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Bounds on the attractor dimension for magnetohydrodynamic channel flow with parallel magnetic
field at low magnetic Reynolds number
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We investigate aspects of low-magnetic-Reynolds-number flow between two parallel, perfectly insulating
walls in the presence of an imposed magnetic field parallel to the bounding walls. We find a functional basis
to describe the flow, well adapted to the problem of finding the attractor dimension and which is also used in
subsequent direct numerical simulation of these flows. For given Reynolds and Hartmann numbers, we obtain
an upper bound for the dimension of the attractor by means of known bounds on the nonlinear inertial term and
this functional basis for the flow. Three distinct flow regimes emerge: a quasi-isotropic three-dimensional (3D)
flow, a nonisotropic 3D flow, and a 2D flow. We find the transition curves between these regimes in the space
parametrized by Hartmann number Ha and attractor dimension datt. We find how the attractor dimension scales as
a function of Reynolds and Hartmann numbers (Re and Ha) in each regime. We also investigate the thickness of
the boundary layer along the bounding wall and find that in all regimes this scales as 1/Re, independently of the
value of Ha, unlike Hartmann boundary layers found when the field is normal to the channel. The structure of the
set of least dissipative modes is indeed quite different between these two cases but the properties of turbulence
far from the walls (smallest scales and number of degrees of freedom) are found to be very similar.
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I. INTRODUCTION

This paper focuses on flows of electrically conducting
fluids in channels pervaded by a spanwise (i.e., parallel
to the bounding walls, rather than perpendicular as in the
more familiar case of Hartmann flow) magnetic field with
a double aim: (1) to determine the properties of the associated
dynamical system and, in particular, an upper bound for the
dimension of its attractor; and (2) to derive a functional
basis that tightly encompasses the attractor of the system for
subsequent use in highly efficient spectral direct numerical
simulations (DNS). Both aims are achieved by deriving the
set of least dissipative eigenmodes of the dissipative part
of the governing equations. Before setting out on this task,
we familiarize the reader with the key role played by this
slightly unusual functional basis in this particular problem and
a number of potential others.

The physical problem is one of the generic configurations
where liquid metals flow in devices pervaded by a strong
externally imposed magnetic field. It concerns a number of
engineering applications in the field of metallurgy and in the
nuclear industry, where liquid-metal flows are controlled and
diagnosed with such fields or are used to extract heat from
nuclear fusion or fission reactors [1]. In these engineering prob-
lems and small-scale laboratory experiments, the flow falls
within the low-magnetic-Reynolds-number (Rm) approxima-
tion, where the externally imposed magnetic field is considered
constant [2]. Its main effect is then to induce electric eddy
currents and a Lorentz force that acts to eliminate variations
of velocity along the magnetic field lines. This process has
been extensively studied in [3–9]. It manifest itself through the
presence of very fine boundary layers (Hartmann layers) and
highly anisotropic structures. The numerical resolution of the
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boundary layers incurs prohibitive computational costs when
the magnetic fields becomes high. Furthermore, because of
the strong anisotropy and Joule dissipation that characterizes
these flows, Kolmogorov laws for the smallest scales are no
longer valid and must be replaced by different scalings for
the smallest scales along and across the magnetic field [10].
On the other hand, at low Rm, stronger fields incur higher
dissipation: This reduces the number of degrees of freedom in
the system and therefore, potentially, the computational cost
of resolving these flows completely [11,12]. Recently, a new
type of spectral numerical method taking advantage of this
property [13,14], was developed. The number of degrees of
freedom is estimated from an upper bound for the dimension
of the attractor for the dynamical system associated to the
governing equation [15]. This more efficient spectral method
was constructed in such a way that the flow is represented with
a functional basis that encompasses the attractor significantly
more tightly than classical bases such as Fourier or Tchebychev
bases. Because in low-Rm magnetohydrodynamic (MHD), the
Lorentz force is exclusively dissipative and linear, such a basis
can be found by seeking the eigenmodes of the operator arising
from the dissipative part of the governing equations, with the
boundary conditions of the considered problem [11,12]. In
periodic domains and in channels with a transverse magnetic
field, the derivation of this basis provided an upper bound for
the attractor dimension, scalings for the smallest scales, and
the thickness of wall boundary layers that could be verified
heuristically and numerically. Most importantly, it made it
possible to calculate turbulent MHD flows in almost arbitrarily
high magnetic fields at a moderate computational cost [14,16].

The problem of channel flows with a uniform spanwise
magnetic field has received much recent attention [17,18], but
no such basis is yet known for it. Consequently, upper bounds
for the attractor dimension, scalings for the smallest scales, and
the thickness of the boundary layers along the channel walls
and are not available. Nor is it possible to perform efficient
spectral DNS at high magnetic field.
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We therefore set out to answer these question for this
geometry by deriving the basis of least dissipative modes and
analyzing its properties. We first derive analytically the least
dissipative eigenmodes (Sec. II), then numerically calculate
their associated eigenvalues (Sec. III). From these, we deduce
an upper bound for the attractor dimension of the system and
distinguish three possible regimes: weakly three-dimensional
(3D), strongly 3D, and 2D (Sec. IV). Finally from the set of
least dissipative modes, we extract scalings for the thickness of
the boundary layer that develops along the channel walls and
for the size of the smallest scale present in the flow (Sec. V).

