of the relaxation time. However, this practice would be
impractical due to the substantial increase of the computational
effort. An alternative is to adopt the MRT lattice Boltzmann
model [62].

The starting point of the formulation is the continuous
Boltzmann equation which expresses how the probability
f (x, v, t) of finding a particle with velocity v at a position
x and at time t evolves with time [62]:

∂f

∂t
+ v · ∇f = �, (20)

where f is the single particle density distribution function
and � is the collision term, and accounts for the change in
distribution function due to particle collisions. This continuous
Boltzmann equation may be discretized in time and space.
Consider the 3D lattice Boltzmann model on a square lattice
with lattice spacing δx and 19 discrete lattice velocities
in the D3Q19 space discrete model. After discretizing the
continuous Boltzmann equation with multirelaxation time
collision approximation, it can be written as the following
equation. On each lattice site values of 19 density distribution
function fα are stored, each of them assigned to a lattice
vector cα:

fα(r + cαδt ,t + δt ) = fα(r,t) − M−1S[fα(r,t) − f eq
α (r,t)]α

= 1 − 19, (21)

where M is an integer transformation tensor which is designed
to contain more physically relevant quantities, e.g., density,
momentum, energy, and their fluxes, f

eq
α is the equilibrium

density distribution function, r(x, y, z) is the space position
vector, t denotes time, δt lattice time. The transformation
tensor M and the functional forms of the equilibrium moments
f

eq
α for the D3Q19 lattice are given in Refs. [61,63,64]. S

is the diagonal relaxation matrix, indicating that the collision
process for each moment is accomplished by a linear relaxation
towards its equilibrium. The values of the collision parameters
correspond to the conserved moments, to determine the shear
and bulk viscosities, and to preserve the symmetry on the
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chosen lattice:

S = diag(0, se, sε,0, sq,0, sq,0, sq, sv, sπ , sv,

sπ , sv, sv, sv, sm, sm, sm). (22)

The values of the collision parameters that correspond to the
conserved moments are irrelevant because f (r,t) = f eq(r,t)
and can be anything; here we set them to be zero. In addition,
the relaxation rate sv , which determines the viscosity υ, is

υ = 1

3

(
1

sv

− 1

2

)
. (23)

There are five other relaxation rates that are adjustable
parameters: se, sε, sπ , sm, and sq, are set to be identical values
to preserve symmetry on the chosen lattice as follows [36,65]:

se = sε = sπ = sm = sq = 8
2 − sv

8 − sv

. (24)

This general model reduces to the usual single-relaxation
BGK model if all relaxation parameters are set to be a single
value τ = 1/ sv , i.e., Sα = 1/τ . For more information about the
MRT-D3Q19 the interested reader can refer to Refs. [63,64].

A constraint to the parameter selection is that the lattice
speed C, defined as C = δh / δt , where δh is lattice spacing,
must be sufficiently larger than the maximum fluid velocity
(vmax) in the simulation domain to ensure sufficient solution
accuracy. This is controlled by the computational Mach
number, defined by

Ma = vmax

C
. (25)

Theoretically, it is required that Ma � 1. In practice,
Ma should be, at least, smaller than 0.1 [66]. This becomes
very important in modeling fluid flow through pack of solid
particles, when fluid particles may have high velocities in small
communications between channels [67].

One of the distinguishing features of LBM is undoubtedly
its highly parallelizable data structure. Nowadays scientific
computing on graphics processing units (GPUs) has become
more important, due to their advantages for scientific calcula-
tions. Nevertheless, it has to be noted that there are important

differences in architecture and the programming of GPUs and
CPUs, based on their historical development and assignment.
In order to use the advantages of the architecture of GPUs,
lattice-based algorithms are well suited. In this study, a coupled
CUDA multi-GPUs and OpenMP code based on 3D (D3Q19)
parallel processing version of lattice Boltzmann method has
been developed, in order to simulate fluid flow in porous media.
As mentioned, a MRT approximation of the LBM equations is
used in the simulator.

