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Retaining space and time coherence in radiative transfer models
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A recent model for radiative transfer that accounts for spatial coherence is extended in such a way as to retain
temporal coherence. The method employs Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy techniques. Both
spatial and temporal coherence are shown to affect the formation of atomic line spectra. Calculations of Lyman
α radiation transport in optically thick divertor plasma conditions are reported as an illustration of the model.
A possible extension of the formalism to dense media involving correlations between atoms is discussed in an
appendix. A link to partial frequency redistribution modeling is also discussed.
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I. INTRODUCTION

Radiation transport models are involved in optically thick
gases and plasmas: applications include astrophysics [1], labo-
ratory experiments (e.g., inertial and magnetic fusion facilities
[2,3]), gas discharge lamps [4], lasers [5], and biomedical
physics [6,7]. As a rule, the radiation field is viewed as a set of
particles (photons) evolving along straight lines and interacting
locally with massive particles (e.g., atoms) through emission,
absorption, and scattering processes. This particle picture is
suitable for an interpretation in terms of classical physics
(through Newtonian mechanics and geometrical optics), but it
may be inaccurate in regimes such that the radiation coherence
length λc ∼ c/�ω ≡ �/�p (with �ω = c�p/� being the
radiation’s characteristic spectral band [8]) is comparable to
the characteristic gradient length scales.

A generalization of the radiative transfer equation that
accounts for spatial coherence has been derived recently, using
a master equation for the quantized electromagnetic field
and adapting it to the one-photon Wigner function [9]. The
resulting transport equation has nonlocal source and loss terms
involving a phase-space volume (�x�p)3 of the order of �

3.
For radiation with a small spectral band as in atomic lines,
the delocalization in space can be important and it would be
observable, in principle, according to calculations that have
been performed in [10]. An experimental test of the theory
using a laser source has also been suggested in [10]. Because
a laser light has a narrow spectrum, the coherence length
can be very large (up to several tens of centimeters [5]) and
comparable to the cavity size, so that a measurement of the
output power could serve as a benchmark.

An issue that remains to be clarified concerns the role
of temporal coherence. The coherence time 1/�ω implies
a “coarse-graining” scale under which physical processes are
ambiguous, in the same fashion as does the coherence length.
This ambiguity is associated with the Fourier time-frequency
(or Heisenberg time-energy) uncertainty relation, and it must
be retained consistently with the spatial delocalization in a
realistic calculation.

The purpose of this article is to provide a method to account
for both spatial and temporal coherence in radiation transport
models and to investigate the effects of temporal coherence
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on the formation of spectral lines. The method is inspired
from plasma kinetic theory and employs an adaptation of
the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy to photons and atoms. The article is organized as follows:
Sec. II gives a summary of the radiation transport model
accounting for spatial coherence and previously developed
in [10], the BBGKY hierarchy technique is presented and
discussed in Sec. III, and a closure model for coherent radiation
is presented in Sec. IV. Calculations of the transport of
hydrogen Lyman photons in optically thick divertor plasma
conditions are reported as an illustration of the model in
Sec. V. Two appendixes are devoted to further extensions of the
formalism and application to partial frequency redistribution
modeling.

II. RADIATIVE TRANSFER EQUATION WITH
SPATIAL COHERENCE

The derivation of a photon transport equation retaining
radiation coherence requires a careful consideration of the
coupled photon-atom dynamics. In [10], a first-principles
approach based on QED master equations has been used and
adapted to the quantum phase-space formalism, in such a
way as to capture the particle (photon) picture involved in
radiative transfer textbooks. We give hereafter a summary of
the theoretical background.

The system of interest is a gas of N atoms or multicharged
ions with discrete energy levels, immersed in a plasma and
emitting and absorbing radiation in spectral lines. It is assumed
that the radiation has a narrow band in the sense that spectral
lines are well resolved; a criterion for that is provided by the
condition �ω/ω0 � 1, where ω0 is the position in frequency
of a spectral line and �ω is the characteristic width. The
radiation is described within the second quantization, using the
standard discretization procedure for modes [11]. The density
operator ρ of the total (atoms + plasma + radiation) system
obeys the Liouville-von Neumann equation

dρ

dt
+ i

�
[H,ρ] = 0, (1)

and the Hamiltonian reads

H = HR + HA + V ≡ HR +
N∑

a=1

[HA(a) + V (a)]. (2)
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HR refers to the evolution of the free radiation field, HA(a)
denotes the evolution of the atom a under the influence of
the plasma but assuming no radiation is present, and V (a) is
the dipole interaction term (long-wavelength approximation).
Explicitly, this term reads

V =
∑

a

−da · E(ra), (3)

where da , ra are the dipole moment and the position operator
of the center of mass of the atom a, and E is the quantized
transverse electric field:

E(r) =
∑

j

i

√
�ωj

2ε0L3
(aj e

ikj ·r − a
†
j e

−ikj ·r)εj . (4)

Here, the sum is done over the discretized radiation modes
(kj ,εj ) ≡ j (kj is the wave vector and εj is the polarization
vector), aj and a

†
j are the annihilation and creation operators,

L3 is the quantization volume, and ωj = |kj |c. In Eq. (2), it is
implied that the free charged particles (the “plasma”) do not
interact with the radiation, i.e., we omit the bremsstrahlung and
its inverse in our treatment. It is also implied that the atoms do
not collide between each other.