II. GOVERNING EQUATIONS AND PROCEDURE FOR
OBTAINING BOUNDS ON THE ATTRACTOR DIMENSION

A. Governing equations

To evaluate the attractor dimension, let us consider the
time evolution of the flow as given by a dynamical system
whose phase space is the space of all solenoidal vector-valued
functions on the fluid-containing region. This time evolution
is specified by the Navier-Stokes equations. We proceed by
considering the time evolution of an infinitesimal perturbation
to a flow, UUU , that evolves in the neighborhood of the attractor
(UUU follows the attractor itself). To obtain an upper bound for the
attractor dimension, we note that such a perturbation, which we
denote uuu, spans a n-dimensional infinitesimal volume, which
should asymptotically contract to 0 as soon as n is larger than
the embedding dimension of the attractor [15]. Denoting by
uuu this perturbation and ignoring higher-order terms, we then
find the trace of the linearized Navier-Stokes equations, which
determine the contraction or expansion rate of this volume.
Making use of an estimate obtained in earlier work for the part
of the trace due to inertia [15], we then obtain an upper bound
to the attractor dimension of this dynamical system at various
Reynolds and Hartmann numbers.

The physical problem we consider is that of the flow of a
fluid of density ρ, conductivity σ , and kinematic viscosity ν,
which is confined between impermeable perfectly electrically
insulating walls at z = ±L and subject to periodic boundary
conditions in the x and y directions at x = ±πL and y = ±πL

in the presence of an applied magnetic field BBB = Beeex . We
consider the usual Navier-Stokes equation for MHD within
the quasistatic MHD approximation, which is valid as long
as the induced magnetic field remains small compared to the
externally imposed one [2]. Taking L to be the typical distance
and U the typical velocity, the evolution of UUU within this
approximation is written nondimensionally as

∂tUUU = −∇p − UUU · ∇UUU + Re−1(� − Ha2�−1∂xx)UUU,

∇ · UUU = 0, (1)

and the evolution of uuu is given by [11,12]

∂tuuu = −∇p − UUU · ∇uuu − uuu · ∇UUU

+ Re−1(� − Ha2�−1∂xx)uuu,

∇ · uuu = 0, (2)

where p is the perturbation to the pressure and � is the
Laplacian operator, whose inverse is well defined for functions

satisfying the boundary conditions of interest here, namely,

uuu(x,y,±1) = 0,

uuu(x,y,z) = uuu(x + 2π,y + 2π,z). (3)

The problem is governed by two nondimensional parameters,
the Hartmann and Reynolds numbers, Ha = √

σ/(ρν)BL and
Re = UL/ν, respectively. The perturbation to the current, jjj ,
is given by Ohm’s law:

jjj = (−∇φ + uuu × eeex). (4)

Taking the curl of this twice and using the fact that ∇ · jjj = 0
yields

jjj = −�−1∂x∇ × uuu = −�−1∂xωωω, (5)

where ωωω is the vorticity. Finally, jjj satisfies the boundary
condition

jz(x,y,±1) = 0. (6)

We now consider a space spanned by n mutually orthogonal
perturbations and the behavior of this space as it evolves.
Denoting by A the linearized evolution operator and by Pn the
projection to this space, it can be shown [11,19] that the trace
of APn satisfies the inequality

Tr(APn) � Tr

([
1

2
� − Ha2�−1∂xx

]
Pn

)
+ n

2
Re2. (7)

To find the attractor dimension, we find the eigenvalues of
the operator DHa = 1/2� − Ha2�−1∂xx , listed in decreasing
order (bearing in mind that the eigenvalues of this operator
are real and negative, as expected from a purely dissipative
operator). Then the lowest value of n which gives a negative
value for the upper bound of the trace of APn provides an
upper bound on the attractor dimension for a given value of
the Reynolds number. Finding the eigenmodes and eigenvalues
of DHa in order to obtain these bounds is our next aim. We
therefore require the solution of the eigenvalue problem for
the operator DHa in a closed box with periodic boundary
conditions of period 2π in the x and y directions and with
impermeable, perfectly insulating walls at z = ±1. Note that
since the trace of the operator is independent of the basis, the
basis of eigenvectors of DHa need not be orthogonal, and in
general, it isn’t.

In terms of the nondimensional variables, this yields the
eigenvalue problem

DHauuu = λuuu, (8)

where the symmetry of the operator DHa guarantees that the
eigenvalues are real. As the Laplacian operator is invertible for
these boundary conditions, we can instead take the Laplacian
of both sides and consider the problem

(�2 − 2Ha2∂xx)uuu = 2λ�uuu, (9)

where uuu satisfies the incompressibility condition ∇ · uuu = 0.
From the periodicity in x,y, we can consider uuu to be a sum of
terms of the form

uuu = eik.xk.xk.x
∑

i∈{x,y,z}
Zi(z)eeei, (10)
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where kkk = kxeeex + kyeeey , (kx,ky) ∈ Z2, and xxx = xeeex + yeeey .
Now consider a single component of uuu, denoted by eik.xk.xk.xZi(z).
For this to be a solution to the eigenvalue problem (9), we must
have

Z′′′′
i − 2(λ + k2)Z′′

i + (
k4 + 2λk2 + 2Ha2k2

x

)
Zi = 0, (11)

where a prime denotes differentiation with respect to z. We
seek a solution of the form Zi(z) = eKz, resulting in the
auxiliary quartic equation

K4 − 2(λ + k2)K2 + (
k4 + 2λk2 + 2Ha2k2

x

) = 0. (12)