In order to verify the developed MRT-LBM code and
the assumed boundary conditions, first, the Poiseuille flow
between two parallel plates is simulated for which analytical
solutions can be derived by solving the appropriate Navier–
Stokes equation. Between the two plates, the velocities at the
plates are zero (no-slip boundaries), and the velocity reaches
its maximum in the middle. The velocity profile between two
plates of width 2a is parabolic given by

u(y) = p

2νρL
(a2 − y2) (26)

or

u(y) = g

2ν
(a2 − y2), (27)

where L is domain length along the flow direction, ρ is fluid
density, ν is fluid dynamic viscosity, p is pressure gradient
between inlet and outlet of domain, and g is acceleration.

Here we performed two simulations: first, Poiseuille flow
driven by pressure gradient (Test-1) and second Poiseuille
flow driven by a body force (Test-2). Both simulations have
bounce-back [68] boundaries at plates (y = −a, y = a) and
periodic boundaries in the z direction [Fig. 1(a)]. At the Test-1,
the inlet and outlet of the domain (x direction) are set to be
pressure boundary which is implemented to the code according
to Ref. [69]. But in the Test-2, the periodic boundary condition
is set for x direction and the pressure gradient was simply
applied by adding an equivalent body force (g · ρ = p/L).
According to Fig. 1(b) agreement of LBM results with the
analytical solution is excellent.

FIG. 1. (Color online) Poiseuille flow between two parallel plats: (a) velocity contour; (b) velocity profile.
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B. Discrete element method (DEM)

DEM is an explicit numerical method for modeling the
dynamic behavior of an assembly of distinct objects. The
model explicitly reproduces the discrete nature of the dis-
continuities, which are represented as the boundary of each
element. The method has become a powerful numerical tool
for analyzing particulate media since it was first introduced
by Cundall and Strack [70]. A wide range of problems in
different branches of engineering is successfully simulated by
DEM. DEM conceives granular materials as an assemblage
of distinct rigid particles. The equilibrium contact forces
and displacements of a stressed assembly of spheres are
found through a series of calculations tracing the movements
of individual particles. These movements are the result of
the propagation of disturbances in the medium originating
at the boundaries. The calculations performed in the DEM
alternate between the application of Newton’s second law to
the particles and a force-displacement law at the contacts.
Newton’s second law determines motion of a particle resulting
from the forces acting on it. The force-displacement law is used
to find the contact forces from displacement. This calculation
cycle is conducted in each time step during the analysis.
For more information about the DEM formulations see
Refs. [70–72].

In this study, DEM simulations have been used to numer-
ically generate packed particle samples. Several methods for
specimen generation are currently available [71–75]. In this
study the random generation approach proposed by Itasca [71]
has been employed, which consists of sequentially selecting
solid particles according to a given particle size distribution,
in descending order of size and positioning them in random
coordinates. If a particle does not fit, the radius is retained
but another location is randomly chosen. Positioning of each
solid particle is attempted a number of times till the new
particle is positioned with no overlap with other particles in
the domain. In each trial, if the recently created particle has
a tiny overlap with a neighboring particle, a small change
in the coordinates is applied to the particle, which leads to
elimination of the overlap. The coordinate change is repeated
quite a number of times to remove all the overlaps, and if these
attempts did not work, a new random positioning starts. This
approach will generate relatively loose specimens. Generating
medium or dense packings by random coordinate generator is
very time consuming or even impossible. An effective way to
generate denser samples is mechanical packing by DEM. For
this purpose an isotropic compression technique is employed.
In the isotropic compression method, all solid particles are first
randomly positioned in a large area which is bigger than the
main domain by a particle filling procedure, so that no overlap
exists between the particles. Then the boundary walls are
moved inward to compact the assembly until a target porosity
value is achieved (Fig. 2). During the isotropic compaction
in 3D, six rigid walls move inward simultaneously with a
constant low speed. The friction coefficient between particles
and walls were set to zero in order to decrease the effects of
boundary walls on the results. Also, damping parameters were
set to small values, in order to obtain a quick propagation of
particle movements from boundary particles through central
ones. Porosity measurements in different sections of the

FIG. 2. (Color online) Isotropic compression technique for gen-
erating dense samples: (a) before isotropic compaction; (b) after
isotropic compaction.

generated samples show that these measures have led to
creating relatively homogenous samples.

