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Refractive index in warm and hot dense matter
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A method to estimate the index of refraction in warm and hot dense matter is proposed. This method combines
the Kubo-Greenwood approach, Maxwell equations, and existing codes that calculate photoabsorption and
photoemission coefficients in warm and hot dense plasmas. An effective electrical conductivity is calculated
from existing opacity codes from which the index of refraction is derived. Illustrations are shown on specific
examples.
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I. INTRODUCTION

The theoretical knowledge of plasma dielectric properties
can be very useful to characterize such ionized media. For
example, the electron density of a plasma can be evaluated by
analyzing optical interferograms of a monochromatic photon
beam passing through the considered media. Assuming that
the index of refraction of a homogenous plasma is only due to
free electrons, the electron density is directly proportional to
the number of fringe shifts measured on the interferogram. In
such approximation, the index of refraction is lower than unity.
Recent interferometry experiments [1,2], involving soft x-ray
lasers to probe few ionized low- and mid-Z diluted plasmas,
have shown anomalous dispersion phenomena, i.e., observed
fringe shifts bend in opposite direction than was expected
if the index of refraction is simply given by free electrons.
Detailed analysis have shown that bound electron contribution
(resonant structures and absorption edge) can dominate the
index of refraction resulting in values greater that one. With
the development of x-ray-free electron lasers (XFEL), high-
density plasmas could be probed. A precise knowledge of
plasma dielectric properties in the short wavelength range will
then be needed to analyze the interferograms [3].

Various works have been published concerning the optical
properties of warm and hot dense matter starting from first
principles. Among them, one can distinguish those based
on the Kubo-Greenwood approach [4,5] using either quan-
tum molecular dynamics simulations [6–9] or average-atom
models [10–13]. The central quantity of interest is the real
part of the electronic dynamical electrical conductivity, from
which various optical quantities can be obtained using classical
Maxwell equations [14–16]. The main advantage of these
approaches is the powerful theoretical background from which
things are derived. Other works exist concerning the treatment
of the free-free component [17–20] or the implementation of
bound electrons [21–23] that are crucial to understand some
plasma interferometry experiments [1,2,23–25].

If the problem is rather complex and progresses are
noticeable, it is not always clear how the different approaches
published in the literature are connected, what are their internal
degree of consistency and domain of validity, or how they can
be improved. Indeed, taking into account the refractive index of
the medium is far from being anecdotal [7,26–32], and it raises
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many questions concerning the treatment of electrodynamics
in dense matter [33].

In this paper, we show how the calculation of the elec-
tronic dynamical electrical conductivity in the framework
of the Kubo-Greenwood approach using the average-atom
model [10–12] is related to the calculation of the photoabsorp-
tion and photoemission coefficients [34] in dense plasmas [35],
which are assumed to be in local thermodynamical equilibrium
(LTE). A method is proposed to estimate the index of refraction
in warm and hot dense matter from existing opacity codes
that could be useful to interpret XFEL-heating and XUV-
probe experiments performed on XFEL setups. Numerical
applications are presented and discussed. The last part is the
conclusion.

II. THEORY

From the linear response theory in the framework of the
nonrelativistic average-atom model, Johnson et al. [10] derived
bound-bound, bound-free, and free-free expressions for the
electronic frequency-dependent electrical conductivity. The
described theory is based on the Kubo-Greewood approach.
Note that the changes in the potential due to the perturbating
field are neglected, as stated by the authors. No ionic structure
treatment is considered. We keep these approximations that
should be questioned in future works. In particular, since
the average-atom model is a self-consistent field approach,
it is not clear to what extent freezing the potential in which
one-electron wavefunctions are calculated is legitimate or not.
We put aside this question for the moment, neglect the ionic
environment, and take as they are the formulas for the three
components established by Johnson et al. [10]. In this work,
since the words electrical conductivity refer to the electronic
electrical conductivity, the word electronic will be understood
as such when referring to the electrical conductivity.