Solving this quadratic equation in K2 yields the two roots,

K2
1 = λ + k2 +

√
λ2 − 2Ha2k2

x,

K2
2 = λ + k2 −

√
λ2 − 2Ha2k2

x, (13)

and eliminating λ from these gives the relation

K2
1 K2

2 = k2
(
K2

1 + K2
2

) − k4 + 2Ha2k2
x. (14)

This relation gives one constraint on the allowed roots of
the auxiliary equation: Other constraints are provided by the
boundary conditions on the flow. Once these constraints have
been solved to give K1 and K2, we obtain the corresponding
eigenvalue from (12):

λ = 1
2

(
K2

1 + K2
2

) − k2. (15)

From the impermeability and nonslip conditions at z = ±1,
together with incompressibility, we have

Zi(±1) = 0 = Z′
z(±1) (16)

and

ikxZx(z) + ikyZy(z) + Z′
z(z) = 0. (17)

In addition, we obtain electrical boundary conditions from
the current field jjj , which is determined by �jjj = −∂xωωω (5).
Taking the curl of (9) and considering the z component of jjj

finally gives the boundary condition

kyZ
′′
x (x,y,±1) = kxZ

′′
y (x,y,±1), (18)

since we must have jz(x,y,±1) = 0.
Modes can conveniently be divided into two classes: those

for which Zz(z) is not identically zero, and so the boundary
conditions (16) must be underdetermined, and those for which
Zz(z) is identically zero, so that nonzero Zx(z) and Zy(z) must
satisfy the electric boundary condition (18). By analogy with
linear stability theory in hydrodynamics, we call these the
Orr-Sommerfeld (OS) and Squire modes, respectively. λ is the
exponential decay rate of the corresponding eigenmode under
the sole effect of dissipation (viscous and Joule). Such a decay
would, however, only be observed on individual modes and in
the absence of inertia. The evolution of more complex linear
flows can still be expressed as a combination of exponential
decays [13].

B. Expressions of modes and eigenvalues

We can now solve the eigenvalue problem to find the
modes and corresponding eigenvalues explicitly. In addition to
providing an upper bound on the attractor dimension, the basis

formed with these modes can be used to carry out numerical
simulations of the flows under consideration by means of
spectral methods so they constitute an important result of
their own [14]. A laborious calculation shows that the only
significant possibilities are

(1) OS-type modes where one of K2
1 and K2

2 is positive
and the other negative and where kx and ky are not both zero;

(2) OS-type modes where both K2
1 and K2

2 are negative
and kx and ky are not both zero;

(3) Squire type modes with kx = ky = 0.
In each case above, |K1| is different from |K2|. Other

possible cases are those in which |K1| = |K2| or K2
1 and K2

2
are complex. In each of these cases, either there is no nontrivial
mode at all, or for any given choice of kx and ky there is a mode
for just one precisely tuned value of Ha. These singular cases
are of lesser importance for our purpose but are an interesting
property of this problem, which is absent when the magnetic
field is perpendicular to the walls, for instance [12]. They are
briefly described in Appendix A . We now restrict our attention
to the generic case where for a chosen Hartmann number there
is a set of solutions to the constraints.

In case (1), we denote the roots of the auxiliary quartic by
K1 = ±1/δ and K2 = ±iκz, where 1/δ �= κz. This reflects that
real roots correspond to the exponential profile of a boundary
layer of thickness δ near the walls, whereas imaginary ones
induce spatial oscillations of wavelength in the bulk of the
flow. In this case, in order to have a nontrivial Zz mode, we
require

1/δ tanh 1/δ = −κz tan κz or (19)

1/δ tan κz = κz tanh 1/δ (20)

and

−κ2
z

δ2
= k2

(
1/δ2 − κ2

z

) − k4 + 2Ha2k2
x. (21)

If neither kx nor ky is zero, then the two possibilities are

Zz(z) = − cos κz cosh(z/δ) + cosh(1/δ) cos(κzz),

Zx(z) = i
kx

[
κ3

z cosh(1/δ) sin κz − 1/δ3 cos κz sinh(1/δ)
]

(
1/δ2 + κ2

z

)(
k2
x + k2

y

)

×
[

sinh(z/δ)

sinh(1/δ)
− sin(κzz)

sin κz

]
,

Zy(z) = 1

ky

[iZ′
z(z) − kxZx(z)], (22)

and

Zz(z) = − sin κz sinh(κzz) + sinh(1/δ) sin(κzz),

Zx(z) = i
kx

[
1/δ3 sin κz cosh(1/δ) + κ3

z sinh(1/δ) cos κz

]
(
k2
x + k2

y

)(
1/δ2 + κ2

z

)

×
[

cos(κzz)

cos κz

− cosh(z/δ)

cosh(1/δ)

]
,

Zy(z) = 1

ky

[iZ′
z(z) − kxZx(z)]. (23)
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If kx = 0, then from (18) we immediately have Zx(z) = 0, and
from (17) we then obtain

Zy(z) = iZ′
z(z)/ky (24)

and similarly if ky = 0.
In case (1), for each interval of the form [nπ/2,(n + 1)π/2]

there is one value of κz and a corresponding value of 1/δ

satisfying the constraints, as for the analogous modes in the
case where the magnetic field is perpendicular to the walls.