The Liouville-von Neumann equation (1) is general but
not practical for calculations since it involves a huge Hilbert
space. A common approach consists in writing down master
equations for reduced density operators obtained from partial
trace; examples of such operators include the radiation field
density operator ρR = TrA(ρ) and the atomic density operator
ρA = TrR(ρ) where TrA(. . . ) and TrR(. . . ) refer to trace
with respect to the atoms’ and the radiation’s Hilbert space,
respectively. The master equation used in [10] for the radiation
field results from a series of algebraic operations done on the
Liouville-von Neumann equation within the weak-coupling
approximation, following previous works [12,13]. It reads

dρR

dt
(t) + i

�
[HR,ρR(t)]

= − 1

�2

∫ ∞

0
dτTrA[V,[e−iH0τ/�V eiH0τ/�,ρA(t)ρR(t)]],

(5)

where H0 = HA + HR . This equation can be interpreted
as a balance relation assuming the photon-atom interaction
processes are short-time events well separated in time. These
constraints ensure that the integral’s upper bound can be set
to infinity, while the density operator can be factorized and
evaluated at time t (Markov approximation, e.g., [14,15]).
In the right-hand side, it is sufficient to keep only terms
bilinear in aj , a

†
j because they are resonant (rotating-wave

approximation).
A phase-space adaptation of Eq. (5) that makes a link to the

radiative transfer equation is obtained by forming an evolution
equation for the coherence function Njj ′ (t) = TrR[a†

j aj ′ρR(t)]
and “Wigner” transforming it, using the relation

W (r,p,t) =
(

2

�L

)3 ∑
jj ′

δεj εj ′ δ

(
kj + k′

j − 2p
�

)

×Njj ′ (t)e−ikjj ′ ·r, (6)

and its reciprocal

Njj ′ (t)=
(

2π�

L

)3 δεj εj ′

2

∫
d3reikjj ′ ·rW

(
r,

�kj

2
+ �kj ′

2
,t

)
,

(7)
with W (r,p,t) being the one-photon Wigner function. Here by
definition kjj ′ = kj − kj ′ . The evolution equation for Njj ′ has
the structure of a first-order matrix differential equation

dNjj ′

dt
− i(ωj − ωj ′ )Njj ′

= γ2jj ′ −
∑
j ′′

(�jj ′′Nj ′′j ′ + �∗
j ′j ′′Njj ′′ ). (8)

The first term of the right-hand side is a source corresponding
to spontaneous emission and the second term accounts for
absorption and stimulated emission and can be interpreted as a
loss if the medium is not amplifying. The rates can be written in
terms of two half-Fourier transforms of correlation functions
denoted �1jj ′ and �2jj ′ ; explicitly

γ2jj ′ = �2jj ′ + �∗
2j ′j , (9)

�jj ′ = �∗
1jj ′ − �2jj ′ , (10)

with

�1jj ′ =
√

ωjωj ′

2ε0�L3
TrA

N∑
a,a′=1

∫ ∞

0
dτDaj e

−iHAτ/�

×D
†
a′j ′e

iHAτ/�eiωj ′ τ ρA(t), (11)

�2jj ′ =
√

ωjωj ′

2ε0�L3
TrA

N∑
a,a′=1

∫ ∞

0
dτD

†
aj e

−iHAτ/�

×Da′j ′eiHAτ/�e−iωj ′ τ ρA(t), (12)

and where the notation Daj = da · εj exp(−ikj · ra) has been
used. A practical simplification consists in assuming the atoms
independent of each other and yields the formal substitution∑N

a,a′=1 → N
∑N

a,a′=1 δaa0δa′a0 with a0 referring to any atom.
A summation of Eq. (8) over the radiation modes following
Eq. (6), together with the reciprocal relation (7), yields the
following closed transport equation for the Wigner function:

∂W

∂t
+ c{W,|p|}M = S − L[W ], (13)

where {,}M denotes the Moyal bracket

{W,|p|}M = 1

i�
(W � |p| − |p| � W ), (14)

and where the source and loss terms are given by

S(r,p,t) = 1

�|p|3 lim
r′ → r
p′ → p

Re(ηc � �∗
r′,p′)(r,p,t), (15)

L[W ](r,p,t) = c lim
r′ → r
p′ → p

Re[(W�∗
r′,p′ ) � χc](r,p,t), (16)

with �r′,p′ = (π�)3(δr′ � δp′). The Moyal star product � implies
nonlocal terms owing to radiation coherence. Equation (13)
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reduces to the common radiative transfer equation given
in textbooks [1,5,6,16–18] at the large spectral band limit
(incoherent radiation). The quantities ηc and χc in Eqs. (15)
and (16) are complex generalizations of the emission and
absorption coefficients used in the standard radiative transfer
equation, and they are related to the complex refractive
index used in classical electromagnetism [19]. Scattering
is implied and described within the complete redistribution
approximation.