These formulas are written in terms of the reduced
matrix elements of the velocity operator. We first transform
them in terms of the reduced matrix elements of the radial
operator [34]. Written under this form, we are going to
consider successively the free-free, the bound-bound, and the
bound-free parts. Note that some care is required concerning
the free-free radial matrix-element [28,36–39]. Its explicit
calculation in hot dense matter can be a difficult numerical
exercise, even if this matrix element is written under the
acceleration form [34,39].
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A. Free-free component in the one-electron approximation

Let us start with the free-free component σff(ω) of the
real part of the frequency-dependent electrical conductiv-
ity [10,34],

σff(ω) = 2πωe2

3�

∫ ∞

0
dε[f (ε) − f (ε + �ω)]

×
∑

�,�′=�±1

�>

[∫ ∞

0
drPε,�(r)rPε+�ω,�′(r)

]2

, (1)

where ω is the angular frequency, e the elementary charge, �

the reduced Planck constant, and � the atomic volume related
to the Wigner-Seitz radius aWS by the formula � = 4πa3

WS/3.
One has also � = 1/Ni , where Ni is the ionic density. � is the
orbital quantum number, and the one-electron radial parts of
the free wavefunctions are normalized such that [10]∫ ∞

0
drPε,�(r)Pε′,�(r) = δ(ε − ε′), (2)

where ε is the incident-electron energy and

f (ε) = 1

1 + eβε−η
(3)

is the Fermi-Dirac distribution function. Here, β = 1/kBT ,
where kB is the Boltzmann constant and T the temperature. η

is the dimensionless chemical potential related to the chemical
potential μ by η = βμ. The factor 2 in Eq. (1) accounts for
the electron spin. Moreover, �> is the maximum of the two
orbital quantum numbers of interest, here � and �′. One can
check that σff(ω) in Eq. (1) has the proper dimensions.

Let us simplify it using the Kramers approximation [34].
To do this, we consider the nonrelativistic expression of the
bremsstrahlung cross-section of an electron in a centrally
symmetric field {Eq. (9.241), p. 247 of Ref. [34]}, and
compare it to the Kramers expression of the bremsstrahlung
cross-section of an electron in a Coulomb field {Eq. (9.272),
p. 257 of Ref. [34]}. The bremsstrahlung cross-section of an
electron in a centrally symmetric field reads

dσε′;ε�ω

dω
= 8π2

3

ω3e2
�

c3q ′2
∑

�,�′=�±1

�>

×
[ ∫ +∞

0
Pε,�(r)rPε+�ω,�′(r)dr

]2

, (4)

where ε′ = (�q ′)2/2me, ε′ = ε + �ω, and c is the speed of
light, whereas the Kramers expression of the bremsstrahlung
cross-section of an electron in a Coulomb field reads

dσK

dω
= 16π

3
√

3

Z̄2e6

c3�3q ′2
1

ω
, (5)

where Z̄ is the effective nuclear charge. If the centrally
symmetric field is taken to be a Coulomb field, one can
compare Eqs. (4) and (5). If we do this, we find that

∑
�,�′=�±1

�>

[ ∫ ∞

0
drPε,�(r)rPε+�ω,�′(r)

]2

≈ 2

π
√

3

Z̄2e4

(�ω)4
.

(6)

Note that the result depends only on the energy difference
�ω. This kind of approach is usually encountered in opacity
calculations [34]. If we inject Eq. (6) inside Eq. (1), one finds
that

σff(ω) ≈ 4Z̄2e6

3
√

3�

Ni

(�ω)3

∫ ∞

0
dε[f (ε) − f (ε + �ω)]. (7)

The integration in energy leads to∫ ∞

0
dε[f (ε) − f (ε + �ω)]

=
∫

�ω

0
dεf (ε) = kBT log

(
1 + eη

1 + eη−β�ω

)
, (8)

and we obtain

σff(ω) ≈ 4Z̄2e6

3
√

3�

Ni

(�ω)3
kBT log

(
1 + eη

1 + eη−β�ω

)
. (9)

This is the expression found by More [40]. The divergence at
low frequencies can be eliminated by inserting a Drude-like
factor [10,41],

