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We investigated by numerical simulations the effects of Schmidt number on passive scalar transport in forced
compressible turbulence. The range of Schmidt number (Sc) was 1

25 ∼ 25. In the inertial-convective range the
scalar spectrum seemed to obey the k−5/3 power law. For Sc � 1, there appeared a k−1 power law in the viscous-
convective range, while for Sc � 1, a k−17/3 power law was identified in the inertial-diffusive range. The scaling
constant computed by the mixed third-order structure function of the velocity-scalar increment showed that it grew
over Sc, and the effect of compressibility made it smaller than the 4

3 value from incompressible turbulence. At small
amplitudes, the probability distribution function (PDF) of scalar fluctuations collapsed to the Gaussian distribution
whereas, at large amplitudes, it decayed more quickly than Gaussian. At large scales, the PDF of scalar increment
behaved similarly to that of scalar fluctuation. In contrast, at small scales it resembled the PDF of scalar gradient.
Furthermore, the scalar dissipation occurring at large magnitudes was found to grow with Sc. Due to low molecular
diffusivity, in the Sc � 1 flow the scalar field rolled up and got mixed sufficiently. However, in the Sc � 1 flow
the scalar field lost the small-scale structures by high molecular diffusivity and retained only the large-scale,
cloudlike structures. The spectral analysis found that the spectral densities of scalar advection and dissipation
in both Sc � 1 and Sc � 1 flows probably followed the k−5/3 scaling. This indicated that in compressible
turbulence the processes of advection and dissipation except that of scalar-dilatation coupling might deferring to
the Kolmogorov picture. It then showed that at high wave numbers, the magnitudes of spectral coherency in both
Sc � 1 and Sc � 1 flows decayed faster than the theoretical prediction of k−2/3 for incompressible flows. Finally,
the comparison with incompressible results showed that the scalar in compressible turbulence with Sc = 1 lacked
a conspicuous bump structure in its spectrum, but was more intermittent in the dissipative range.
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I. INTRODUCTION

Turbulent mixing is of importance in many fields including
the scattering of interstellar materials throughout the Universe,
the dispersion of air pollutants in the atmosphere, and the
combustion of chemical reactions within an engine [1–6]. In
the literature of fluid dynamics, mixing in turbulent flows is
often called a scalar turbulence. The related classical picture of
cascade is that scalar fluctuations are generated at large scales
and transported through successive breakdowns into smaller
scales; the process proceeds until the scalar fluctuations are
homogenized and dissipated by molecular diffusion at the
smallest scale. Therefore, how a scalar gets mixed by a flow
depends on whether its molecular diffusivity is small or large,
even if the flow is fully turbulent. The common measure of
diffusivity is based on the Schmidt number Sc ≡ ν/χ , where
ν and χ are the kinematic viscosity and molecular diffusivity,
respectively. Generally, there are three different Sc regimes
in turbulent mixing. For Sc � 1, previous experiments and
simulations [7–9] have suggested that the scalar spectrum in
the inertial-convective range follows the k−5/3 power law when
the Reynolds number is sufficiently high. The weakly diffusive
regime (Sc � 1) has also received great deal of attention
[10–12], especially concerning the k−1 power law for the
spectral roll-off in the viscous-convective range [13]. In terms
of the strongly diffusive regime (Sc � 1), recent simulations
[14,15] have provided strong support for the putative theory

*niql.pku@gmail.com

proposed by Batchelor, Howells, and Townsend (hereafter
referred to as BHT) [16]; namely, that the scalar spectrum
in the inertial-diffusive range obeys the k−17/3 power law.