IV. NUMERICAL SIMULATION OF FLOW IN
POROUS MEDIA

Each of the generated samples using DEM is introduced to
LBM code as an input. One problem with the LBM method
is that it is incapable of resolving the macroscopic Navier-
Stokes equations for channels narrower than about four lattice
units [76]. This limitation becomes particularly important at
low porosities, for which the number of very narrow passages
increases enormously. To bypass this problem, a standard
numerical mesh refinement procedure is used [41]. Then the
spherical solid particles are mapped onto a lattice. During fluid
flow simulations, solid areas are considered immovable and
they interact with fluid particles by the bounce-back boundary
rule, which will be describe later.

In this work, lattice spacing is considered 0.01 mm based
on the size of the finest particles that exist in the sample and
in order to maintain Mach number as low as possible. This
leads to relatively large numbers of computational lattices
(our simulations contain about 500 × 500 × 500 lattices).
For all LBM simulations, a difference in hydraulic head is
applied at two opposite sides of the soil sample (inlet and
outlet of domain along the x direction; Fig. 3), by means of
pressure boundary condition (or density boundary condition
p = ρ · C2), which is implemented to the code according
to [69]. The interface between the solid boundaries and the
flowing fluid is assumed to be nonslip. Simulating slip and
nonslip boundaries in the LBM is an area where progress is
still being made. Among the existing methods, the simplest
is called the bounce-back [68] method. In this approach, to
ensure that the fluid particles have zero average velocity at
the boundaries, any flux of fluid particles that hits a boundary
simply reverses its velocity so that the average velocity at
the boundary is automatically zero. This type of boundary is
utilized in this study for solid lattices. It worth mentioning
that the position of a boundary is viscosity dependent when
applying the BGK model. One of the methods for tackling this
problem is using the MRT model. In this way the viscosity
dependence can be eliminated by individually adjusting the
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FIG. 3. (Color online) (a) An example of monosized sample generated by DEM and introduced to LBM code. (b) A cross section at z = 250
lattice of the 3D sample.

collision parameters [36,65,77]. This feature of MRT will be
shown later.

An example of such prepared porous systems is depicted
in Fig. 3. The blue areas represent fixed solid obstacles, while
the white part is occupied by the fluid. We believe that the
homogeneity of the randomly generated samples (with 500 ×
500 × 500 lattices) is well satisfied because we have simulated
each of the samples at least twice and the results were almost
the same. Summary of the grain size distribution characteristics

of the generated samples used in this study are reported in
Table I and Table II. The grain size distribution curves related
to Table II along with an example of non-homogenized sample
are depicted in Fig. 4.

Virtual velocity of fluid and tortuous flow paths can be easily
traced by LBM. Figure 5 shows a representative illustration
of numerical simulation. Only a number of flow paths are
depicted on this figure. Herein permeability of the samples of
spherical solid particles which can be representative of sandy

TABLE I. Summary of monosized samples characteristics used in this study.