σff(ω) ≈ 4Z̄2e6

3
√

3�

Ni

γ 2 + (�ω)2

kBT

�ω
log

(
1 + eη

1 + eη−β�ω

)
, (10)

where the free parameter γ is tuned such that [10]
∫ ∞

0
dωσff(ω) = πe2Ne

2me

, (11)

where me is the electron mass and Ne = Z̄Ni is the electronic
density. Here, we assumed Z̄ to be the average ionization of
the plasma. Now, if we multiply σff(ω) by 4π/c in Eq. (10)
and make γ = 0, we obtain the Kramers expression for
the free-free photoabsorption coefficient with the degeneracy
correction and stimulated emission [35]. With γ �= 0, the
free-free photoabsorption coefficient reads

αff(ω) = 16πZ̄2e6

3
√

3c�

Ni

γ 2 + (�ω)2

kBT

�ω
log

(
1 + eη

1 + eη−β�ω

)
.

(12)

It can be shown [41] that stimulated emission is taken into
account in this expression.

B. Bound-bound component in the one-electron approximation

Let us now consider the bound-bound component σbb(ω) of
the real part of the frequency-dependent electrical conductiv-
ity [10,34],

σbb(ω) = 2πωe2

3�

∑
ni ,nj

�i ,�j = �i ± 1

(fi − fj )�>

×
[∫ ∞

0
drPni�i

(r)rPnj �j
(r)

]2

δ(εj − εi − �ω),

(13)

where fk = 1/(1 + eβεk−η). nk and �k are the principal and
orbital quantum numbers of orbital k and εk its energy. σbb(ω)
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can also be written [42]

σbb(ω) = 2πωe2

3�

∑
ni ,nj

�i ,�j = �i ± 1
εj > εi

fi(1 − fj )�>

×
[∫ ∞

0
drPni�i

(r)rPnj �j
(r)

]2

× δ(εj − εi − �ω)(1 − e−β�ω), (14)

where the one-electron radial parts of the bound wavefunctions
Pni�i

(r) are normalized such that [10]
∫ ∞

0
drPn�(r)Pn′�(r) = δnn′ . (15)

In Eq. (14), we make apparent the stimulated emission that
is included in the Kubo-Greenwood approach [42]. We now
introduce the one-electron oscillator-strength [34]

f̄ni�i ,nj �j
= 4meω

3�

�>

Di

(
R

nj �j

ni�i

)2
, (16)

where Di = 2(2�i + 1) is the degeneracy of orbital i and

R
nj �j

ni�i
=

∫ ∞

0
drPni�i

(r)rPnj �j
(r). (17)

We then find that

σbb(ω) = he2

4me�

∑
ni ,nj

�i ,�j = �i ± 1
εj > εi

Difi(1 − fj )f̄ni�i ,nj �j

× δ(εj − εi − �ω)(1 − e−β�ω), (18)

where h is the Planck constant. We now multiply Eq. (18)
by 4π/c, and we obtain the expression of the bound-bound
photoabsorption coefficient [35] with stimulated emission and
a line shape ϕi−>j (�ω) = δ(εj − εi − �ω), i.e.,

αbb(ω) = Ni

πhe2

mec

∑
ni ,nj

�i ,�j = �i ± 1
εj > εi

Difi(1 − fj )f̄ni�i ,nj �j

× δ(εj − εi − �ω)(1 − e−β�ω). (19)

C. Bound-free component in the one-electron approximation

Finally, the bound-free component σbf(ω) of the real part of
the frequency-dependent electrical conductivity reads [10,34]

σbf(ω) = 2πωe2

3�

∫ ∞

0
dε

∑
ni ,�i

� = �i ± 1

fi[1 − f (ε)]�>

×
[ ∫ ∞

0
drPni�i

(r)rPε,�(r)

]2

× δ(ε − εi − �ω)(1 − e−β�ω). (20)

