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Nonperturbative mean-field theory for minimum enstrophy relaxation
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The dual cascade of enstrophy and energy in quasi-two-dimensional turbulence strongly suggests that a viscous
but otherwise potential vorticity (PV) conserving system decays selectively toward a state of minimum potential
enstrophy. We derive a nonperturbative mean field theory for the dynamics of minimum enstrophy relaxation by
constructing an expression for PV flux during the relaxation process. The theory is used to elucidate the structure
of anisotropic flows emerging from the selective decay process. This structural analysis of PV flux is based on
the requirements that the mean flux of PV dissipates total potential enstrophy but conserves total fluid kinetic
energy. Our results show that the structure of PV flux has the form of a sum of a positive definite hyperviscous
and a negative or positive viscous transport of PV. Transport parameters depend on zonal flow and turbulence
intensity. Turbulence spreading is shown to be related to PV mixing via the link of turbulence energy flux to PV
flux. In the relaxed state, the ratio of the PV gradient to zonal flow velocity is homogenized. This homogenized
quantity sets a constraint on the amplitudes of PV and zonal flow in the relaxed state. A characteristic scale is
defined by the homogenized quantity and is related to a variant of the Rhines scale. This relaxation model predicts
a relaxed state with a structure which is consistent with PV staircases, namely, the proportionality between mean
PV gradient and zonal flow strength.
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I. INTRODUCTION

The formation of large-scale shearing structures due to
momentum transport, i.e., zonal flow formation, is a common
feature of both geostrophic fluids and magnetically confined
plasmas (e.g., Refs. [1–5]). In this work, we study the dynamics
of relaxation leading to structure formation. The relaxed state
of a high Reynolds number, turbulent, two-dimensional (2D)
fluid is thought to be one of minimum potential enstrophy, for
given conserved kinetic energy. This hypothesis constitutes the
minimum enstrophy principle of Bretherton and Haidvogel
[6]. Their variational argument is based on the concept of
selective decay, which is in turn based on the dual cascade
in 2D turbulence. In 2D turbulence, kinetic energy inverse
cascades to large, weakly dissipated spatial scales, whereas
enstrophy forward cascades to small spatial scales, and there
it is viscously damped. In the presence of weak dissipation,
total kinetic energy is thus approximately conserved relative
to total enstrophy, which is dissipated. Thus, the system
evolves toward a state of a minimum enstrophy. Interestingly,
the theory does not specify the minimum enstrophy actually
achieved in the relaxed state. The theory predicts the structure
of the flow in the end state; however, it gives no insight
into the all-important question of how the mean profiles
evolve during the relaxation process. Here we discuss the
dynamics of minimum enstrophy relaxation, which leads to
zonal flow formation. In particular, since inhomogeneous
potential vorticity (PV) mixing is the fundamental mechanism
of zonal flow formation, we ask what form must the mean field
PV flux have so as to dissipate enstrophy while conserving
energy?

The reason mixing of PV is the key element of zonal
flow formation is that PV conservation is the fundamen-
tal freezing-in law constraint on zonal flow generation by

inhomogeneous PV mixing. Note that since zonal flows are
elongated, asymmetric vortex modes, translation symmetry
in the direction of the flow and inhomogeneity across the
direction of the flow are essential elements in zonal flow
formation. The importance of PV mixing to the zonal flow
problem is clearly seen via the Taylor identity, which states
that the cross-flow flux of PV equals the along-flow component
of the Reynolds force, which drives the flow. Most of the
theoretical calculations of PV flux are modulational stability
analyses using weak turbulence theory (e.g., Refs. [3,7,8]).
These types of analyses are, however, valid only in the initial
stage of zonal flow formation. Therefore, there is a need
to develop a mean field theory based on general, structural
principles, and not limited by perturbative methods. To obtain
the general form of the PV flux, the selective decay hypothesis
is exploited. In this paper, we show that the structure of the
PV flux which dissipates enstrophy in mean field theory is
�q = 〈vx〉−1∇ [μ∇ (∇〈q〉/〈vx〉)]. In other words, PV flux is
not given by a simple Fick’s law but has a complex form
involving viscosity and hyperviscosity, with flow-dependent
transport coefficients. In the relaxed state, the ratio between the
local PV gradient and zonal flow is homogenized. Interestingly,
this proportionality relationship between PV gradient and
zonal flow is observed in PV staircases.