The transport equation (13) presents a challenging com-
putational issue due to the six-dimensional integrals implied
in the Moyal products. It has been solved in specific cases
in [9,10,20], using simplifications (e.g., slab geometry with
localized boundary conditions) to illustrate the possible in-
accuracy of the standard radiative transfer theory at regimes
with significant coherence length. It should be emphasized
that such simplifications are very specific to the problem
under consideration and require a systematic analysis. The
integrals in Eqs. (15) and (16) involve strongly oscillating
kernels, with no straightforward discretization scheme, and
the Wigner function may exhibit significant “wave” features,
sufficiently so that the use of localized boundary conditions
can be questionable, e.g., [21]. An adaptation of Boltzmann
kinetic Monte Carlo solvers is also not straightforward,
because neither the kernels nor the Wigner function are true
probability density functions. The Monte Carlo method is
suitable for the weakly coherent radiation limit, where only
terms of the first order in � of the Moyal series are required
(such a procedure has already been used, e.g., in [22]). The
main advantage of the quantum phase-space approach is to
provide a transparent link between the particle picture utilized
in radiative transfer textbooks and the first-principles QED
framework. It should be noted that the transport equation (13)
contains the same amount of information as Eq. (8), while
being more complicated. It would be relevant to consider
Eq. (8) for numerical calculations. In the stationary regime
(d/dt ≡ 0), this equation is of the Lyapunov-type and can
be solved using algorithms already available in the literature
[23,24].

III. RETAINING TEMPORAL COHERENCE

The transport equation presented in the previous section,
either in the form (8) or (13), is a relation local in time,
implying the photon-atom interaction processes are short-time
events whose duration is negligible with respect to a relevant
relaxation time scale TR . This assumption is questionable if
the radiation is coherent. The temporal coherence involves a
time scale (�ω−1) under which the physical processes are
ambiguous, in the same fashion as does the spatial coherence.
A critical assumption made in the derivation of Eq. (8) [or (13)]
concerns the weak-coupling approximation implied in the
master equation (5). This approximation rests on a separation
in time of the photon-atom interaction processes and utilizes
the ordering �ωTR 
 1 (e.g., [14]). If this ordering is not
satisfied, the distinction between two consecutive processes,
say, a photon absorption at time t1 and a subsequent emission
at time t2, becomes ambiguous. A generalization of the master
equation (5) accounting for temporal coherence should involve

the following, more general, right-hand side

r.h.s.′ = − 1

�2

∫ t

0
dτTrA[V,[e−iH0τ/�V eiH0τ/�,e−iH0τ/�

× ρ(t − τ )eiH0τ/�]], (17)

together with an appropriate closure relation, an alternative to
the relation e−iH0τ/�ρ(t − τ )eiH0τ/� � ρA(t)ρR(t) implied in
Eq. (5).

Theoretical works have already been carried out in such
a way as to get such a relation for the description of
photon scattering processes, in the framework of redistribution
function modeling [13]. We develop here a method based on
the BBGKY hierarchy and inspired from quantum kinetic
theory (e.g., [25–29]). The quantities of interest are the
reduced p-atom density operators defined as Fp(1 . . . p) =
Trp+1...N (ρ). They obey the following hierarchy of equations
(t is not written explicitly){

d

dt
+ i

[
L̂R +

p∑
a=1

[L̂A(a) + V̂ (a)]

]}
Fp(1 . . . p)

= −i(N − p)Trp+1[V̂ (p + 1)Fp+1(1 . . . p + 1)]. (18)

Here, the hat ˆ denotes Liouville superoperators de-
fined in terms of commutators: L̂RX ≡ [HR,X]/�, L̂AX ≡
[HA,X]/�, and V̂ X ≡ [V,X]/� for any operator X. The
hierarchy equation (18) with 0 � p � N is equivalent to the
Liouville-von Neumann equation (1). The radiation density
operator ρR is identical to F0. As in classical kinetic theory,
it is practical to introduce a cluster expansion involving the
correlations

F1(1) = F̄1(1)F0 + G1(1),

F2(1,2) = F̄2(1,2)F0+F̄1(1)G1(2)+F̄1(2)G1(1)+G2(1,2),

F3(1,2,3) = F̄3(1,2,3)F0 + F̄2(1,2)G1(3) + F̄2(1,3)G1(2)

+F̄2(2,3)G1(1),+F̄1(1)G2(2,3) + F̄1(2)G2(1,3)

+F̄1(3)G2(1,2) + G3(1,2,3), . . . (19)

Here, F̄1(1), F̄2(a,b), etc. are joint atomic distribution
functions (operators) traced over the radiation field, i.e.,
F̄p(1 . . . p) = TrRFp(1 . . . p), and the G’s denote correlations
between the atoms and the radiation field. The reduced density
operator ρA defined in the previous section is identical to F̄N .