In this case, (15) gives

λ = 1

2

(
1

δ2
− κ2

z

)
− k2. (25)

In case (2), we have K1 = iκ̃z and K2 = iκz, where κ̃z �= κz.
This time the nontrivial Zz modes are given by

κ̃z tan κ̃z = κz tan κz or (26)

κ̃z tan κz = κz tan κ̃z. (27)

This yields

Zz(z) = − cos κz cos(κ̃zz) + cos κ̃z cos(κzz),

Zx(z) = i
kx

(
κ̃3

z cos κz sin κ̃z − κ3
z cos κ̃z sin κz

)
(
k2
x + k2

y

)(
κ̃2

z − κ2
z

)

×
[

sin(κ̃zz)

sin κ̃z

− sin(κzz)

sin κz

]
,

Zy(z) = 1

ky

[iZ′
z(z) − kxZx(z)], (28)

or

Zz(z) = − sin(κz) sin(κ̃zz) + sin(κ̃z) sin(κzz),

Zx(z) = i
kx

(
κ3

z sin κ̃z cos κz − κ̃3
z sin κz cos κ̃z

)
(
k2
x + k2

y

)(
κ̃2

z − κ2
z

)

×
[

cos(κ̃zz)

cos κ̃z

− cos(κzz)

cos κz

]
,

Zy(z) = 1

ky

[iZ′
z(z) − kxZx(z)], (29)

when neither of kx nor ky are zero and obtain the Zz and Zy

modes as before if one of them is zero.
This time (15) gives

λ = − 1
2

(
κ2

z + κ̃z
2
) − k2. (30)

In case (2), however, the roots are not as conveniently located
as in the previous case; as κz increases, they can become
arbitrarily close together. We consider the consequences of
this in the next section.

Finally, we have the Squire modes [case (3)], which occur
only when kx = ky = 0. In this case we have Zz(z) = 0, and
if n is a positive integer, Zx(z) and Zy(z) are given either by

Zx,y(z) = cos[(n + 1/2)πz], (31)

where λ = − 1
2 (n + 1/2)2π2 or by

Zx,y(z) sin(nπz), (32)

where λ = − 1
2n2π2. These functions Zx , Zy , and Zz then

provide a functional basis for consideration of flows, which

FIG. 1. Number of eigenvalues found versus step length.

are applied in DNSs analogous to those in [13,14]. The full
expression of the functional basis is given in Appendix B.

III. NUMERICAL METHOD AND VALIDATION

In order to find the eigenvalues of the modes and the
corresponding values of kx , ky , κz, and 1/δ, a numerical
approach was required. The approach taken was to find, for
each of an increasing family of values of Ha, all the modes
and eigenvalues up to a limiting value.

In case (1) (one real and one imaginary root), finding
the eigenvalues was straightforward; the roots are located in
known intervals so that it is easy to find the root in each interval
by means of a bisection method.

In the case (2), the roots are not spread out in such a
convenient manner. In fact, as the Hartmann number grows
and the relevant values of κz become larger, the roots can
become arbitrarily close together. It is therefore necessary to
use a much smaller step length, use Eq. (14) to express (26)
and (27) in terms of just one of the roots, and check for a
sign change. The number of roots found as the step length is
decreased is shown in Fig. 1. We found that to an excellent
degree of approximation the number of roots varied linearly
with step length: A linear fit gives

n = 5.01 × 105 − 9.644 × 104 s, (33)

with goodness of fit measure R2 = 0.9996, where n is the
number of roots and s is the step length. Extrapolating to
s = 0, we find that the fraction of roots omitted with s = 0.001
is about 0.02%. The fact that some roots are omitted means
that the estimate for |Tr(DHaPn)| is a slight underestimate,
but the eigenvalues are very closely spaced, so that although
some eigenvalues are omitted, the sum of the first n eigenvalues
obtained is close to the sum of the first n of all eigenvalues. The
numerical methods were implemented in PYTHON, allowing
the investigation of a maximum Hartmann number of about
4400 and numbers of modes in excess of 107. The main
obstruction to investigating higher Hartmann number was that
of computational time: As a consequence of the short step
length required, the calculation of all required modes is very
time consuming at high Hartmann number.

Once obtained, these modes for each Hartmann number
considered were then sorted in order of increasing magnitude
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of λ, and the modulus of the sum of the first n eigenvalues used
as an estimate for Tr(DHaPn). From (7), an approximation to
the Reynolds number for which n is the dimension of the
attractor is then given by

√|2Tr(DHaPn)|/n.
It is interesting to note that for small values of the Hartmann

number, the modes of the first type (one real and one imaginary
root) predominate; indeed, there is no contribution from modes
of the second type (two imaginary roots) until the Hartmann
number exceeds 1.2. However, as the Hartmann number grows,
the contribution from modes of the second type grows until
at Hartmann numbers exceeding 3000, the modes of the first
type are only about a quarter of all those considered. Such
an inhomogeneous distribution of modes was not observed in
3D periodic domains nor in MHD channels perpendicular to
B. A significant consequence is that since the spectral density
of the distribution of modes in (kx,ky,κz) space cannot be
easily predicted, it is no longer possible to obtain an analytical
estimate for the upper bound for datt by means of a simple
approximation of the Trace in (7) by a continuous integral, as in
[11] and [12]. Consequently, it has to be obtained numerically
only.

IV. DISTRIBUTION AND PHYSICAL PROPERTIES
OF LEAST DISSIPATIVE MODES

A. Spectral distribution of eigenvalues

Even though the least dissipative modes do not give an
exact solution of the full system of equations governing the
flow evolution, it has been shown that finite combinations
of them were able to provide an accurate representation of
the actual solution [14,16], at least in low-Rm MHD flows.
Much can therefore be learned from the flow properties by
studying the properties of such finite sets of modes. Since
λ < 0, modes can be sorted by growing dissipation rate λn.
By construction, the N least dissipative modes are contained
within the region delimited by a manifold λ(kx,κy,kz) = λN of
the (kx,κy,kz) space. The shape of these manifolds therefore
gives a good measure of the flow anisotropy, in particular
at small scales. From (15), these can be rescaled to a
single manifold representing surfaces of constant λ/Ha in the
(kx/Ha,ky/Ha,κz/Ha) space.