As is well known, compressible turbulence is crucial to a
large number of industrial applications and natural phenom-
ena, such as the design of transonic and hypersonic aircraft,
interplanet space exploration, solar winds, and star-forming
clouds in a galaxy. Nevertheless, our current understanding
of scalar transport in compressible turbulent flows lags far
behind the knowledge accumulated on the incompressible one.
Previous simulations of mixing in compressible turbulence
using the piecewise-parabolic method [17,18] showed that
for velocity, the compressive component is less efficient in
enhancing mixing than the solenoidal component. Moreover,
the scaling of scalar structure function accords well with
the SL94 model. In this paper, we carried out a series of
numerical simulations for compressible turbulent mixing,
using a novel computational approach [19]. To examine in
detail the effects of the Schmidt number on the scalar transport
in compressible turbulence, the turbulent Mach number was
fixed at around 0.30, whereas the Taylor microscale Reynolds
and Schmidt numbers were varied from 34 to 216 and
1

25 to 25, respectively. For focusing the influences brought
by shock waves, a large-scale forcing with overwhelming
compressive component is added to drive and maintain the
velocity field [20]. This paper is part of a systemic investigation
of the effects of basic parameters on compressible turbulent
mixing. In a companion paper [21], we carefully examined the
effects caused by changes in the Mach number and forcing
scheme.
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The rest of this paper is organized as follows: The
governing equations and simulated parameter, along with
the computational method used, are presented in Sec. II. In
Sec. III, we first analyze the spectrum and structure function,
then describe the probability distribution function, and finally
discuss the scalar transport in Sc � 1 and Sc � 1 flows. The
summary and conclusions regarding this paper are given in
Sec. IV.

II. GOVERNING EQUATIONS AND
SIMULATION PARAMETERS

We consider a statistically stationary system of a passive
scalar advected by the compressible turbulence of an idea gas.
The velocity and scalar fields are driven and maintained by
large-scale velocity and scalar forcings, respectively, where in
the former the ratio of compressive to solenoidal components
for each wave number is 20 : 1. Furthermore, the accumulated
internal energy at small scales is removed by cooling function
at large scales. By introducing the basic scales of L for length,
ρ0 for density, U for velocity, T0 for temperature, and φ0

for scalar, we obtain the dimensionless form of governing
equations, plus the dimensionless state equation of ideal gas,
as follows:

∂ρ

∂t
+ ∂(ρuj )

∂xj

= 0, (2.1)

∂(ρui)

∂t
+ ∂[ρuiuj + pδij /γM2]

∂xj

= 1

Re

∂σij

∂xj

+ ρFi , (2.2)

∂E
∂t

+ ∂[(E + p/γM2)uj ]

∂xj

= 1

α

∂

∂xj

(
κ

∂T

∂xj

)
+ 1

Re

∂(σijui)

∂xj

− � + ρFj uj , (2.3)

∂(ρφ)

∂t
+ ∂[(ρφ)uj ]

∂xj

= 1

β

∂

∂xj

(
ρχ

∂φ

∂xj

)
+ ρS, (2.4)

p = ρT . (2.5)

The primary variables are the density ρ, velocity vector u,
pressure p, temperature T , and scalar φ. The nondimen-
sional parameters α and β are α = PrRe(γ − 1)M2 and β =
ScRe(γ − 1)γ . Fj is the dimensionless large-scale velocity
forcing,

Fj =
2∑

l=1

F̂j (kl) exp (iklx) + c.c., (2.6)

where F̂j is the Fourier amplitude, it has a solenoidal
component perpendicular to kl and a compressive component
parallel to kl , and in magnitude the latter is twenty times greater
than the former. Similarly, the dimensionless large-scale scalar
forcing S is written as

S =
2∑

l=1

Ŝ (kl) exp (iklx) + c.c. (2.7)

However, there is only a solenoidal component in Ŝ . The
details of the thermal cooling function � can be found in

Ref. [19]. The viscous stress σij and total energy per unit
volume E are defined by

σij ≡ μ

(
∂ui

∂xj

+ ∂uj

∂xi

)
− 2

3
μθδij , (2.8)

E ≡ p

(γ − 1) γM2
+ 1

2
ρ(ujuj ). (2.9)

Here, θ = ∂uk/∂xk is the velocity divergence or dilatation.
M ≡ U/c0 is the reference Mach number and c0 ≡ √