Equation (18) with 0 � p � N is equivalent to a hierarchy
of equations for the correlations, which is suitable for the
elaboration of a closure relation. It is instructive to examine
the first equations of this hierarchy:{

d

dt
+ i[L̂A(1) + ˆ̄V (1)]

}
F̄1(1) = −iTrR[V̂ (1)G1(1)], (20)[

d

dt
+ i(L̂R + ˆ̄VR)

]
F0 = −iNTr1[V̂ (1)G1(1)], (21){

d

dt
+ i[L̂R + L̂A(1) + V̂ (1) + ˆ̄VR]

}
G1(1)

−iF0TrR[V̂ (1)G1(1)]

= −iδV̂ (1)[F̄1(1)F0]−iNTr2{V̂ (2)[Ḡ2(1,2)F̄0+G2(1,2)]}.
(22)
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The derivation involves tedious algebraic manipulations with
traces and commutators and has not been detailed here. The
first equation describes the evolution of the one-atom density
operator under the influence of interactions with the radiation
field and with the plasma (recall that the plasma is also
accounted for in L̂A and in F̄1). The superoperator ˆ̄V (1) is
associated with the interaction Hamiltonian V (1) averaged
over the radiation field, V̄ (1) = TrR[V (1)F0] (Hartree-Fock
contribution). It involves the mean electric field and can be
important in amplifying media, e.g., in a laser cavity. It is
identically zero if the radiation field is in a well-defined
Fock state (totally incoherent limit). Note the analogy with
the mean field involved in the classical Vlasov equation. In
the atomic physics framework, it can also be viewed as a
“dressing” correction to the energy levels. The right-hand side
is a source + loss term induced by radiation-atom correlations
and can be assimilated to the usual spontaneous or stimulated
emission and absorption processes. Equation (21) describes
the evolution of the radiation field and is equivalent to the
master equation (5) with the r.h.s. (17). The superoperator
ˆ̄VR is associated with the operator NTr1[V (1)F̄1(1)] ≡ V̄R

and involves the mean dipole resulting from the N atoms. It
can be important if there are atomic coherences (nondiagonal
matrix elements of the atomic density operator F̄1). Finally,
Eq. (22) describes the evolution of the correlation between the
radiation field and atom 1; δV (1) = V (1) − V̄ (1) [δV̂ (1) =
V̂ (1) − ˆ̄V (1) in the Liouville space] is short-hand notation
and denotes the deviation to the mean interaction between the
radiation field and atom 1; Ḡ2(1,2) = F̄2(1,2) − F̄1(1)F̄1(2) is
the correlation between atom 1 and atom 2.

Equations (20)–(22) are coupled to each other and do
not form a closed set of equations due to the presence
of the correlations G2 and Ḡ2. In general, the correlations

G1, G2, etc., can be viewed as quantities of first order, second
order, etc., in δV , which suggests a perturbative scheme
for the elaboration of a closure relation. The weak-coupling
approximation corresponds to assuming G2 ≡ 0 and Ḡ2 ≡ 0,
together with V̄1 ≡ 0, and neglecting terms of the second order
in δV in Eq. (22); the G1 correlation obtained in this framework
reads

G
(1)
1 (1,t)

= −i

∫ t

0
dτe−i[L̂R+L̂A(1)]τ V̂ (1)[F̄1(1,t − τ )F0(t − τ )]

� −i

∫ t

0
dτe−i[L̂R+L̂A(1)]τ V̂ (1)ei[L̂R+L̂A(1)]τ [F̄1(1,t)F0(t)]

� −i

∫ ∞

0
dτe−i[L̂R+L̂A(1)]τ V̂ (1)ei[L̂R+L̂A(1)]τ [F̄1(1,t)F0(t)],

(23)

indicating the factorization e−iH0τ/�ρ(t − τ )eiH0τ/� �
ρA(t)ρR(t) implied in Eq. (5) and discussed above. The
t → ∞ limit in the integral’s upper bound denotes an
asymptotic description, as done in the elaboration of classical
master equations (e.g., [30]).

IV. CLOSURE MODEL FOR COHERENT RADIATION

We propose hereafter an extension of the weak-coupling
approximation designed in such a way as to account for finite
time coherence. We still neglect second-order correlations and
mean fields but relax the approximation F̄1(1,t − τ )F0(t −
τ ) � exp{i[L̂R + L̂A(1)]τ }[F̄1(1,t)F0(t)] done in Eq. (23). In
this framework, the radiation and one-atom density operators
F0 and F̄1(1) obey a closed set of equations nonlocal in time

[
d

dt
+ iL̂A(1)

]
F̄1(1,t) = −TrR

∫ t

0
dτ V̂ (1)e−i[L̂R+L̂A(1)]τ V̂ (1)[F̄1(1,t − τ )F0(t − τ )], (24)

(
d

dt
+ iL̂R

)
F0(t) = −NTr1

∫ t

0
dτ V̂ (1)e−i[L̂R+L̂A(1)]τ V̂ (1)[F̄1(1,t − τ )F0(t − τ )]. (25)