Introducing the differential one-electron oscillator strength,

df̄ni�i ,ε

d�ω
= 4meω

3�

∑
�=�i±1

�>

Di

(
R

ε,�
ni ,�i

)2
�(�ω + εi), (21)

where �(x) is the Heaviside function and

R
ε,�
ni ,�i

=
∫ ∞

0
drPni�i

(r)rPε�(r), (22)

one obtains

σbf(ω) = he2

4me�

∑
ni ,�i

� = �i ± 1

Difi[1 − f (εi + �ω)]

× df̄ni�i ,εi+�ω

d�ω
(1 − e−β�ω). (23)

Now, if we multiply Eq. (23) by 4π/c, we find the expres-
sion of the bound-free photoabsorption coefficient [35] with
stimulated emission, i.e.,

αbf(ω) = Ni

πhe2

mec

∑
ni ,�i

� = �i ± 1

Difi[1 − f (εi + �ω)]

× df̄ni�i ,εi+�ω

d�ω
(1 − e−β�ω). (24)

It is common to consider rather the ionization potential Ii =
−εi of orbital i.

D. Summary

We have found that for the nonrelativistic average-atom
model, the expressions for the photoabsorption coefficients
without line profile treatment [35] calculated using the dipole
approximation are equivalent to the ones obtained using the
Kubo-Greenwood method with an index of refraction equal
to one. The Kubo-Greenwood formulas for the real-part
of the frequency-dependent electronic electrical conductivity
are obtained using the first-order perturbation-theory where
the perturbating electric-field is treated classically in the
framework of quantum mechanics [10]. The usual expressions
for the photoabsorption coefficients [35] are obtained using the
first-order perturbation theory in the framework of quantum
mechanics where the coupling between the atomic system
and the electromagnetic field is treated quantum-mechanically
using the dipole approximation [34]. In short, the perturbating
field is treated either classically or quantum-mechanically
but the result is the same concerning the photoabsorption
coefficients with an index of refraction equal to one. Finally,
in opacity codes, the bound-bound, bound-free, and free-free
photoabsorption coefficients are related to the spectral opacity
κ(ω) by the formula

κ(ω)ρ = αbb(ω) + αbf(ω) + αff(ω), (25)

where ρ is the mass density.

053102-3
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E. Practical calculation of the index of refraction

We first calculate the bound-bound αbb, bound-free αbf ,
and free-free αff photoabsorption coefficients with stimu-
lated emission using opacity codes [35]. We then multiply
each component by c/4π to obtain the real part of an
effective electrical conductivity. If needed, we regularize the
free-free component using a Drude-like formula [10]. We
deduce the real part of an effective electrical conductivity by
adding the three components. From this quantity, we obtain
the expression of the index of refraction from the optical
coefficients using classical Maxwell equations [8,10,14–16].
We just have to divide the total photoabsorption coefficient
from which we started by the index of refraction found that way
to obtain a photoabsorption coefficient in dense matter [27,31].
As for emissivity, we have to multiply the usual expression by
the index of refraction [27,31], instead of dividing by it as
for the total photoabsorption coefficient [27,31]. In the same
spirit, the Planck function should be multiplied by the square
of the index of refraction [26,27,31,32].

It can be noticed that the present approach becomes
questionable when the linear response theory breaks down.
Moreover, this method can only be used when the photoabsorp-
tion coefficients are evaluated using the dipole approximation.
From a theoretical point of view [44], this is challenging to
go beyond the present approach, especially including a refined
treatment of the ionic structure instead of considering a com-
plete disorder or questioning the line-profile treatment [10,43].