γRT0

is the reference sound speed, where R is the specific gas
constant, and γ ≡ Cp/Cv is the ratio of specific heat at
constant pressure Cp to that at constant volume Cv . We shall
assume that both specific heats are independent of temperature,
which is a reasonable assumption for the air temperature in
the simulation of the current Mach number [19]. By adding
the reference dynamical viscosity μ0, thermal conductivity
κ0, and molecular diffusivity χ0, we obtain three additional
governing parameters: the reference Reynolds number Re ≡
ρ0UL/μ0, the reference Prandtl number Pr ≡ μ0Cp/κ0, and
the reference Schmidt number Sc ≡ ν0/χ0, where ν0 ≡ μ0/ρ0

is the reference kinematic viscosity. In the current study the
values of γ and Pr are set as 1.4 and 0.7, respectively. Thus,
there remain three independent parameters of M , Re, and Sc to
govern the system. For completion, we employ the Sutherland
law to specify the temperature-dependent dynamical viscosity,
thermal conductivity, and molecular diffusivity as follows:

μ,κ,χ = 1.4042T 1.5

T + 0.4042
. (2.10)

The system is solved numerically in a cubic box with
periodic boundary conditions by adopting a new computa-
tional method. This method utilizes a seventh-order weighted
essentially nonoscillatory (WENO) scheme [22] for shock
regions and an eighth-order compact central finite difference
(CCFD) scheme [23] for smooth regions outside shocks.
A flux-based conservative formulation is implemented to
optimize the treatment of interface between the two regions
and then improve the computational efficiency. The details
have been described in Ref. [19]. Instead of M and Re, the
compressible flow is directly governed by the turbulent Mach
number Mt and the Taylor microscale Reynolds number (Reλ)
[24], which are defined as follows:

Mt ≡ M
u′

〈√T 〉 , (2.11)

Reλ ≡ Re
u′λ〈ρ〉√

3〈μ〉 , (2.12)

where u′ ≡ (〈u2
j 〉)1/2 and λ ≡ u′/[〈(∂uj/∂xj )2〉]1/2 are the

root-mean-square (r.m.s.) velocity magnitude and the Taylor
microscale, respectively. The sign 〈·〉 denotes the ensemble
average and the repetition on the subscript stands for Einstein
summation. Here, we point out that the definitions of Mt

and Reλ are based on nondimensional variables, which is
continuously used in the following text if there is no special
illustration.

Table I presents the major simulation parameters. The
simulations are conducted on a N3 = 5123 grid and divided
into two groups according to the value of Reλ. The first
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TABLE I. Flow statistics in the simulations.

Case Sc Mt Reλ η ηB ηOC u′ φ′ EK Eφ 〈ε〉 〈εφ〉 rφ

C1 25 0.28 35 0.027 0.005 2.06 2.75 2.13 3.81 1.20 0.80 0.37
C2 5 0.28 35 0.027 0.012 2.06 2.44 2.15 3.00 1.19 0.87 0.52
C3 1 0.28 34 0.027 0.027 2.06 2.14 2.11 2.30 1.21 0.92 0.70
C4 1 0.29 208 0.007 0.007 2.11 2.24 2.28 2.53 0.41 0.90 1.98
C5 1

5 0.29 207 0.007 0.023 2.11 2.11 2.24 2.25 0.40 0.93 2.31

C6 1
25 0.30 216 0.007 0.078 2.15 1.98 2.30 1.97 0.43 1.25 3.40

group including C1, C2, and C3 is used to study scalars
with low molecular diffusivity in low Re flows, where Sc
is decreased from 25, 5, to 1, and Reλ is around 35. For the
three cases, the smallest scale for velocity is the Kolmogorov
scale η ≡ [〈μ/(Reρ)〉3/〈ε/ρ〉]1/4, and that for the scalar is the
Batchelor scale ηB = Sc−1/2η with values of 0.005, 0.012, and
0.027. In the second group addressing C4, C5, and C6, we pay
attention to scalars with high molecular diffusivity in high Re
flows, where Sc is decreased from 1, 1

5 , and 1
25 , and Reλ is

around 210. Here, the smallest scale for a scalar is the Corrsin
scale, ηC = Sc−3/4η, instead of the Batchelor scale, ηB , with
values of 0.007, 0.023, and 0.078.