It is possible to write down an evolution equation for the coherence function Njj ′ introduced in Sec. II, starting from Eq. (25)
and using the commutation properties of the creation and annihilation operators. The resulting equation has a structure similar to
Eq. (8) but it involves source and loss terms nonlocal in time:(

d

dt
− iωjj ′

)
Njj ′ (t) =

∫ t

0
dτ γ̄2jj ′ (t,τ ) −

∑
j ′′

∫ t

0
dτ [�̄jj ′′ (t,τ )eiωj ′′j ′ τNj ′′j ′ (t − τ ) + �̄∗

j ′j ′′ (t,τ )eiωjj ′′ τNjj ′′ (t − τ )]. (26)

Here, the short-hand notation ωj − ωj ′ ≡ ωjj ′ has been introduced and the rates present in the integrals are defined by γ̄2jj ′ =
�̄2jj ′ + �̄∗

2j ′j , �̄jj ′ = �̄∗
1jj ′ − �̄2jj ′ , with

�̄1jj ′(t,τ ) = N√
ωjωj ′

2ε0�L3
Tr1[eiHA(1)τ/�Dje

−iHA(1)τ/�D
†
j ′ F̄1(1,t − τ )]eiωj ′ τ , (27)

�̄2jj ′ (t,τ ) = N√
ωjωj ′

2ε0�L3
Tr1[eiHA(1)τ/�D

†
j e

−iHA(1)τ/�Dj ′ F̄1(1,t − τ )]e−iωj ′ τ . (28)

The operator Dj = d · εj exp(−ikj · r) refers to the dipole moment d and the position r of atom 1, i.e., Dj ≡ Daj with a = 1.
The source and loss terms in Eq. (26) are nonlocal in time due to the finite duration of the photon-atom interaction processes.
They become local at the limit �ω−1 → 0.
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A phase-space picture can be set up using the same procedure as in Sec. II, i.e., introducing the one-photon Wigner function
and interpreting the trace in Eqs. (27) and (28) as an average involving the atomic phase-space density. The resulting evolution
equation for the photon Wigner function has the same structure as Eq. (13) but involves source and loss terms nonlocal in time:

S(r,p,t) = 1

π3�4p3
Re

∫
d3r ′

∫
d3p′

∫ t

0
dτ η̄c(r′,p′,t,τ )e−2i(r−r′)·(p−p′)/�, (29)

L[W ](r,p,t) =
∫

d3r ′
∫

d3p′
∫ t

0
dτK̄(r,p,r′,p′,t,τ )W (r′,p′,t − τ ), (30)

K̄(r,p,r′,p′,t,τ ) = c

(π�)6
Re

∫
d3r ′′

∫
d3p′′χ̄c(r′′,p′′,t,τ )e2i[(r−r′)·(p′−p′′)−(r−r′′)·(p−p′)]/� × eicτ (p′′−|2p′−p′′|)/�. (31)

Here, by definition,

χ̄c = χ̄c,abs − χ̄c,em, (32)

η̄c = Aeg

Beg

χ̄c,em, (33)

χ̄c,abs(r,p,t,τ ) =
∫

d3vχ̃c,abs(r,p,v,t,τ ), (34)

χ̄c,em(r,p,t,τ ) =
∫

d3vχ̃c,em(r,p,v,t,τ ), (35)

χ̃c,abs(r,p,v,t,τ ) = fg(r − vτ,v,t − τ )
�ω0Bge

4π2
C(τ )e−i(pc−p·v)τ/�, (36)

χ̃c,em(r,p,v,t,τ ) = fe(r − vτ,v,t − τ )
�ω0Beg

4π2
C(τ )e−i(pc−p·v)τ/�. (37)

The subscripts g, e refer to the lower and upper levels of the transition; Aeg , Beg , and Bge are the Einstein coefficients; C(τ ) is
the autocorrelation function of the atomic dipole projected onto the polarization plane in reduced units; and fg and fe are the
phase-space densities of atoms in the lower and upper levels normalized to the total number of atoms [i.e.,

∫
d3rd3v(fg + fe) =

N ].
The atoms’ phase-space densities are formally defined as fg,e(r′,v′,t) = NTr1[Pg,eδ(r′ − r)δ(v′ − v)F1(1,t)], where Pg and

Pe are projectors onto the lower and upper levels, r and v are the position and velocity operator of the atom’s center of mass,
and r′ and v′ stand here for scalar quantities. A Wigner transform can be used instead of the delta functions if the center-of-mass
thermal de Broglie length is comparable to another relevant length scale. Applying the trace NTr1[Pg,eδ(r′ − r)δ(v′ − v) . . . ] to
Eq. (24) yields a set of evolution equations for fg and fe

∂fg,e

∂t
(r,v,t) + v · ∂fg,e

∂r
(r,v,t) = ±Aegfe(r,v,t) ∓ c

(π�)3
Re

∫
d3r ′

∫
d3p′

∫
d3p′′

∫ t

0
dτ χ̃c(r,p′′,v,t,τ )

×e2i[(r−r′)·(p′−p′′)]/� eicτ (p′′−|2p′−p′′|)/� W (r′,p′,t − τ ). (38)

The upper (lower) sign refers to the evolution of fg (fe). The
plus or minus sign indicates that the total number of atoms
N is conserved. Equation (38) holds in the limiting case
where interactions with the plasma (collisions) are negligible.
A generalization that accounts for collisional excitation and
deexcitation can be set up through additional source and loss
terms involving rates; ionization and recombination processes
can be retained in the same way. It is worth noting that
the density of atoms in the ground level Ng = ∫

d3vfg

obeys the same evolution equation as the photon density
N = ∫

d3pW if collisions and mean (fluid) velocity are
neglected.