Particles No. of Porosity Particles No. of Porosity Particles No. of
Porosity diameter (cm) simulation Re diameter (cm) simulation Re diameter (cm) simulation Re

0.5 0.08 3 0.006 0.75 0.08 3 0.183 0.7 0.2 2 0.309
0.5 0.1 3 0.010 0.8 0.08 3 0.316 0.75 0.2 2 0.453
0.5 0.12 4 0.014 0.85 0.08 3 0.585 0.8 0.2 2 0.800
0.5 0.14 3 0.023 0.9 0.08 3 1.170 0.85 0.2 2 1.262
0.5 0.16 3 0.033 0.4 0.12 2 0.000 0.9 0.2 2 2.424
0.5 0.18 3 0.042 0.45 0.12 2 0.004
0.5 0.2 3 0.056 0.55 0.12 3 0.041
0.6 0.08 4 0.023 0.6 0.12 2 0.063
0.6 0.1 4 0.033 0.65 0.12 2 0.099
0.6 0.12 4 0.059 0.7 0.12 2 0.186
0.6 0.14 4 0.087 0.75 0.12 2 0.274
0.6 0.16 4 0.118 0.8 0.12 2 0.480
0.6 0.18 4 0.162 0.85 0.12 2 0.887
0.6 0.2 4 0.205 0.9 0.12 2 1.754
0.4 0.08 3 0.000 0.4 0.2 2 0.001
0.45 0.08 3 0.002 0.45 0.2 2 0.005
0.55 0.08 3 0.028 0.55 0.2 2 0.068
0.65 0.08 4 0.066 0.6 0.2 2 0.104
0.7 0.08 4 0.124 0.65 0.2 2 0.163
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TABLE II. Characteristics of grain size distribution curves for nonhomogenized samples used in this study.

Curve No. No. of simulation D60 D10 Cu Porosity Re Curve No. Number of simulation D60 D10 Cu Porosity Re

1 2 0.335 0.16 2.094 0.42 0.223 1 2 0.335 0.2 2.094 0.55 0.514
2 2 0.235 0.16 1.469 0.42 0.095 2 2 0.235 0.2 1.469 0.55 0.184
3 2 0.28 0.15 1.867 0.42 0.128 3 2 0.28 0.2 1.867 0.55 0.266
4 2 0.18 0.14 1.286 0.42 0.052 4 2 0.18 0.1 1.286 0.55 0.101
5 2 0.34 0.295 1.153 0.42 0.433 5 2 0.34 0.3 1.153 0.55 0.816
6 2 0.295 0.235 1.255 0.42 0.253 6 2 0.295 0.2 1.255 0.55 0.477

soils with rounded grains is of concern. After initialization,
the LBM computational loop of advection and collision
continues until steady-state condition is obtained. An example
of the velocity field calculated with this method is shown in
Fig. 5. Intrinsic permeability (k), which depends on packing
configuration only, is analyzed for different conditions. k is
calculated by the following relation:

dP

dl
= μV

k
, (28)

where dP
dl

is the pressure gradient and μ is dynamic viscosity
of the fluid. Discharge velocity (V ) is obtained by averaging
fluid velocities on a cross section lattice perpendicular to
the flow direction. Darcy’s law is valid if the flow through
soil is laminar (slow-viscous flow), and this depends on the
dimension of interstices which, in turn, depends upon the
particle size. It has been found that flow through soil is laminar
when Reynolds number is about unity or less thus it would be
valid to apply Darcy’s law. The Reynolds number (Re) for flow
through porous media flow is typically expressed as [78]

Re = V D

υ
, (29)

where D is average diameter of the porous media particles
and υ is the fluid kinematic viscosity. Flow through soil with
Re � 1 is considered laminar and with Re � 10 is turbulent.
Flow between these two limits is transient. The average Re

number for each sample in this study is shown at Tables I
and II.