The r.m.s. magnitude of velocity u′ and the kinetic energy
per unit volume EK are increased by Reλ rather than by Sc. In
contrast, the r.m.s. magnitude of scalar φ′ and the scalar vari-
ance per unit volume Eφ mainly grow with Sc in both high and
low Re flows, where the related definitions are φ′ ≡ (〈φ2〉)1/2,
EK ≡ 〈ρu2

j 〉/2, and Eφ ≡ 〈ρφ2〉/2. Because Mt is fixed, the
ensemble-average value of the kinetic-energy dissipation rate
〈ε〉 becomes only dependent on Reλ. In contrast, that of
the scalar dissipation rate 〈εφ〉 in both high- and low-Re
flows increases as Sc decreases. Here, ε ≡ σijSij /Re, εφ ≡
χ (∂φ/∂xj )2, and Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the strain
rate tensor. For the ratio of the mechanical to scalar timescales
rφ = (〈ρu2/2〉/〈ε〉)/(〈ρφ2/2〉/〈εφ〉), its dependence on Sc is
similar to that of 〈εφ〉.

Furthermore, an alternative to rφ is the quantity of fφ =
(Lf /u′)/(〈ρφ2/2〉/〈εφ〉), where Lf is the integral length scale
[25]. In Fig. 1 we plot fφ against the logarithm of the product
of Reλ and Sc. It shows that fφ falls monotonically when the
product increases.

ReλSc

f φ

101 102 103
0

0.2

0.4

0.6

0.8

1

C6

C1
C2
C3
C4
C5

FIG. 1. (Color online) Normalized scalar dissipation rate versus
the product of Reλ and Sc.

III. SIMULATION RESULTS

A. Spectrum and structure function

By applying the Kolmogorov theory [26,27] to the scalar
transport in incompressible turbulent flows, Obukhov [28]
and Corrsin [29] derived a scalar spectrum in the inertial-
convective range satisfying L−1

φ � k � η−1:

Eφ (k) = Cφ〈εφ〉〈ε〉−1/3k−5/3, (3.1)

where Lφ is the integral length scale of scalar [25]. Cφ is
the Obukhov–Corrsin (OC) constant, and the typical values
are 0.75 ∼ 0.92 by experiment and 0.87 ± 0.10 by simulation
[8,30]. In Fig. 2 we plot the compensated spectra of scalar
according to the OC variables at different Sc and Reλ. For
the curves of Eφ(k), plateaus appear in the inertial-convective
ranges, especially for the Sc = 1 flows. This means that, in the
range L−1

φ � k � η−1, the scalar spectrum in compressible
turbulent mixing seems to also obey the k−5/3 power law.
In high-Sc flows, Eφ(k) in the regime between the inertial-
convective and dissipative ranges grows with wave number,
which is reinforced by the increase in Sc. Contrarily, in low-
Sc flows, in the same regime Eφ(k) falls as wave number
increases, and this behavior is enhanced by the decrease in Sc.
It implies that in a certain range, the scalar spectrum in a low-
or high-Sc flow may have additional scaling.

Although it is straightforward to compute in simulations
the three-dimensional (3D) scalar spectrum as a function of
wave number, experiments usually measure only the one-
dimensional (1D) version of E1φ(k). In isotropic turbulence, it

kη

E φ
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ε>
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3 <

ε φ>
-1
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/3
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FIG. 2. (Color online) Compensated spectrum of scalar accord-
ing to the Obukhov–Corrsin variables at different values of Sc and
Reλ.
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FIG. 3. (Color online) One-dimensional compensated spectrum
of scalar at different values of Sc and Reλ.

is written as

E1φ (k) = −
∫ ∞

k

Eφ (k)

k
dk. (3.2)

Figure 3 presents the 1D compensated scalar spectra at differ-
ent Sc and Reλ. We have taken averages over three coordinate
directions. Previous studies of incompressible turbulence have
shown the existence of a spectral bump, which is a precursor
to the k−1 part of the scalar spectrum and becomes more and
more pronounced as Sc increases. In our simulations, although
it gets clearer when Sc grows, the bump is not as conspicuous as
that observed in Ref. [31]. Similar to Cφ , the 1D OC constant,
C1φ , is changed by both Sc and Reλ. We find that Cφ and C1φ

approximately satisfy the relation Cφ = 5C1φ/3, which can be
obtained directly through Eq. (3.2).