III. NUMERICAL APPLICATIONS

As a first application, we plot on Fig. 1 the electrical
conductivity as a function of energy using Eq. (1) with a
Drude-like factor (QM) and Eq. (10) (Kramers) for aluminum
at 0.1 g/cm3 and 10 eV using the SCAALP model [46,47].
On this example, we find that the two curves are different. The
static electrical conductivity is greater in the QM approach
compared to the Kramers approximation, the difference being
of the order of a factor two. The Kramers curve is broader
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FIG. 1. (Color online) Free-free electrical conductivity as a func-
tion of energy for an aluminum plasma at 0.1 g/cm3 and 10 eV using
the SCAALP model. The quantum mechanical (QM) approach is
compared to the Kramers (Kramers) approximation.
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FIG. 2. (Color online) Free-free index of refraction as a function
of energy for an aluminum plasma at 0.1 g/cm3 and 10 eV using the
SCAALP model. We use the quantum mechanical (QM) approach
and the Kramers (Kramers) approximation to calculate the free-free
electrical conductivity.

than the QM curve. This can be understood if we compare the
regularization factors. In the first case, we find that γ = 2.7 eV,
whereas in the second case, one finds that γ = 1.12 eV.
To appreciate the consequences, we plot on Fig. 2 the
corresponding indices of refraction using the Kramers-Kronig
relations. The two curves present a minimum closed to the
plasma frequency equal to 4.40 eV. Finally, we plot on Fig. 3
the spectral opacities. One can see the discrepancy between the
two approaches. We deduce that Eq. (10) is an approximation
of Eq. (1) with a Drude-like factor, whereas there is no
approximation to derive Eq. (18) from Eq. (13) and Eq. (23)
from Eq. (20). Using the Kramers approximation instead of
a quantum mechanical approach to calculate the free-free
electrical conductivity brings about uncertainties, first in the

10-2 10-1 100 101

Energy (eV)

103

104

105

106

107

O
pa

ci
ty

 (c
m

2 /g
)

QM
Kramers

FIG. 3. (Color online) Free-free spectral opacity as a function of
energy for an aluminum plasma at 0.1 g/cm3 and 10 eV using the
SCAALP model. We use the quantum mechanical (QM) approach
and the Kramers (Kramers) approximation to calculate the free-free
electrical conductivity.
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FIG. 4. (Color online) Ratio (n − 1)/(nff − 1) as a function of
energy for an aluminum plasma at 5 and 30 eV using the SHAAM
model.

electrical conductivity, second in the index of refraction, and
then in the spectral opacity when we multiply by 4π/c the
electrical conductivity and divide the result by the index of
refraction. It is clear that we should rather use the quantum
mechanical approach. But it is not always possible in practice
for computation time and numerical reasons. The Kramers
approximation is a reasonable approximation to calculate the
free-free component.

Second, we have implemented the method of calculation of
the index of refraction in the opacity code OPAS [45] used as a
post-processor of the average-atom model SCAALP [46,47].
We have also implemented this approach in the SHAAM
model [48–51]. As an illustration, let us consider the aluminum
cases considered by Johnson et al. [10]. These authors did
calculations for a LTE aluminum plasma at ion density
1020 cm−3 for temperatures varying between 1 and 30 eV
using an average-atom model without statistical broadening
of the bound-bound and bound-free transitions. Here, we
consider the SHAAM model, which is a screened-hydrogenic
average-atom model with statistical treatments of the radiative
transitions, and the OPAS code that combines detailed config-
uration and line accounting treatments. We consider the ratio
(n − 1)/(nff − 1), where n is the index of refraction including
bound-bound, bound-free, and free-free transitions and nff the
index of refraction that includes only free-free transitions. This
ratio is very useful to see the impact of the bound subshells on
the refractive index. In Fig. 4, we plot the ratio for 5 and 30 eV
using the SHAAM code. We can see the impact of the bound
subshells on the ratio. At 5 eV, there are many structures. There
is a group of two structures merged into one at low energy
corresponding to transitions 3s → 3p and 3p → 3d. We can
see at higher energy the presence of transitions 2p → 3s,
2p → 3d, and 2s → 3p. The features are broad due to the
statistical treatment. At 30 eV, these features have disappeared
and the ratio is close to one. Indeed, we can see a small structure
around 40 eV due to the transition 2s → 2p. The structures
corresponding to the transitions 2p → 3s, 2p → 3d, and
2s → 3p become broader due to the statistical fluctuations
and move to higher energies. The discrepancy with respect
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FIG. 5. (Color online) Ratio (n − 1)/(nff − 1) as a function of
energy for an aluminum plasma between 3 and 20 eV using the
OPAS code in DLA treatment.