In order to demonstrate the validity of the permeability
values derived from the developed LBM code, here we present
a comparison between the analytical solution and the LBM
simulation results for calculation of permeability values for
fluid flow through an idealized porous medium formed from
periodic body centered cubic (BCC) array of spheres of equal
radius a [Fig. 6(a)]. The permeability value for this idealized
medium analytically can be derived as follows [23,24,36]:

k∗ = V0

6πad∗ , d∗ =
30∑

n=0

αnχ
n, (30)

χ =
(

c

cmax

)1/3

, c = 4πa3

3V0
, cmax =

√
3π

8
, (31)

where k∗ is permeability, d∗ is inverse of the dimensionless
drag, V0 = 1

2L3 where L is center to center distance of spheres,
the coefficient αn are given in [24], c is concentration of
spheres, and cmax is the maximum concentration of spheres
for given packing geometry. The spheres radius for each
resolution is equal to a = √

3Lχ/4 and the pore throat is
η = √

3L(1 − χ )/2 [36].
We evaluated the capability and precision of our MRT-LBM

code in modeling of flow through porous media with various
resolutions L3, different viscosities, and different porosities.

FIG. 4. (Color online) (a) Grain-size distribution of samples. (b) An example of nonhomogenized sample generated by DEM and introduced
to LBM code.
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FIG. 5. (Color online) (a) Velocity magnitudes (u2 = u2
x + u2

y +
u2

z) at three cross sections of the sample. (b) Streamlines generated
with the constant-flux constraint for the same system as in (a).

In order to simulate BBC array of spheres, we considered
domains with periodic boundary in all directions, and consider
domains’ obstacles as shown in Fig. 6(b) and 6(c), thereby we
have domains equivalent to fully repetitive BCC pattern. Then
in each domain we applied a body force along the x direction
[Fig. 6(b)] and after the steady-state condition is reached we
calculated the permeability.

Figure 7(a) shows the ratio of the simulated permeabilities
(k) to analytical permeabilities (k∗), where we fixed the χ ≈
0.85 and varied the resolution (L). According to this figure
our LBM code shows excellent results. This figure indicates
permeability becomes accurate and grid independence if
L > 16 [36], it means that to see an object as a sphere in
a lattice domain we need radius of 5.8 lattices or more.
Based on Fig. 7(b) in the low resolutions we cannot make
an obstacle similar to sphere, and since the above analytical
solution is derived for sphere obstacles we get deviation
between analytical and simulated results. In this figure also we
examined the viscosity dependence (relaxation parameter) of
the permeability by calculating permeabilities at τ = 0.55 and
1.0 for the same domains. According to this figure viscosity
has no effect on the permeabilities especially while we have
obstacles that can be considered as spheres in the domain.

We next investigated the effect of porosity on the precision
of MRT-LBM prediction regarding the permeability values.
To do so we considered domains with L = 50 and a = 10.8,
13.0, 15.2, 17.3, 18.4, 19.5, 20.6, 21.0, and 22.0. According to

Fig. 8 the normalized simulated permeabilities show excellent
accuracy.

In order to illustrate the benefit of the MRT over BGK
collision operator, we performed a simulation for flow
through a homogeneous spherical particle pack. We calculated
the steady-state Darcy velocity and estimated the saturated
permeability of the medium with respect to different fluid
viscosities. We performed this test for two different lattice
sizes: 100 × 100 × 100 and 200 × 200 × 200 using both the
MRT and BGK models. As shown in Fig. 9, the simulated
permeability obtained by the BGK model increases signif-
icantly with increasing viscosities. As mentioned before,
one major drawback of this operator with respect to the
prediction of the permeabilities is that the exact position of the
modeled fluid-solid interface changes if the lattice viscosity
changes. This causes an apparent viscosity dependence of the
predicted permeability while permeabilities obtained by the
MRT model remain constant. Similar results are reported by
Refs. [36,65,77].

As presented above, the MRT approach to LBM provides
significant capability in simulation of flow through porous me-
dia in comparison to BGK-LBM. However, some researchers
have opened new possibilities into BGK-LBM, for example, by
regularizing the precollision distribution functions in order to
achieve better stability and accuracy at very low computational
cost [79]. Furthermore, researchers in Ref. [80] have developed
a two-relaxation-time (TRT) LBM with variable source terms
based on equivalent equilibrium functions. They derived
a special parametrization of the free relaxation parameter
and have claimed that when the boundary scheme obeys
the parametrization properly, the derived permeability values
become independent of the selected viscosity for any porous
structure and can be computed efficiently.