V. APPLICATION

We have applied the model to the absorption of a large
spectral band radiation pencil propagating in a hydrogen
gas at conditions of optically thick magnetic fusion plas-

mas [3,31–35]. The first transition (Lyman α, 2 → 1) is
discussed here. The time evolution of the mean photon
number Nj (t) = TrR[a†

j ajρR(t)] has been calculated from the
master equation (26). Only diagonal matrix elements in the
radiation’s Fock space have been retained. For simplicity, we
have assumed a homogeneous medium with space- and time-
independent atomic parameters, and emission processes have
not been retained. In this framework, the mean photon number
obeys an integro-differential equation with a convolution
term

dNj

dt
= −c

∫ t

0
dτ χ̄ (ωj ,τ )Nj (t − τ ). (39)

The kernel is given by

χ̄ (ωj ,τ ) = Ng

�ω0Bge

4π2
Re[CD(τ )e−iωj τ ], (40)
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FIG. 1. Photon attenuation Nj (t)/Nj (t = 0) at the mode corre-
sponding to the central frequency of Lyman α, at optically thick
divertor plasma conditions (see text). The time is set in units of
the photon time of flight, estimated as 1/cχ (ωj ) and of the order of
10−12 s here. The photon attenuation deviates from a pure exponential
decrease due to coherence. Negative values are a feature of the
ambiguity in the definition of a photon number at times smaller than
the coherence time.

where CD(τ ) = C(τ ) exp(−�ω2
Dτ 2/4) accounts for the

Doppler broadening [�ωD ≡ ω0v0/c stands for the Doppler
width associated with the thermal velocity v0 = (2Tat/mat)1/2].
A formal solution of Eq. (39) can be obtained from Laplace
transform techniques. The photon attenuation at time t is given
by the following relation:

Nj (t)

Nj (t = 0)
= 1

2iπ

∫
C

dsest

s + c
2 [χc(ωj − is) + χ∗

c (ωj − is∗)]
.

(41)

Here C is the vertical Bromwich contour and χc is the complex
extinction coefficient introduced in Sec. II. The integral (41)
has been evaluated numerically. Figure 1 shows the photon
attenuation at the line center (ωj = ω0) assuming a density
of absorbers of 2 × 1014 cm−3, with the temperature Tat = 1
eV. Only Doppler broadening has been retained. At these
conditions, the coherence time is of the same order as the
photon time of flight [estimated as 1/cχ (ωj ); it provides a
characteristic relaxation time]. As can be seen, the attenuation
curve is distorted and exhibits oscillations when coherence
is retained. Negative values are a feature of the ambiguity
in the definition of a photon number at times smaller than
the coherence time, in the same way as an ambiguity occurs
in the localization of a wave packet at a spatial scale shorter
than the coherence length. This result is in agreement with
heuristic arguments involving the Fourier time-frequency
uncertainty relation. It suggests that time-dependent radiation
transport models can be inaccurate if the coherence time is
comparable to or larger than a relevant relaxation time in
the problem under consideration. It is instructive to examine
an ideal case where the dipole autocorrelation function is an
exponential (e.g., due to collisions) and Doppler broadening

is not retained. The integral (41) can be calculated explicitly:

Nj (t)

Nj (t = 0)
= 1 + √

1 − 4cχ0/γ

2
√

1 − 4cχ0/γ
e−γ (1−√

1−4cχ0/γ )t/2

−1 − √
1 − 4cχ0/γ

2
√

1 − 4cχ0/γ
e−γ (1+√

1−4cχ0/γ )t/2. (42)

The dimensionless parameter cχ0/γ denotes the ratio between
the coherence time 1/γ and the photon time of flight 1/cχ0

[with χ0 ≡ χ (ω0)]. As can be seen, the photon attenuation
deviates from the pure exponential decrease exp(−cχ0t) due
to the radiation coherence. The presence of an imaginary part
in the exponentials as soon as cχ0/γ exceeds 1/4 indicates
damped oscillations. This result is qualitatively in agreement
with the case where Doppler broadening is considered. At
the limit of strong coherence (cχ0/γ → ∞), the photon
attenuation behaves as

Nj (t)

Nj (t = 0)
∼ e−γ t/2 cos

(√
cχ0

γ
γ t

)
, (43)

which indicates damped oscillations with a damping constant
of the order of the inverse coherence time.

VI. CONCLUSION

In this work, we have developed an extension of the
radiative transfer theory suitable for the modeling of coherent
radiation with narrow-band spectrum. The coherence length
and time are interpreted as space and time scales characteristic
to photon-atom interaction processes. In the large spectral
band limit, these quantities are formally treated as arbitrarily
small parameters and the interactions are local. If a relevant
relaxation time or gradient length is sufficiently small so
as to be comparable to the coherence time or length, the
locality assumption becomes invalid. The nonlocality owing to
spatial coherence can be addressed through a quantum phase-
space description of photons involving Wigner functions. The
temporal coherence directly affects the photon-atom master
equations and requires a reconsideration of basic assumptions
such as Markovianity. With an adaptation of the BBGKY
hierarchy, we have shown that temporal coherence yields
an ambiguity in the definition of a characteristic duration of
photon-atom interactions.