We note that selective decay is a hypothesis based on
the observation of the dual cascade in 2D turbulence and is
not rigorously derived from first physical principles. There
are relaxed states derived from more fundamental principles,
namely, statistical equilibrium states and stable stationary
states (see Refs. [9–11]). Even though the minimum enstrophy
principle is not a first principle physical theory, it is a plausible
and demonstrably useful guide, which gives us predictions
of the structure of PV and flows, and the enstrophy level in
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the relaxed state. Although the validity of the selective decay
principles still lacks rigorous proof, they can and have been
applied in a number of areas of physics, such as MHD and
geophysics. Selective decay hypotheses have been supported
by a number of computational studies (e.g., Refs. [12,13])
and experimental studies (e.g., successful prediction of the
magnetic configuration of reversed field pinch plasmas). Thus,
our model based on the minimum enstrophy principle is
plausible, and the results are believable and useful. The
minimum enstrophy state is a subclass of stable states. When
there is no external forcing and dissipation, the minimum
enstrophy state is one of the possible attractors. In the
presence of viscous damping, the minimum enstrophy state
is the attractor of the system. However, when the viscosity
approaches zero, the system may be trapped in long-lived
quasistationary states while relaxing to equilibrium, like many
other long-range interacting systems. Thus, the time scale of
convergence needs to be considered carefully to determine the
relevancy of the minimum enstrophy model to inertial time
scales.

Turbulence spreading [14–16] is related to PV mixing
because the transport of turbulence intensity has influence
on Reynolds stresses and flow dynamics. The momentum
theorems for the zonal flow in Rossby or drift wave turbulence
[17] link turbulent flux of potential enstrophy density to zonal
flow momentum and turbulence pseudomomentum, along with
the driving flux and dissipation. In this work, turbulence
spreading is linked to PV mixing via the relation of energy flux
to PV flux. The turbulent flux of kinetic energy density during
minimum enstrophy relaxation is shown to be proportional to
the gradient of the (ultimately homogenized) quantity, which
is the ratio of PV gradient to the zonal flow. A possible
explanation of up-gradient transport of PV due to turbulence
spreading, based on the connection between PV mixing and
turbulence spreading, is discussed in the last section.

II. DEDUCING THE FORM OF THE PV FLUX

We approach the question of the dynamics of momentum
transport in 2D turbulence by asking what the form of PV flux
must be to dissipate enstrophy but conserve energy. We start
with the conservative PV evolution equation

∂tq + v · ∇q = ν0∇2q, (1)

where ν0 is molecular viscosity. Equation (1) states PV as a
material invariant and so applies to many quasi-2D systems,
including, but not limited to, the following two systems. In
2D quasigeostrophic turbulence [2], the PV and velocity fields
are q = ∇2ψ + βy and (vx,vy) = (−∂ψ/∂y,∂ψ/∂x), where
ψ is the stream function and β is the latitudinal gradient
of the Coriolis parameter. In drift wave turbulence [18], the
PV consists of the ion vorticity due to E × B drift and the
ion density n. In this paper we use the coordinates of a 2D
geostrophic system: the x axis is in the zonal direction, the
direction of symmetry (the poloidal direction in tokamaks),
and the y axis is in the meridional direction, the direction
of anisotropy (the radial direction in tokamaks). Periodic
boundary conditions in the x̂ direction are imposed, and we
assume zero mean zonal flow at ±y0 boundaries and zero PV
flux and energy flux through ±y0 boundaries. We average

Eq. (1) over the zonal direction to obtain the mean field
equation for PV:

∂t 〈q〉 = −∂y�q + ν0∂
2
y 〈q〉, (2)

where �q is the PV flux in the ŷ direction. The selective decay
hypothesis states that 2D turbulence relaxes to a minimum
enstrophy state. During relaxation, the enstrophy forward
cascades to ever smaller scales until it is dissipated by viscosity.
Thus the total potential enstrophy

� = 1

2

∫
q2 dx dy (3)

must decrease with time. On the other hand, the kinetic energy
inverse cascades to large scales and sees negligible or weak
coupling to viscous dissipation, as compared with enstrophy.
Only frictional drag can damp flow energy at large scales. The
rate of large-scale energy drag is much slower than the rate of
small scale enstrophy dissipation. Thus the total kinetic energy