A. Total and effective porosities

As mentioned, various equations relating the permeability
of soils to its porosity have been proposed. In order to study the
effects of the void ratio or porosity on intrinsic permeability, a
series of samples with monosized solid particles and different
porosities were simulated. In these analyses, particles’ diame-
ter was fixed to be 1.2 mm and the porosity is calculated as the
number of pixels representing pore space divided by the total

FIG. 6. (Color online) (a) BCC pattern of spheres. (b) An example of the BCC periodic domain considered for simulation. (c) 2D projection
of BCC array of spheres; the red lines show the domain boundaries considered in (b).
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FIG. 7. (Color online) (a) Normalized permeability as a function of grid resolution L for χ ≈ 0.85. (b) Spheres made with different radii
in lattice.

number of pixels in the 3D sample. In Fig. 10, variation of
normalized intrinsic permeabilities (k/d2

p) versus porosity is
shown. As can be seen, there is a very good agreement between
LBM results and other empirical and analytical equations for
porosities greater than 0.5, especially, excellent agreement
with Kozeny-Carman [Eq. (7)].

An interesting aspect of Fig. 10 occurs at the porosities less
than 0.5, which to the contrary of all proposed equations, LBM
simulations have predicted greater slope indicating decreasing
permeability due to decreasing the porosity of porous media.
Such behavior was also reported in Ref. [43]. As discussed
earlier, it could be related to dead-end and no connecting pores
in porous media. It means that, although pores exist in low
porosities, but they may not be connected to each other and do
not contribute to fluid flow in the porous media. This fact which
occurs in low porosities does not seem to be considered in
analytical relations. Figure 11 shows the numerically derived
φeff versus the porosity. A dashed line is fitted to the simulated
φeff values. For calculating φeff of different samples only the
streamlines that pass through the whole length of the sample
are considered, and the tortuosities are calculated using the
method described in Ref. [47].

According to Fig. 11 the percolation threshold is about
φc = 0.35. It means that the samples with the porosity less than
the percolation threshold will have effective porosity about
φeff = 0.0. Therefore, these samples have no permeability at
all. Koponen et al. [43] proposed the following correlation

FIG. 8. Normalized permeability as a function of porosity.

between φeff and φ:

φeff = ax3 − (2a + φc)x2 + (a + 1 + φc)x, (32)

where x = (φ − φc)/(1 − φc) and the parameter a is a fitting
value. Although this equation satisfies the conditions φeff =
dφeff/dφ = 1 at φ = 1, and φeff = 0 at φ = φc, there is some
difficulties in determining appropriate fitting value and also φc.
In addition, Koponen et al. proposed this correlation for their
2D simulations and it cannot reproduce our results from 3D
simulations. We propose the following expression which gives
a good quantitative estimate of the simulated results:

φeff = a ln(φ) + 1.0, (33)

where a is a fitting parameter which here can be assumed
a = 0.93. According to Fig. 12 we can see an improvement
in the results of Kozeny-Carman [Eq. (7)] when the porosity
is replaced by the effective porosity [Eq. (8)]. In order to
employ Eq. (8) we have used effective porosity calculated
from Eq. (33). The solid line shown in Fig. 12 is plotted based
on the proposed equation as below:

k/d2
p = φ5

eff

(1 − φeff)2(1 + φeff)8 (34)

or

k/d2
p = [1.0 + a ln(φ)]5

(a ln(φ))2[2.0 + a ln(φ)]8
. (35)

FIG. 9. Comparison of the calculated permeabilities using the
BGK and MRT operators.
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FIG. 10. (Color online) Variations of intrinsic permeability ver-
sus porosity.