An application to magnetic fusion plasma conditions has
indicated an alteration of the formation of spectral lines,
suggesting a possible inaccuracy in standard radiative transfer
models. These results are still qualitative and require further
examination with confrontations to experiments. A possible
extension of the work could involve the analysis of atomic lines
observed in discharge lamps. Specific experiments carried out
on excimer light sources and dielectric barrier discharges have
indicated very clean spectra of the Lyman α line [36–39]
that would serve as a test of the model. Another domain of
application includes the characterization of ultrashort laser
pulses and their interaction with an absorbing or amplifying
medium. Recent investigations have indicated an interplay
between the pulse duration and the probability of radiation
absorption [40]. This issue could be addressed using the
radiation transport model presented here. On the theoretical
side, an extension of the work should concern the link between
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the present model and alternative first-principles approaches to
radiative transfer that involve the quantized Maxwell equations
and related atomic operators in the Heisenberg picture (e.g.,
[41,42]). Such approaches are convenient for an interpretation
in terms of classical electromagnetism. Recent works have also
shown their applicability in problems involving two-photon
correlations (see [43]).

APPENDIX A: BEYOND THE WEAK-COUPLING LIMIT

We present hereafter an extension of the closure relation
G1(1,t) = −i

∫ t

0 dτ exp{−i[L̂R + L̂A(1)]τ }V̂ (1)[F̄1(1,t −
τ )F0(t − τ )] performed in Sec. IV, which is designed to
account for correlations between atoms. The method involves
a finite expression for G2 and is inspired from renormalization
techniques in quantum kinetic theory [26,27]. It is also
inspired from previous works in plasma spectroscopy (Stark
line shape) modeling [44–47]. We assume that quantities
proportional to N δV can be of an arbitrary order of
magnitude, using that N is large, while the perturbation δV

is still considered as a small parameter (in the terminology
of [45], the model retains the cumulative effect of weak
individual interactions). The evolution of the G1 correlation
at the first order in δV is given by the following equation:{

d

dt
+ i

[
L̂R + L̂A(1)

]}
G1(1)

= −iV̂ (1)[F̄1(1)F0] − iNTr2[V̂ (2)G2(1,2)]. (A1)

Here, the Hartree-Fock contributions ˆ̄VR and ˆ̄V (1) have not
been retained and the substitution δV̂ ≡ V̂ has been done for
the sake of simplicity. The Ḡ2 correlation is also neglected. The
contribution of G2 is described using the following model:

iNTr2[V̂ (2)G2(1,2)] ≡ K̂G1(1) + [K̂G1(1)]†, (A2)

where K̂ is a linear superoperator nonlocal in time (i.e.,
involving a time integral) and interpreted as a self-energy
contribution to the Hamiltonian HR . It is defined implicitly by
identification with self-energy terms in Eq. (21). To determine
an explicit definition we first write the formal solution of
Eq. (A1) as

G1(1,t) = − i

�

∫ t

0
dt ′Q1(1,t,t ′)[V (1),F̄1(1,t ′)F0(t ′)]

×Q
†
1(1,t,t ′). (A3)

The operator Q1(1,t,t ′) is a propagator defined by{
∂

∂t
+ i

�
[HR + HA(1)] + K̂

}
Q1(1,t,t ′) = δ(t − t ′). (A4)

Inserting the formal solution (A3) in the right-hand side
of Eq. (21) yields four terms resulting from the double
commutator(

d

dt
+ iL̂R

)
F0(t)

= − N
�2

Tr1

∫ t

0
dt ′V (1)Q1(1,t,t ′)V (1)F̄1(1,t ′)

×F0(t ′)Q†
1(1,t,t ′)

+ N
�2

Tr1

∫ t

0
dt ′V (1)Q1(1,t,t ′)

× F̄1(1,t ′)F0(t ′)V (1)Q†
1(1,t,t ′)

+ H.c. (A5)

H.c. stands for the Hermitian conjugate. The first term of
the right-hand side and its conjugate can be combined with
the Hamiltonian HR (implied in the Liouvillian L̂R) and
interpreted as self-energy contributions, which provides a
definition for K̂

K̂F0(t) = N
�2

Tr1

∫ t

0
dt ′V (1)Q1(1,t,t ′)

×V (1)F̄1(1,t ′)F0(t ′)Q†
1(1,t,t ′). (A6)

An approximation suitable for calculations consists in assum-
ing the K̂ superoperator local in time and assimilating it
to an operator, K̂ ≡ K . This can be done through the sub-
stitution F̄1(1,t ′)F0(t ′)Q†

1(1,t,t ′) → exp{i[HR + HA(1)](t −
t ′)/�}F̄1(1,t)F0(t) in Eq. (A6). The resulting K operator is
defined as