E = 1

2

∫
(∇ψ)2 dx dy (4)

should remain invariant on the characteristic enstrophy dissi-
pation time. Note that only the kinetic energy is conserved in
the minimum enstrophy hypothesis, because the nonadiabatic
internal energy (i.e., ∼ 〈(ñ/n − eφ̃/T )2〉 for drift wave turbu-
lence) forward cascades to dissipation [19]. To ensure that the
total kinetic energy is conserved (apart from feeble collisional
dissipation) in mean field theory,

∂tE = −
∫

〈ψ〉∂t 〈q〉 dx dy = −
∫

∂y〈ψ〉�q

= −
∫

∂y�E dx dy, (5)

the PV flux is necessarily tied to the energy density flux by

�q = (∂y〈ψ〉)−1∂y�E, (6)

where the energy density flux �E is defined as 〈vy
(∇ψ)2

2 〉. The
connection between PV flux and energy density flux has a
direct implication for turbulence spreading, which we discuss
later in this paper. The form of the energy density flux is
constrained by the requirement of decay of total potential
enstrophy, i.e., by the demand that

∂t� = −
∫

〈q〉∂y�q = −
∫

∂y[(∂y〈ψ〉)−1∂y〈q〉]�E < 0.

(7)
Note that a finite flux at the boundary would contribute a
surface integral term to the total enstrophy evolution. PV
relaxation at the point y would then become dependent
explicitly upon fluxes at boundary, thus rendering the mean
field theory manifestly nonlocal. The simplest solution for �E

is for it to be directly proportional to ∂y[(∂y〈ψ〉)−1∂y〈q〉]:
�E = μ∂y[(∂y〈ψ〉)−1∂y〈q〉], (8)

where μ is a positive proportionality parameter. The necessary
dependence on turbulence intensity is contained in μ. In
this mean field theory, μ is not determined. Note that any
combination of an odd derivative of (∂y〈ψ〉)−1∂y〈q〉 and an
even power of 〈vx〉, 〈q〉, or ∂y〈q〉 will contribute a term which
dissipates enstrophy. Thus, the solution we present here is the
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smoothest (i.e., the dominant one in the long wavelength limit)
and lowest order (i.e., not combined with any higher power of
〈vx〉2, 〈q〉2, or (∂y〈q〉)2). The reasons we study the simplest
solution are the following: (1) The smoothest solution reveals
the leading behavior of the PV flux on the large scale. This is
relevant to our concern with the large-scale flow dynamics.
The higher order derivatives should be included to study
the relaxation dynamics at smaller scales and the finer scale
structure of the shear flow. (2) The dependence on the higher
powers of the shear flow intensity can be absorbed into μ. The
PV flux is then given by the simplest, leading form of �E :

�q = (∂y〈ψ〉)−1∂y{μ∂y[(∂y〈ψ〉)−1∂y〈q〉]}. (9)

The system evolves to the relaxed state, ∂t 〈q〉 = 0, when
(∂y〈ψ〉)−1∂y〈q〉 approaches a constant, where the mean PV
flux vanishes and the nonlinear term is annihilated, i.e., q =
q(ψ) = λψ annihilates v · ∇q for λ constant, so ∂yq = λ∂yψ

and ∂y[(∂y〈ψ〉)−1∂y〈q〉] = 0.
The structure of the PV flux in equation (9) contains both

hyperdiffusive and diffusive terms. The mean PV evolution,

∂t 〈q〉 = −∂y

{
1

∂y〈ψ〉∂y

[
μ∂y

(
∂y〈q〉
∂y〈ψ〉

)}
+ ν0∂

2
y 〈q〉, (10)

shows that hyperviscosity is the leading high ky dependence,
and so it controls the smaller scales. From Eq. (10) we can
also prove that hyperviscosity term damps the energy of the
mean zonal flow. Therefore, the hyperviscosity represents the
nonlinear saturation mechanism for zonal flow growth and
partially defines the scale dependence of turbulent momentum
flux. The other important implication of Eq. (9) is that the
PV flux is explicitly zonal flow dependent. The zonal velocity
appears in the denominators of hyperviscosity and viscosity
terms, as well as the diffusion coefficient; this is not seen in
perturbative analyses (e.g., Refs. [7,8]). We emphasize that
within the mean field approach, the selective decay analysis
for the PV flux in this work is entirely nonperturbative and
contains no assumption about turbulence magnitude.