B. Particles’ size

It has generally been recognized by the previous investiga-
tors that the particle size is a fundamental independent variable
controlling the permeability [81–83]. Consider a simple power
equation of the form

k = adb
p, (36)

where k is permeability, a is a constant usually accounts for
tortuosity, porosity of medium, and mathematical dimension
or in general can be taken to include all factors intrinsic to the
medium that affect the permeability except the size, and dp is
either pore throat or a representative particle diameter [84]. A
review of the literature reveals few studies that have proposed
this power equation with different a and b values to describe the
relationship between particle size and permeability. For exam-
ple, for hydraulic conductivity (GPD/ft2) several researchers
proposed the following quantities for a and b: Hazen [85] (a =
1.50, b = 1.60), king [86] (a = 11.90, b = 1.56), Muskat [87]
(a = 12.39, b = 1.84), Bedinger [88] (a = 1.01, b = 1.47),
and Burmister [89] (a = 18.35, b = 1.95). It should be
mentioned that although Eq. (36) have been extensively used
as a general form to relate the permeability to the size of the
particles, the dimensions of both sides of the equation should
match. In this regard, we must assume the “a” factor has a
proper dimension with respect to the power of “b” so that
Eq. (36) becomes mathematically correct. For example, based

FIG. 11. (Color online) The simulated effective porosity vs
porosity.

FIG. 12. (Color online) Normalized permeability as a function of
porosity for monosized samples (dp = 1.2 mm).

on the results of the numerical simulations conducted in this
investigation we obtained the following empirical relation for
φ = 0.5:

k ∼= 0.0005d1.47
p (cm2). (37)

On the other hand, soil is composed of particles with
different sizes. In addition, smaller particles have more
influence on the coefficient of permeability due to their
greater specific surface area. Hence, extensive investigations
have been conducted on correlating the permeability with
fraction of fine grains (D10, D5, and coefficient of uniformity
Cu = D60/D10) in the soil. For example, Ref. [90] developed

a permeability formula in which

k ∝ D0.6
60 D1.72

10

[
φ3

1 + φ

]
. (38)

To study this, several soil samples with different grain-size
distributions as depicted in Fig. 4 , are considered. Soil samples
for each of the grain-size distributions were prepared with two
porosities φ = 0.42 and φ = 0.55. The normalized intrinsic
permeability (k/D2

10) of LBM simulations of these samples are
calculated and plotted versus Cu in Fig. 13. The results show
that the permeability depends on the coefficient of uniformity
of the samples and increases with increasing uniformity
coefficient almost with a linear trend. It is in agreement with
the results of Ref. [57] and somewhat opposite to the results of
laboratory studies by Ref. [91] on the permeability of granular
filters, which indicate that uniformity coefficient has little

FIG. 13. Variations of normalized intrinsic permeability against
uniformity coefficient.
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FIG. 14. (Color online) Variation of tortuosity versus porosity for
three particle diameters.

influence on the permeability in comparison with the influence
of the percentage of smaller particles.

If the soil consists of nonuniform spheres, the effective
diameter Deff taken from the particle size distribution can
substitute dp value. In this work, “effective diameter” as
defined in Ref. [92] is considered as a representative parameter
for specific surface area of the sample:

Deff = 100%∑fχ /Dave,χ

, (39)

where χ represents number of the particle size classes that
are used, and fχ shows fraction of the particles between two
sieves larger (Dl,χ ) and: smaller (Ds,χ ), calculated by:

Dave,χ = √
Dl,χDs,χ . (40)

The variation of the normalized permeability (k/D2
eff) with

uniformity coefficient of the samples with various porosities
is depicted in Fig. 13. The figure shows that there is a strong
correlation between permeability and effective diameter. By
using the effective diameter for predicting the permeability
coefficient, the effects of uniformity coefficient are implicitly
accounted for. Hence, the effect of Cu on the permeability
almost disappears in this way.