to one is due to the transitions 2p → 3s and 2p → 3d. The
refractive index is greater than one in the vicinity of 8 eV,
78 eV, 94 eV, and 129 eV, which correspond to the local
minimum of the various features. In these circumstances,
the observed fringe lines bend in the opposite direction than
expected if the index of refraction is simply given by free
electrons [2]. To go deeper, OPAS calculations are shown on
Fig. 5 for various temperatures between 3 and 20 eV. Using
a detailed line accounting (DLA) treatment, we are able to
identify most of the ionic stage contributions. For example,
the resonant structures around 76 eV (94 eV) are 2p − 3s

(2p − 3d) transitions from the neon-like ground configuration.
Because of its closed-shell atomic structure, Ne-like ground
configuration is present in an extended range of temperatures.
According to the average ionization variation with respect
to the temperature, the contribution of this ionic stage is
more and more visible for temperatures up to 10 eV. For
higher temperatures, the Ne-like ionic fraction progressively
decreases, its spectral appears to be weaker and weaker. For a
photon energy equals 84.4 eV (corresponding to the 14.7 nm
Ni-like Pd soft X-ray laser), the ratio (n − 1)/(nff − 1) we
calculate is always negative for temperature up to 15 eV. It
varies between −3.76 for T = 3 eV and −0.41 fort T = 15 eV.
For the highest temperature, this ratio is positive and equal to
0.44. Such ratio values are compatible with those obtained
using the effective scattering factors given in Ref. [1].

IV. CONCLUSION

In this paper, we proposed a simple method to calculate
the index of refraction from existing opacity codes in warm
and hot dense matter. This method is sounded as long as the
spectral opacity is calculated using the dipole approximation.
It is based on the calculation of an effective electrical
conductivity derived from the spectral opacity without index
of refraction. The index of refraction is thus calculated using
this effective electrical conductivity. The spectral opacity with
index of refraction is then obtained by dividing the spectral
opacity without index of refraction we start from by the
index of refraction obtained by our method. The calculated
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bound-bound, bound-free, and free-free photoabsorption co-
efficients from opacity codes are valid down to a few eV’s in
the plasma regime, so inside the warm dense matter regime.
Doing so, this approach can be useful to analyze experimental
results involving the refractive index in warm and hot dense
matter.

ACKNOWLEDGMENTS

We are indepted to Walter Johnson for helpful comments
and remarks concerning the Kubo-Greenwood approach in the
framework of the average-atom model. We thank P. Combis
for the Kramers-Kronig subroutine.

[1] J. Filevich, J. Grava, M. Purvis, M. C. Marconi, J. J. Rocca, J.
Nilsen, J. Dunn, and W. R. Johnson, Phys. Rev. E 74, 016404
(2006).

[2] J. Nilsen, J. I. Castor, C. A. Iglesias, K. T. Cheng, J. Dunn,
W. R. Johnson, J. Filevich, M. A. Purvis, J. Grava, and J. J.
Rocca, High Energy Density Phys. 4, 107 (2008).

[3] G. O. Williams, H.-K. Chung, S. M. Vinko, S. Künzel,
A. B. Sardinha, Ph. Zeitoun, and M. Fajardo, Phys. Plasmas
20, 042701 (2013), and references therein.

[4] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[5] D. A. Greenwood, Proc. Phys. Soc. London 71, 585 (1958).
[6] M. P. Desjarlais, J. D. Kress, and L. A. Collins, Phys. Rev. E 66,

025401 (2002).
[7] S. Mazevet, L. A. Collins, N. H. Magee, J. D. Kress, and J. J.

Keady, Astron. Astrophys. 405, L5 (2003).
[8] S. Mazevet, M. P. Desjarlais, L. A. Collins, J. D. Kress, and

N. H. Magee, Phys. Rev. E 71, 016409 (2005).
[9] S. Mazevet, M. Torrent, V. Recoules, and F. Jollet, High Energy

Density Phys. 6, 84 (2010).
[10] W. R. Johnson, C. Guet, and G. F. Bertsch, J. Quant. Spectrosc.