The prediction of the homogenization of (∂y〈ψ〉)−1∂y〈q〉 in
minimum enstrophy relaxation is a new result. It states explic-
itly that the local zonal flow speed tracks the local PV gradient
in the relaxed state, i.e., strong zonal flows are localized to the
regions of larger PV gradient. This trend is observed in the
PV staircase, in that strong jets produced by inhomogeneous
PV mixing peak at PV jump discontinuities [20]. The jetlike
pattern of the E × B staircase is also observed in plasma
simulations [21]. It is already known from PV invertibility that
local zonal flow speed tracks the local PV gradient. However,
the theory predicts this behavior without assuming how PV
is mixed and what the initial or final PV profile is like. Thus,
we show that a relaxed state of flow-tracking-PV gradient
results from PV mixing subject to only the selective decay
of enstrophy. The theory does not predict that the staircase
is an attractor for the system. Figure 1 shows a cartoon of
the PV staircase. Strong zonal flows are located around the
edges of PV steps. Since ∂y〈q〉/〈vx〉 is a constant, we can
write ∂y〈q〉 = ∑

i aif (y − yi) and 〈vx〉 = ∑
i bif (y − yi),

where ai are constants and bi = −λai . While the prediction
of the detailed form of the function f (y − yi) is beyond the
scope of this work, the constant proportionality between ai and
bi reconciles the staircase-like, highly structured profiles with

FIG. 1. PV staircase.

the homogenization or mixing process required to produce it.
In a related vein, both ∂y〈q〉 and ∂y〈ψ〉 can each be large and
variable, though the ratio is constrained.

PV mixing in minimum enstrophy relaxation is also related
to turbulence spreading [14–16], since we can see from Eq. (6)
that �E and �q are related. Since there is no mean flow in
the direction of inhomogeneity, �E represents the effective
spreading flux of turbulence kinetic energy and is given by

�E = −
∫

�q〈vx〉 dy = μ∂y

(
∂y〈q〉
〈vx〉

)
. (11)

Equation (11) shows that ∂y〈q〉/〈vx〉 drives spreading and that
the spreading flux vanishes when ∂y〈q〉/〈vx〉 is homogenized.
The dependence of �E on zonal flow follows from the fact that
turbulence spreading is a mesoscale transport process. Note
that the step size of the PV staircase, which corresponds to the
distance between zonal flow layers, is also mesoscale. Both
observations suggest that the relaxation process is a nonlocal
phenomena. This is a necessary consequence of PV inversion,
i.e., the relation ∇2ψ + βy = q, so that 〈vx〉 is an integral
of the q(y) profile. Thus �E(y) and �q(y) in fact depend
nonlocally on q(y).

An expression for the relaxation rate can be derived by
linear perturbation theory about the minimum enstrophy state.
We write 〈q〉 = qm(y) + δq(y,t),〈ψ〉 = ψm(y) + δψ(y,t) and
use the homogenization condition in relaxed state ∂yqm =
λ∂yψm. Assuming δq(y,t) = δq0exp(−γrelt − iωt + iky), the
relaxation rate is found to be

γrel = μ

[
k4 + 4λk2 + 3λ2

〈vx〉2
− 8q2

m(k2 + λ)

〈vx〉4

]
,

(12)

ω = μ

(
−4qmk3 + 10qmkλ

〈vx〉3
+ 8q3

mk

〈vx〉5

)
.

The condition of relaxation, i.e., that modes are damped,
requires positive γrel: k2 > 8q2

m/〈vx〉2 − 3λ, and so k2 > 0
relates qm to λ and 〈vx〉 by

8q2
m

〈vx〉2
> 3λ. (13)

Equation (13) shows that the zonal flow cannot grow arbitrarily
large and is constrained by the potential enstrophy density
and scale parameter λ. It also shows that a critical residual
enstrophy density q2

m is needed in the minimum enstrophy
state, so as to sustain a zonal flow of a certain level. Equation
(13) thus specifies the minimum enstrophy of relaxation.
Therefore, we not only obtain the structure of the end state,
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which is expressed in terms of λ, the constant of proportionality
between PV gradient and zonal flow velocity, but also we
observe that potential enstrophy intensity and zonal flow
strength are ultimately related in the relaxed state.