When the Schmidt number is Sc � 1, the energy spectrum
decays quickly at wave numbers larger than η−1, whereas
the scalar spectrum remains excited at levels higher than the
energy spectrum [32]. In this case, the scalar transfer to small
scales is creased at the Batchelor scale ηB through molecular
diffusion. The range η−1 � k � η−1

B is called the viscous-
convective range, wherein the scalar spectrum obeys a k−1

power law as follows:

Eφ (k) = Bφ〈εφ〉 (ν/〈ε〉)1/2 k−1. (3.3)

Here, the nondimensional coefficient Bφ is presumed to
be universal [31,32], and the value is 3 ∼ 6 [33,34]. The
nonlocality of the scalar transfer in wave-number space is
essential for the generation of this viscous-convective range.
Therefore, a sufficiently high Sc is required to observe the
k−1 power law. In Fig. 4(a) we plot the compensated spectra
of scalar according to the Batchelor variables in low-Re
flows, as functions of kη. For the Sc = 25 flow, a plateau
representing the k−1 power law is observed in the range
of 0.1 � kη � 0.3 (gray region), and the crossover region
occurs in 0.06 < kη < 0.1. However, the k−1 power law
disappears when Sc is reduced to 5. This reveals that, in the
viscous-convective range, the scalar spectrum in the Sc � 1
compressible turbulent mixing defers to the k−1 scaling given
by the Batchelor theory, which was previously developed for
incompressible turbulence.

On the other hand, when the Schmidt number is Sc � 1,
the scalar fluctuations at scales smaller than the OC scale,
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)(
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2 <
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-4

FIG. 4. (Color online) (a) Compensated spectrum of scalar ac-
cording to the Batchelor variables at Sc = 25, 5, and 1 and low Reλ,
where the slope value of the short line is − 2

3 . (b) The same as panel (a)
according to the Batchelor–Howells–Townsend variables at Sc = 1,
1
5 , and 1

25 and high Reλ, where the slope value of line is −4.

ηOC = Sc−3/4η, decay strongly and, thus, the scalar spectrum
rolls off steeper than the k−5/3 power law. If the Reynolds
number is sufficiently large, standard arguments suggest that,
in the range of η−1

OC � k � η−1, a so-called inertial-diffusive
range exists. The aforementioned BHT theory predicts that, in
this range, the scalar spectrum has the form

Eφ (k) = (CK/3) 〈εφ〉〈ε〉2/3χ−3k−17/3. (3.4)

Figure 4(b) shows the compensated spectra of scalar according
to the BHT variables in high-Re flows as functions of kη.
We observe that, in the Sc = 1

25 flow, a narrow plateau
representing the k−17/3 power law arises, where the scale range
is roughly 0.3 � kη � 0.4 (gray region), which corresponds
to 3.4 � kηOC � 4.5. The above result demonstrates that, in
the inertial-diffusive range, the scalar spectrum in the Sc � 1
compressible turbulent mixing follows the k−17/3 scaling
provided by BHT theory.

The second-order structure function of scalar increment is
defined by

Sφ2(r) ≡ 〈(δrφ)2〉, (3.5)

where δrφ = φ(x + r) − φ(x) is the scalar increment. In Fig. 5
we plot Sφ2(r) normalized by the OC variables, as suggested
in Eq. (3.1), as functions of the normalized separation distance
r/η. It shows finite-width plateaus at large r/η. The scaling
constants computed by the plateaus in low-Re flows are higher
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FIG. 5. (Color online) Obukhov–Corrsin scaling of second-order
structure function of scalar at different values of Sc and Reλ.

than those in high-Re flows. When Sc decreases, the values
of scaling constants in both high- and low-Re flows become
smaller. At sufficiently large scales, an asymptotic formulation
obtained from incompressible turbulent mixing [31] gives

〈(δrφ)2〉
〈εφ〉〈ε〉−1/3r2/3

≈ 3ReλSc1/2

√
15rφ

(
r

ηOC

)−2/3

= 3Reλ√
15rφ

(
r

η

)−2/3

. (3.6)

Given that the scale range for a plateau is different in every
case, in principle it explains the relative relations of the scaling
constants in our simulations.