K(t) = N
�2

Tr1

∫ t

0
dt ′V (1)Q1(1,t,t ′)

×V (1)e
i
�

[HR+HA(1)](t−t ′)F̄1(1,t), (A7)

and can be further simplified as

K(t) � N
�2

Tr1

∫ ∞

0
dτV (1)e{− i

�
[HR+HA(1)]−K(t)}τ

×V (1)e
i
�

[HR+HA(1)]τ F̄1(1,t), (A8)

using the approximation Q1(1,t,t ′) � exp ({−i[HR +
HA(1)]/� − K(t)}(t − t ′)) and taking the t → ∞ limit in
the integral’s upper bound. Equation (A8) is not a closed
expression for K due to the presence of this term in the
exponential. In practice, a calculation can be done by
iterations, using Eq. (A8) with K ≡ 0 in the right-hand side
as an initialization.

The master equation resulting from this model has the
same formal structure as Eq. (5) with the substitution
[e−iH0τ/�V eiH0τ/�,ρAρR] → e−i(H0/�−iK)τV eiH0τ/�ρAρR −
H.c. Physically, the presence of K in the exponential denotes
an interruption of emitted or absorbed radiation wave packets
owing to the interactions with atoms located at a distance of
the order of the photon mean free path. It can be significant if
the radiation is coherent. Equation (A8) presents similarities
with the result of the so-called resonance broadening theory
used for plasma turbulence (e.g., in [48], see the analogy with
the implicit definition of the diffusion coefficient).

APPENDIX B: PARTIAL FREQUENCY REDISTRIBUTION

The formalism presented above can be adapted to problems
involving radiation frequency redistribution. We give here
an illustration in an ideal case. A set of two-level atoms
with constant and homogeneous phase-space density for
the ground state [i.e., fg(r,v,t) ≡ fg(v)] is considered. In
this framework, we can write a closed set of equations for
the photon spectral density N (ω,n,t) = ∫

d3rW (r,p,t)�p2/c

053103-7



J. ROSATO PHYSICAL REVIEW E 91, 053103 (2015)

[unit: (rad/s)−1sr−1; here, by convention p = �ωn/c] and
the space-integrated atomic phase-space density Fe(v,t) =∫

d3rfe(r,v,t):

∂N

∂t
(ω,n,t) = 1

�ω0

∫ t

0
dτ η̄(ω,t,τ )

−c

∫ t

0
dτ χ̄ (ω,τ )N (ω,n,t − τ ), (B1)

∂Fe

∂t
(v,t) = −(Aeg + Ceg)Fe(v,t) + c

∫
dω′

∫
d�′

×
∫ t

0
dτ χ̃ (ω′,n′,v,τ )N (ω′,n′,t − τ ) + CgeFg(v).

(B2)

Equation (B1) is obtained from space integration of the
quantum radiative transfer equation (13) with the source and
loss terms (29) and (30), and the terms η̄ and χ̄ are defined by

η̄(ω,t,τ ) =
∫

d3vFe(v,t − τ )
�ω0Aeg

4π2
Re[C(τ )e−iω(1−n·v/c)τ ],

(B3)

χ̄ (ω,τ ) =
∫

d3vχ̃ (ω,n,v,τ ), (B4)

with

χ̃ (ω,n,v,τ ) = fg(v)
�ω0Bge

4π2
Re[C(τ )e−iω(1−n·v/c)τ ]. (B5)

Equation (B2) stems from space integration of the evolution
equation for the atoms in the upper state, Eq. (38). The C
coefficients denote collision rates. For the sake of simplicity,

we neglect their dependence on velocity. We also assume that
the population of the excited level is much smaller than that
of the ground state (Ne � Ng), so that stimulated emission is
negligible.

A reformulation of the photon transport equation (B1) with
explicit mention to scattering can be obtained by solving
formally Eq. (B2), separating the contributions of photoex-
citation and collisional excitation, and inserting the solution
in the source term (B3). If we neglect retardation effects on
the photon density [viz., formally setting N (ω′,n′,t − τ ) �
N (ω′,n′,t) in the integral] and if we take the large time limit,
the resulting photon transport equation becomes similar to
models involving partial frequency redistribution (e.g., [1])

∂N

∂t
(ω,n,t) = −cχ (ω)N (ω,n,t) + NgCge

Aeg + Ceg

Aeg

4π
φ(ω)

+ Aeg

Aeg + Ceg

cNg�ω0Bge

4π

∫
dω′

×
∫

d�′

4π
R(ω,n,ω′,n′)N (ω′,n′,t). (B6)

The redistribution function R(ω,n,ω′,n′) is defined here by

R(ω,n,ω′,n′) = 1

π2

∫
d3vFg(v)Re

∫ ∞

0
dτC(τ )e−iω(1−n·v/c)τ

× Re
∫ ∞

0
dτ ′C(τ ′)e−iω′(1−n′ ·v/c)τ ′

. (B7)

In the case where only Doppler broadening is retained, the time
integrals are proportional to δ functions and the redistribution
function reduces to the RI function introduced by Hummer
[49].
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