One can define a characteristic scale:

lc =
∣∣∣∣∂y〈q〉

〈vx〉
∣∣∣∣
−1/2

. (14)

In minimum enstrophy state, lc = |λ|−1/2 and PV flux can
vanish on scale lc. As a result, lc characterizes the scale at
which the terms in the PV flux can compete and cancel. For
scales smaller than lc, hyperviscosity dominates and damping
wins. For scales larger than lc, effective viscosity (which can
be negative) dominates. It is interesting to compare lc with
the Rhines scale [22] lR ∼ (∂y〈q〉/ṽrms)−1/2, where ṽrms is the
r.m.s. velocity at the energy-containing scales. Which velocity
should really be used to calculate the Rhines Scale is still being
debated (see, e.g., Refs. [23] and [24]). lc and lR both depend
on the gradient of mean field PV; what distinguishes them is
that lc is determined by mean zonal velocity while lR is set by
fluctuation velocity. The characteristic scale and Rhines scale
become indistinguishable when ṽrms reaches the level of zonal
flow velocity.

III. DISCUSSION AND SUMMARY

In this paper, we have considered the problem of zonal
flow formation in quasi-2D turbulent systems which conserve
PV. The approach is to study PV transport during relaxation
processes by exploiting the minimum enstrophy relaxation
principle. The analysis of PV flux using selective decay is
nonperturbative and so can be applied to general 2D turbulent
systems. The nonlinear term is annihilated in the end state
of the selective decay. The deduced PV flux is shown to
be non-Fickian; it consists of diffusive and hyperdiffusive
terms. Note that there are other forms of PV flux which
can minimize enstrophy while conserving energy. In this
work, we study the simplest, smoothest form of the PV
flux. The hyperviscosity reflects the saturation mechanism
of zonal flows and the scale dependence of the momentum
flux. The results are pragmatically useful in the context of
transport modeling, where the problems of zonal flow scale
and saturation are important. The homogenized quantity in
the relaxed state is found to be the ratio of PV gradient to
zonal flow velocity, implying that strong localized zonal flows
are located at sharp PV gradients. This is consistent with the
structure of the PV staircase. A relaxation rate is derived using
linear perturbation theory. We show that a critical enstrophy
in the minimum enstrophy state is needed to sustain zonal
flows at a given level. A characteristic scale lc is defined
from the homogenized quantity, lc = |∂y〈q〉/〈vx〉|−1/2, so that
hyperviscosity dominates at scales smaller than lc. lc is similar
to the Rhines scale.

We compare our model with previous relaxation models for
geostrophic turbulent flow (e.g., Refs. [25–27]). The main dif-
ference is that Eq. (10) is derived using a structural approach,
while the previous relaxation equations are derived using vari-
ational principles, with various conserved and dissipating or
maximizing functionals. Our result from a structural approach
is consistent with the result from the calculus of variations

[6], in which the enstrophy is minimized at constant energy,
so δ� + λδE = ∫

qδ(∇2ψ) dx dy + λ
∫ ∇ψ · ∇δψ dx dy =∫

(q − λψ)∇2δψ dx dy is required to vanish, and so 〈q〉〈ψ〉−1

is equal to the Lagrange multiplier λ. What we show here
is that our structural approach also gives 〈q〉〈ψ〉−1 = const.
First, instead of writing the nonlinear term in PV equation
as an explicit divergence of a PV flux, we keep it as N and
repeat the minimum enstrophy analysis as we did in the paper.
Conservation of the total kinetic energy in mean field theory
gives ∂tE = − ∫ 〈ψ〉〈N〉 dx dy = − ∫

∂y�E dx dy. Thus, the
nonlinear term is necessarily tied to the energy flux by 〈N〉 =
〈ψ〉−1∂y�E. The form of the energy density flux is constrained
by the requirement of decay of total potential enstrophy:
∂t� = ∫ 〈q〉〈N〉 dx dy = ∫ 〈q〉〈ψ〉−1∂y�E dx dy < 0, which
in turn forces �E = ν∂y(〈q〉〈ψ〉−1). The system evolves to the
relaxed state when ∂y(〈q〉〈ψ〉−1) = 0. Therefore, the structural
approach we use in this paper can recover the condition of
〈q〉〈ψ〉−1 = constant in the steady state.