C. Tortuosity

As mentioned before, another important parameter which
affects fluid flow in the porous media and as a result, the
intrinsic permeability, is the tortuosity of streamlines in the
porous media. In Fig. 14 LBM simulation results along with
the proposed equations have been presented. This figure
demonstrates the reduction of the tortuosity of the flow paths
with increasing the porosity for monosized samples as defined
by Eq. (3). The trend of the data can roughly be considered
linear similar to that proposed by Koponen et al. [Eq. (11)] or
the equation proposed by Iversen and Jørgensen [Eq. (17)], but
contradictory to the nonlinear relations given by some other
researchers. As we can see, the simulations results have an
excellent agreement with the equation proposed by Ahmadi
et al. [Eq. (18)] especially for porosities greater than 0.55. In
addition, the simulation results have a good agreement with
the simple Eq. (19) proposed by different authors.

FIG. 15. Comparing actual tortuosity and volume-averaged
tortuosity.

In Fig. 15 the actual tortuosity is compared with the
“volume-averaged tortuosity” [57,81], whose definition is

T =
∑ |V (x,y,z)|∑ |Vi(x,y,z)| , (41)

where |Vi(x,y,z)| is the magnitude of velocity in the direction
i along which the pressure gradient is applied, and |V (x,y,z)|
is the magnitude of velocity vector at a certain location with
the coordinates of (x, y, z):

|V (x,y,z)| =
√

Vx(x,y,z)2 + Vy(x,y,z)2 + Vz(x,y,z)2.

(42)

As can be seen in this Fig. 15, the volume-averaged
tortuosity tends to very large values for the porosities less than
0.55 and tends to infinity at positions where velocity in the
direction i is close to zero. Also in Eq. (12) when the porosity
gets close to φc, the tortuosity tends to infinity. This does not
seem to actually occur in 3D porous media such as granular
soils. When the porosity gets close to φc the streamlines which
successfully reach the end of the domain become less and less
until no complete streamline remains, and it does not mean
that tortuosity must tend toward very large values. As shown
in Fig. 15 the actual tortuosity does not become very large
even at low porosities.

In Fig. 14 the simulation results for three different par-
ticle diameters have also been presented. According to this
graph, tortuosity decreases with greater particle diameters, but
particle diameters in the range of sandy soils do not affect
the tortuosity parameter very much, especially for porosities
greater than 0.6.

V. CONCLUSION

A newly developed 3D multirelaxation time LBM code
has been employed to investigate the effects of several issues
such as effective porosity, particle size, pore size distribution,
and tortuosity on the infiltration characteristics of saturated
granular media. Different soil samples have been made
numerically using the Discrete Element Method. The study
highlights the importance of considering three dimensionality
of the flow regime in order to obtain a realistic view regarding
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the streamlines and the effects of tortuosity on the permeability
of the granular soil strata.

From the LBM simulations conducted in this study the
following conclusion can be drawn:

(1) In granular soils, there exists a “threshold porosity”
below which, the connectivity of the pore spaces in the soil
virtually vanishes and the permeability of the soil drastically
reduces.

(2) To take the occluded pore spaces and dead-end stream
paths into account it is recommended to use effective porosity
value (∅eff) instead of the total porosity in the commonly used
relationships proposed for estimating the soil permeability.
Excellent logarithmic fits were found to the simulated results,
but it was not possible to deduce simple analytical expressions
for nonhomogenized samples.

(3) Variations of the normalized permeability with re-
spect to the D10 shows a linear increasing trend when it
is plotted against the coefficient of uniformity (Cu), and
it becomes constant when it is plotted using Deff of the
soil.

(4) The tortuosity value has a general decreasing trend
when the soil porosity or particles diameters increase, however,
due to 3D mechanism of the flow even for low porosities,
it does not become higher than 1.6. Also, the numerical
results show that the porosity has greater effects on tortuosity
comparing to particle diameter for the diameters in a range of
sandy soils.

(5) In contrast with volume average tortuosity, the actual
tortuosity does not tend towards infinity at the porosities close
to the threshold porosity (φc).
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