Since kx = 0 removes the Hartmann number from the
situation, the shapes of the contours in the kx = 0 plane
are unaffected by the growing magnetic field. Consequently,
the cross section of this family of manifolds in planes kx =
constant is very close to a family of concentric circles, which
indicates that iso-λ manifolds are isotropically distributed in
planes perpendicular to the magnetic field direction. This was
indeed the case too in channels with a transverse magnetic
field and in periodic domains. Discrepancy to anisotropy in
these two cases was only due to the discrete distribution of
values of wave numbers perpendicular to B, which had to be
integers. Because of the walls at z = ±1, though, κz spans the
solutions of (19),(20),(21) or (26),(27),(21) rather than the set
of integers. This effectively introduces a form of anisotropy in
the sense that the sets of wave numbers in the x and z directions
are not identical, but still span the same interval.

Cross sections of the iso-λ manifolds in the ky = 0 plane
tell a different story (see Fig. 2). The geometry of this graph

FIG. 2. Contours of fixed values of λ/Ha.

is formally identical to geometries of channel flow with
transverse magnetic field [12], but with the roles of κz and kx

reversed. Both phenomenologies thus bear strong similarities,
but for the orientation of the magnetic field. For small Ha, the
flow is essentially isotropic, kx and ky have similar behaviors,
and the manifolds are spheres. As Ha increases, the increasing
suppression of the kx modes distorts the contours in the ky = 0
plane. This effect becomes more pronounced as Ha increases,
until we obtain situations where the kx modes are almost
entirely suppressed.

Conversely, for a fixed value of Ha, as the value of the largest
eigenvalue (and so the number of modes under consideration)
increases, we have the following sequence. Initially, the modes
have kx strongly suppressed, and the flow is essentially 2D.
Next, we enter a regime where the curves of constant λ pass
through the origin; this is the 3D, anisotropic regime. In
this regime, all modes are contained outside a cone of axis
ex , tangent to the manifold at the origin, whose half angle
is easily derived from (15) as θJ = π/2 − cos−1(

√−λ/Ha).
This phenomenology reflects that in MHD turbulence at high
interaction parameter S = σB2L/(ρU ), all energy-containing
modes are expelled from the Joule cone [8,20]. Finally, the
contours split away from the origin and we reach the regime
of weakly anisotropic 3D flow, which becomes more closely
isotropic as the contours approach a semicircular shape. We
also see this from a different perspective in the following
section.

B. Upper bound for the attractor dimension

Now consider the plot of attractor dimension vs Hartmann
number for fixed Reynolds number. Figure 3 plots the
dimension of the attractor for Reynolds numbers starting at 10
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FIG. 3. Attractor dimension (a) as a function of Ha for Re ranging
from 10 (lowest data set) to 270 (highest data set) in steps of 20 and
(b) as a function of Re for Ha = 1.0 (leftmost curve), 26.62, 6, 410.2
(from left to right), 4389 (rightmost curve).

and increasing in steps of 20, for Hartmann number starting at
1 and increasing in multiplicative steps of 1.2 up to a maximum
value of approximately 4400. We note that as in [11] this plot
divides the plane up into three regions: a 3D quasi-isotropic
region (I), a 3D anisotropic region (II), and a 2D region (III),
corresponding to the classification given above.

For a fixed Reynolds number, and increasing Ha, the
dimension initially depends only weakly on Hartmann number
in the quasi-isotropic 3D region. When a critical value is
reached, all iso-λ manifolds cut through the origin: At this
point, the attractor dimension undergoes a transition to the 3D
anisotropic region, where it scales approximately as Ha−1.

From the data, we find that for low Reynolds numbers,
the exponent is −1 ± 0.1, but as the Reynolds number
increases the uncertainty reduced to about −1 ± 0.003, which
strongly suggests that the slope tends to −1 at large Reynolds
number.

For higher values of Ha, another phase transition occurs
to the 2D state, where all modes become x independent.
Since their associated eigenvalue becomes independent of Ha
[from (14)], so does the upper bound for the attractor
dimension.

The transition from quasi-isotropic 3D to anisotropic 3D
sets occurs for datt ∼ Ha3 in this diagram: This transition
is quite gradual, and we can find the transition curve and
its slope either by examining the data for the first mode
with nonzero kx , zero ky , and κz approximately 1.57 or by
finding the number of modes for which |λ| < Ha2/2. The two
approaches give the results datt � (0.25 ± 0.01)Ha3±0.003 and
datt � (2.35 ± 0.01)Ha3.05±0.05, respectively. The 2D region
is that of all least dissipative modes for which kx = 0; this
time, examining the data gives a scaling of the form datt �
(2.2 ± 0.1)Ha1.03±0.03 for this transition.