Radiat. Transf. 99, 327 (2006).
[11] M. Yu. Kuchiev and W. R. Johnson, Phys. Rev. E 78, 026401

(2008).
[12] W. R. Johnson, High Energy Density Phys. 5, 61 (2009).
[13] C. E. Starrett, J. Clérouin, V. Recoules, J. D. Kress, L. A. Collins,

and D. E. Hanson, Phys. Plasmas 19, 102709 (2012).
[14] J. M. Ziman, Principles of the Theory of Solids (Cambridge

University Press, Cambridge, 1979).
[15] W. Jones and N. H. March, Theoretical Solid States Physics,

Vols. 1 and 2 (Dover, New York, 1985).
[16] G. R. Fowles, Introduction to Modern Optics (Dover, New York,

1989).
[17] S. M. Vinko, G. Gregori, M. P. Desjarlais, B. Nagler, T. J.

Whitcher, R. W. Lee, P. Audebert, and J. S. Wark, High Energy
Density Phys. 5, 124 (2009).

[18] C. A. Iglesias, High Energy Density Phys. 6, 311 (2010).
[19] C. A. Iglesias, High Energy Density Phys. 7, 38 (2011).
[20] S. M. Vinko, G. Gregori, and J. S. Wark, High Energy Density

Phys. 7, 40 (2011).
[21] R. Benattar, C. Galos, and P. Ney, J. Quant. Spectrosc. Radiat.

Transf. 54, 53 (1995).
[22] J. Nilsen, W. R. Johnson, C. A. Iglesias, and J. H. Scofield,

J. Quant. Spectrosc. Radiat. Transf. 99, 425 (2006).
[23] L. A. Wilson and G. J. Tallents, High Energy Density Phys. 9,

402 (2013).
[24] L. M. R. Gartside, G. J. Tallents, A. K. Rossall, E. Wagenaars,
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Radiation Heat Transfer (Taylor & Francis Group, New York,
2011).

[33] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman
Lectures on Physics (Basics Books, New York, 2011).

[34] I. I. Sobelman, Atomic Spectra and Radiative Transitions,
2nd ed. (Springer-Verlag, Berlin, 1992).

[35] S. Rose, Laser Plasma Interactions 5: Inertial Confinement
Fusion (IOP, London, 1995).

[36] G. Peach, Mon. Not. R. Astron. Soc. 130, 361 (1965).
[37] R. T. Johnston, J. Quant. Spectrosc. Radiat. Transf. 7, 815

(1967).
[38] B. F. Rozsnyai and M. Lamoureux, J. Quant. Spectrosc. Radiat.

Transf. 43, 381 (1990).
[39] B. Wilson, C. Iglesias, and M. Chen, J. Quant. Spectrosc. Radiat.

Transf. 81, 499 (2003).
[40] R. M. More, J. Plasma Fusion Res. 76, 623 (2000).
[41] G. Faussurier, C. Blancard, P. Combis, and L. Videau, Phys.

Plasmas 21, 092706 (2014).
[42] W. A. Harrison, Solid State Physics (Dover, New York,

1979).
[43] I. I. Sobel’man, L. A. Vainshtein, and E. A. Yukov, Excitation

of Atoms and Broadening of Spectral Lines, 2nd ed. (Springer-
Verlag, Berlin, 1995).

[44] C. Fortmann, Ph.D. Thesis, Rostock University, Rostock,
Germany, 2008.
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Plasmas 17, 052707 (2010).

[48] G. Faussurier, C. Blancard, and A. Decoster, Phys. Rev. E 56,
3474 (1997).

[49] G. Faussurier, C. Blancard, and A. Decoster, Phys. Rev. E 56,
3488 (1997).

[50] G. Faussurier, C. Blancard, and E. Berthier, Phys. Rev. E 63,
026401 (2001).
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