In the paper, we write the form of the nonlinear term
as an explicit divergence of a PV flux, i.e., we take 〈N〉 =
−∂y�q . The difference between the results of the N and
the ∂y�q formulations comes from the treatments of the
structure of the nonlinear term. We can see clearly how
the treatment of derivatives results in difference forms of
the homogenized quantities in the two approaches: 〈ψ〉−1〈q〉
and (∂y〈ψ〉)−1∂y〈q〉. The derivative of equation 〈q〉 = λ〈ψ〉,
from the N approach, gives the equation ∂y〈q〉 = λ∂y〈ψ〉,
obtained from the �q approach. Thus, the two solutions are
consistent with each other, and are both consistent with the
solution from the calculus of variations. The ∂y�q formulation
is more accurate, since it starts with a more precise form of the
nonlinear term in PV equation, i.e., to take N as a divergence of
a PV flux. �q is smoother than N , and hence better satisfies the
conditions of the mean-field approximation, namely, that the
fluctuations around the average value be small, so that terms
quadratic in the fluctuations can be neglected. Moreover, while
the stream function ψ is unique up to an arbitrary constant,
the absolute value of its derivative ∂yψ = −vx has a clear
physical meaning. Therefore, in this paper we maintain the
form of the nonlinear term in the mean PV evolution as an
explicit divergence of a PV flux.

We note that even though the result can give a staircase-like
relationship between the zonal flow and PV profiles in the
relaxed state, the solution is not suitable to explain the sharp
jump in the PV profile of the staircase. Equation (8) is the
solution of the form of energy flux which dominates the
large scale. This solution can represent two-scale phenomena
but cannot treat multiscale phenomena. We also note that
the model presented in this paper does not directly predict
staircases. It does, however, predict a relaxed state with a
structure which is consistent with PV staircases, namely, the
proportionality between mean PV gradient and zonal flow
strength. The model also shows that a system with flow
structure similar to that of staircases arises as a consequence
of PV mixing during the minimum enstrophy relaxation.
The form of PV flux is shown to contain not only diffusive
but also hyperdiffusive transport of PV. (Note that simple
PV diffusion cannot recover a structure consistent with PV
staircases.) These results are not seen in the previous relaxation
models. Thus, the model provides a new way to look at
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the problem of staircase formation from the perspective of
turbulent relaxation. The staircase formation will depend on
the initial conditions. Even though in this model we do not
derive the evolution and end state of a given initial state, we
show that the mean field PV will evolve toward a state, at
which PV and energy fluxes vanish.

PV mixing, the fundamental process for zonal flow gener-
ation, in wave-number space is directly linked to the forward
enstrophy cascade. The importance of such small-scale mixing
processes is seen from the appearance of hyperviscosity in the
PV flux, which contributes to zonal flow energy damping. The
terms in the PV flux which contribute to zonal flow energy
growth (i.e., effective negative viscosity), however, are not
well reconciled with the picture of diffusive mixing of PV
in real space. Here we offer a possible explanation, based on
the connection between PV mixing and turbulence spreading
derived from the minimum enstrophy analysis, i.e., �E =
− ∫

�q〈vx〉 dy ∼ ∇(〈q〉′/〈vx〉). We may consider turbulence
spreading as a process which contributes to up-gradient, or
antidiffusive, mixing of PV. The argument is as follows: It
is reasonable to assume that PV mixing in real space tends
to transport PV from the region of larger mean PV to the
region of smaller mean PV. Because a stronger mean vorticity
corresponds to a stronger shearing field which suppresses
turbulence, the PV mixing process tends to transport PV

away from the region of weak excitation toward the region
of stronger excitation. In contrast, the spreading of turbulent
enstrophy tends to transport enstrophy from the strongly
turbulent region to the weakly turbulent region. When the
tendency of turbulence spreading is greater, the net transport of
PV appears up-gradient, and so the apparent effective viscosity
becomes negative. The relaxed state is reached when PV
mixing and turbulent enstrophy spreading are balanced. The
total PV flux that we calculate in the relaxation model includes
both trends.

We conclude by noting that, the dynamics of PV flux
derived analytically in this work has not been confirmed
by numerical tests. Therefore, an important topic for future
research would be developing a numerical simulation test and
comparing its results with the analytical predictions.

ACKNOWLEDGMENTS
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