A similar approach is followed, holding Ha constant and
varying Re, to determine how datt varies with Re in each of
these three regions. Some sample curves are plotted on Fig. 3.
Combining both graphs, we obtain that the upper bound for
the attractor dimension follows one of three scalings:

In the 2D regime,

datt � (1.2 ± 0.1)Re2.1±0.1; (34)

in the 3D anisotropic regime,

datt � (1.2 ± 0.2)
Re4.1±0.1

Ha
; (35)

and in the 3D quasi-isotropic regime,

datt � (1.7 ± 0.5)Re3.1±0.1. (36)

The scalings for datt in 3D regimes are consistent with the
upper bound obtained in periodic domains and with heuristic
estimates for the number of degree of freedoms in the system
as both datt ∼ Re4/Ha in the limit as Re and Ha tend to
infinity while remaining within the 3D regime; i.e., Ha 	
datt 	 Ha3 [11]. This result is not a priori obvious from the
mathematical point of view, since walls parallel to the magnetic
fields make the spectral distribution of the modes strongly
inhomogeneous, in contrast with flows in periodic domains
and with channels perpendicular to the field. From the physical
point of view, however, the fact that the attractor dimension
is not significantly affected by the nature of the boundaries
when Re is large enough, reflects that the number of degrees
of freedom in the flow is mainly determined by turbulence far
from the walls. In the 2D regime, datt understandably behaves
in the same way as in the fully periodic case, since in both
cases, strictly 2D modes incur no Joule dissipation. In channels
with walls perpendicular to the magnetic field, on the other
hand, the Hartmann boundary layer that develops against the
wall precludes strict two dimensionality and significant Joule
dissipation occurs there so that datt continues to decrease with
Ha in the quasi-2D regime.

A remark should be made on the value of the exponent of Re
in the estimates for the datt. In the strongly anisotropic regime,
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for example, heuristic estimate for the number of degrees of
freedom of turbulence in a periodic box yields dM ∼ Re2/Ha
[11], and not dM ∼ Re4/Ha. It was previously noted that this
overestimate for the exponent of Re takes its roots in the loose
upper bound for the inertial terms in (7). This issue is not
specific to MHD flows but betrays a core difficulty in the
derivation of tight upper bounds for attractor dimensions in 3D
turbulence. Nevertheless, the exponent of Ha in the estimate
for datt coincides with the heuristic estimates in the geometries
with periodic boundary conditions and channels perpendicular
to the magnetic field in both 3D regimes. Since our numerical
estimate shows that this exponent also remains valid in the
case of a channel parallel to the magnetic field, it is likely to
be a tight estimate in this case too.

V. SCALINGS FOR THE SMALL SCALES
AND THE BOUNDARY-LAYER THICKNESS

Expressing the evolution of a solution of the Navier-Stokes
equation in terms of the least dissipative modes necessitates
that these modes are able to resolve the smallest structures
present in the flow, namely the boundary layers and the
dissipative scales. For the solution to be faithfully represented
on this basis, it must include at least the datt least dissipative
elements of them [14,16]. (From the physical point of view,
more dissipative modes than these are dissipated before they
are able to transfer energy through inertia.) This uniquely
determines the smallest scales present in the flow κmax

z , kmax
x ,

and kmax
y as well as the smallest and largest possible boundary-

layer thicknesses. Both are readily extracted from the ordered
sequence of least dissipative modes calculated in Sec. IV A.

Let us first examine the behavior of the small scales, shown
on Figs. 4 and 5.

We see in the graphs how the maximum values of kx , ky ,
and κz behave in the three regimes. For small Ha � 1, the
system is in the quasi-isotropic 3D state for all values of Re,
and we see that in this case all three of kx , ky , and κz scale
approximately as Re. From the numerical data, the scaling is
of the form

kx ∼ ky ∼ κz ∼ (1.3 ± 0.1)Re1±0.05. (37)

As Ha is increased, for low values or Re we have the anisotropic
3D regime, in which kx is significantly less than Ha. datt then
scales approximately as (0.52 ± 0.03)Re2±0.1/Ha, and as Re
increases the system makes a transition to the quasi-isotropic
3D regime. The small scales are then

kx ∼ (0.18 ± 0.08)
Re2.1±0.2

Ha
, (38)

ky ∼ κz ∼ (1.3 ± 0.1)Re1±0.05. (39)

Finally, for Ha large enough, the fluid is in the 2D regime
initially, in which kx is entirely suppressed. As Re increases, we
enter the anisotropic 3D regime, with a trace of this transition
appearing in the curves for ky and κz. For the larger values of
Ha the transition to quasi-isotropic 3D takes place at too large
a value of Re to be observed here.

The boundary layers thicknesses are perhaps the most
interesting because they can be expected to differ radically
from the Hartmann boundary layers found in channels
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FIG. 4. Maximal values of kx,ky,κz for Ha ≈ 10.70 (a) and
95.40 (b).

perpendicular to the magnetic field [12]: Since the magnetic
field is aligned parallel to the walls, we would not expect
it to lead to the formation of a Hartmann layer: Indeed,
the numerical evidence is that the minimum boundary-layer
thickness scales as 1/Re, in all three regimes; here, the numer-
ical data give a scaling law of δ = (0.8 ± 0.02)Re−1.02±0.02.
The dependence on Reynolds indicates that the thinnest
layer is purely viscous. Figure 6 shows the relationship for
the smallest and largest Hartmann numbers considered and
one intermediate value. We also observe that the graph of
the smallest boundary-layer thickness shows a trace of the
transition from 2D to anisotropic 3D flow, in the form of a
discrepancy from the power-law line which then settles down
as Re increases, but which does not affect the asymptotic
scaling. Interestingly, while the minimum boundary-layer
thickness does not depend on Ha, the critical value of Re
at which this transition occurs, on the other hand, does. The
thickest layer, on the other hand, rapidly saturates as Re is
increased. Unlike Hartmann layers, the layers in channels
parallel to walls do not have a definite thickness determined by
the balance between Lorentz force and viscous friction, even
at low Re. This reflects in different modes exhibiting different
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FIG. 5. Maximal values of kx,ky,κz for Ha ≈ 1021 (a) and
4389 (b).

boundary-layer thicknesses at all values of Re. Since the real
flow is ultimately a combination of these modes with different
boundary-layer thicknesses, it may not exhibit an exponential

FIG. 6. Boundary layer thicknesses for Ha ≈ 1.0, 590.7, and 4389.

profile, unlike the Hartmann layers found in the case of the
channel with transverse magnetic field.

VI. HEURISTICS FOR THE TRANSITION
BETWEEN TURBULENT REGIMES

The attractor dimension represents the number of degrees of
freedom of the dynamical system underlying turbulence. It can
be heuristically estimated as the number of vortices in the flow.
In homogeneous hydrodynamic turbulence, Kolmogorov’s law
for the size of the small scales kmax ∼ Re3/4 yields

datt ∼ Re9/4. (40)

In the anisotropic MHD regime, scalings for the small scales
are usually obtained by assuming that anisotropy is constant
along the inertial range and that inertial transfer is balanced
by Joule dissipation at all scales in the inertial range, which
translates into the following scaling for the anisotropy and the
power spectral density [10,11],

kx

k⊥
∼ N−1, (41)

E(k⊥) ∼ E0k
−3, (42)

where E0 = E(k⊥ = 1), and since at the small scales viscous
friction becomes of the same order as these two effects, we
obtain

kmax
x ∼ Re

Ha
, (43)

kmax
y ∼ κmax

z ∼ kmax
⊥ ∼ Re1/2, (44)

datt ∼ Re2

Ha
. (45)

The transition between the homogeneous isotropic regime
and the anisotropic MHD regime, occurs when the estimates
for k⊥ and kx converge to the same value. Whether using
mathematical estimates (38), (39), and (35) or heuristics (43),
(44), and (45), the number of degrees of freedom at the
transition scales as datt ∼ Ha3, in line with the numerical
findings of Sec. IV B.

Similarly, the transition between anisotropic MHD regime
and the 2D regime takes place when kmax

x ∼ 1. Applying this
condition to both the mathematical estimates (35) and (38) and
the heuristics estimates (45) and (43) yields the same scaling
datt ∼ Ha. It is remarkable that, when expressed in terms of the
number of degrees of freedom rather than Reynolds number,
the transition laws found from the properties of the least
dissipative modes reflect heuristics accurately and do not suffer
from the loose estimate for the inertial terms. Nevertheless, it
should be noted that the heuristic phenomenology for MHD
turbulence discussed in this section is only well established
for values of the interaction parameter S of the order of unity
[10]. The authors of [21] experimentally observed that the
spectral exponent in the inertial range varied continuously but
nonmonotonously between −5/3 and −4 when S spanned
larger intervals from 0 to large values. Although the full
range of these values included nearly isotropic regimes and
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quasi-2D regimes, this stresses that the k−3 spectrum is not
a universal feature of anisotropic MHD turbulence, unlike
the k−5/3 spectrum of isotropic, homogeneous hydrodynamic
turbulence. Scalings for the small scales of MHD turbulence
with a different spectrum are, however, not known. Equally,
the scaling datt ∼ Ha−1 is asymptotic and Fig. 3 shows that it
may be imperfectly verified away from the middle range of the
anisotropic regime.

Finally, it should be noticed that the phenomenology
discussed in this section applies regardless of the boundary
conditions, and therefore to Hartmann flows and flows in 3D
periodic domains [11,12]. The most remarkable aspect about
the case of a channel flow with a spanwise magnetic field is that
the same phenomenology applies to it despite a very different
spectral distribution of eigenmodes. Although not surprising
from the physical point of view, this property is anything but
straightforward from the mathematical point of view.

VII. CONCLUDING REMARKS

The sequence of least dissipative modes for a channel flow
in a homogeneous magnetic field parallel to the walls has been
derived. This achieves the first step towards spectral DNS of
MHD flows in this configuration based on this functional basis.
This promising method was shown to partially lift the cost of
meshing the very thin boundary layers in MHD channel flows
perpendicular to the externally applied magnetic field. In the
present case, Hartmann layers are not present. This implies
that when the flow is 3D but strongly anisotropic, the number
of modes required to represent the flow completely can be
expected to come close to the actual attractor dimension datt,
as in the case of periodic flows [16]. An upper bound for it
was found to scale as Re4/Ha, but datt itself is heuristically
expected to scale as Re2/Ha, suggesting that the upper bound
we find is tight as far as the exponent of Ha is concerned but
not that of Re. Either way, datt significantly decreases with
Ha and so using the least dissipative modes in spectral DNS
should incur significant computational savings.

The success of such a numerical approach relies on the
ability of these modes to faithfully represent the physical
properties of the flow. In this respect the least dissipative modes
have been shown to recover most of the known attributes of
MHD turbulence in a channel parallel to the magnetic field.

(i) In regimes where the flow is 3D, turbulence far from
the wall determines the number of degrees of freedom of the
flow. The ensuing scalings for the attractor dimension, small
scales along and across the magnetic fields, and Joule cone
half angle are essentially the same as those for turbulence in
a periodic domain. These are all finely recovered by the set
of least dissipative modes. In the most important case of 3D
anisotropic flow, these scalings for the small scales were

κz � ky � 01.3Re kx � Re2

2Ha
.

(ii) The modes spread into two families: Orr-Sommerfeld
modes, which have a velocity component across the channel,
and Squire modes, which do not.

(iii) The spectral distribution of the least dissipative modes
is strongly inhomogeneous, because of the presence of pairs

of OS modes with imaginary eigenvalues. This effect is due
to the presence of walls parallel to the magnetic field but
does not affect the main scalings for the attractor dimension:
This important result is a priori far from obvious from the
mathematical point of view but reflects that high-Re turbulence
is not strongly affected by the walls in the present geometry
(see above).

(iv) The maximum and minimum thicknesses of the
boundary layers associated to the least dissipative modes along
the walls are essentially independent of the external magnetic
field and depend on Re only, as one would expect for a
magnetic field parallel to the walls.
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APPENDIX A: SPORADIC RESONANT MODES

Only the cases considered above provide modes for arbi-
trarily chosen Hartmann number. Of the several other possible
cases (both roots of the quadratic equation in K2 real, one
or both 0, both roots of the same magnitude) some have no
modes, others have only modes in which the Hartmann number
is precisely determined by kx and ky and the values of K1, K2.
We tabulate the possibilities as follows:

(1) K1 = 0, K2
2 = −μ2: μ = n ∈ Z, and 2Ha2 = (k2 +

n2)/kxk
2;

(2) K2
1 = −K2

2 = μ2, where μ ∈ R: μ must satisfy the
equation tan(μ) = ± tanh(μ), and 2Ha2 = (k2 − μ2)/kxk

2;
(3) all other cases: no nontrivial modes.

APPENDIX B: EIGENBASIS OF
THE DISSIPATION OPERATOR

To begin with, we see the various OS modes, which
themselves split up into several cases.

First, we have the case where the roots of (12) are ±1/δ

and ±iκz, where 1/δ �= ±κz, and kx and ky are not both zero.
If 1/δ tanh 1/δ = −κz tan κz, then Zz(z) is given by

Zz(z) = − cos(κz) cosh(z/δ) + cosh(1/δ) cos(κzz).

If neither kx nor ky is 0, then Zx(z) and Zy(z) are given by

Zx(z) = i
kx

[
κ3

z cosh(1/δ) sin κz − 1/δ3 cos κz sinh(1/δ)
]

(
1/δ2 + κ2

z

)(
k2
x + k2

y

)

×
[

sinh(z/δ)

sinh(1/δ)
− sin(κzz)

sin κz

]
,

Zy(z) = 1

ky

[iZ′
z(z) − kxZx(z)].

If 1/δ tan κz = κz tanh 1/δ, then Zz(z) is given by

Zz(z) = − sin κz sinh(κzz) + sinh(1/δ) sin(κzz).
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If neither kx nor kz is 0, then Zx(z) and Zy(z) are given by

Zx(z) = i
kx

[
1/δ3 sin κz cosh(1/δ) + κ3

z sinh(1/δ) cos κz

]
(
k2
x + k2

y

)(
1/δ2 + κ2

z

)

×
[

cos(κzz)

cos κz

− cosh(z/δ)

cosh(1/δ)

]
,

Zy(z) = 1

ky

[iZ′
z(z) − kxZx(z)].

If kx = 0,

Zx(z) = 0, Zy(z) = iZ′(z)/ky,

and if ky = 0,

Zy(z) = 0, Zx(z) = iZ′(z)/kx.

In each of these cases the eigenvalue is given by

λ = 1

2

(
1

δ2
− κ2

z

)
− k2.

Next, we have the case where the roots of (12) are ±iκz and
±iκ̃z, where κz �= ±κ̃z and kx and ky are not both zero.

If

κ̃z tan κ̃z = κz tan κz,

then Zz(z) is given by

Zz(z) = − cos κz cos(κ̃zz) + cos κ̃z cos(κzz).

If neither kx nor ky are zero, then Zx(z) and Zy(z) are
given by

Zx(z) = i
kx

(
κ̃3

z cos κz sin κ̃z − κ3
z cos κ̃z sin κz

)
(
k2
x + k2

y

)(
κ̃2

z − κ2
z

)

×
[

sin(κ̃zz)

sin κ̃z

− sin(κzz)

sin κz

]
,

Zy(z) = 1

ky

[iZ′
z(z) − kxZx(z)].

If

κ̃z tan κz = κz tan κ̃z,

then Zz(z) is given by

Zz(z) = − sin(κz) sin(κ̃zz) + sin(κ̃z) sin(κzz)

and if neither of kx nor ky is zero, then Zx(z) and Zy(z) are
given by

Zx(z) = i
kx

(
κ3

z sin κ̃z cos κz − κ̃3
z sin κz cos κ̃z

)
(
k2
x + k2

y

)(
κ̃2

z − κ2
z

)

×
[

cos(κ̃zz)

cos κ̃z

− cos(κzz)

cos κz

]
,

Zy(z) = 1

ky

[iZ′
z(z) − kxZx(z)].

Just as before, if kx = 0,

Zx(z) = 0, Zy(z) = iZ′(z)/ky,

and if ky = 0,

Zy(z) = 0, Zx(z) = iZ′(z)/kx.

In each of these cases the eigenvalue is given by

λ = − 1
2

(
κ2

z + κ̃z
2
) − k2.

Finally, we have the squires modes: For these modes, kx =
ky = 0, and we have Zz(z) = 0, and for each positive integer
n there are modes

Zx,y = cos[(n + 1/2)πz],

with λ = − 1
2 (n + 1/2)2π2 and

Zx,y(z) = sin(nπz),

with λ = − 1
2n2π2.
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