The mixed third-order structure function, defined as
Sm3(r) = 〈δru(δrφ)2〉, where δru = u(x + r) − u(x) is the
longitudinal velocity increment, plays a more fundamental
role in the similarity scaling. In incompressible turbulence,
an exact result for ηB � r � Lφ was given by Yaglom [35]:

〈δru(δrφ)2〉 = − 4
3 〈εφ〉r. (3.7)

Figure 6 presents the minus of Sm3(r) normalized by the
Yaglom variables. It is found that, for each simulated flow,
there appears a flat region with finite width. Furthermore, in
the limit of large scale, −Sm3(r) drops quickly and approaches
zero, while at small scales, it behaves approximately as
r2 according to the Taylor expansion. We now employ the

r/η

-S
m
3(r
)/(
r<

ε φ>
)
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FIG. 6. (Color online) Yaglom scaling of mixed third-order
velocity-scalar structure function at different values of Sc and Reλ.

quantity Cm to represent the compensated mixed third-order
structure function:

Cm = − Sm3

r〈εφ〉 . (3.8)

Our results show that, in flat regions, the scaling constant
Cm is 1.64, 1.43, 1.15, 1.16, 1.04, and 0.97 from C1 through
C6, respectively. Two aspects can thus be concluded: (1) the
contribution from the variation in the Reynolds number to Cm

is negligible, while the compressible effect makes Cm smaller
than the 4

3 value from incompressible turbulence, and (2) Cm

has a tendency to increase with Sc, which is in agreement with
the results shown in Ref. [31]. In the inset of Fig. 6 we plot
Cm as a function of Sc.

B. Probability distribution function

Figure 7 shows the one-point PDF of the normalized
scalar fluctuations. At small amplitudes the PDFs collapse
to the Gaussian distribution, whereas at large amplitudes they
decay more quickly than Gaussian and thus are known as
sub-Gaussian. This feature corresponds to the passive scalar
transport in 3D compressible and 1D incompressible turbulent
flows [32,36], which is due to the fact that, in our simulations,
the ratio of the integral length scale of scalar Lφ to the
computational domain L0 is 0.19 ∼ 0.21, which prevents large
scalar fluctuations.

In Fig. 8 we plot the one-point PDF of the normalized scalar
gradient, where ζ ′ = [〈(∂φ/∂xj )2〉]1/2 is the r.m.s. magnitude
of the scalar gradient. Obviously, the convex PDF tails are
much longer than those of the Gaussian, indicating strong
intermittency. In both high- and low-Re flows, the PDF tails
on each side become broader as Sc increases. Moreover, in
the Sc = 1 flows, the notable increase in Reλ leads the PDF
tails to be significantly wide. These observations imply that the
growth in the Reynolds and Schmidt numbers will reinforce
the events of extreme scalar oscillations at small scales.

As a further study, in Figs. 9(a) and 9(b) we plot the
two-point PDFs of scalar increment against the normalized
separation distances of r/η = 1 and 256, where σδφ is the
standard deviation of δφ. We find that, in both high- and
low-Reλ flows, the behavior of the PDF tails at large and
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FIG. 7. (Color online) The one-point PDF of the normalized
scalar fluctuations at different values of Sc and Reλ, where the circles
are for the Gaussian PDF.
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FIG. 8. (Color online) The one-point PDF of the normalized
scalar gradient, where the circles are for the Gaussian PDF.

small scales are respectively similar to the one-point PDF tails
shown in Figs. 7 and 8.

Many studies in the literature of incompressible turbulent
flows suggest that, at small scales, the intermittency of the
scalar field is closely associated with its dissipation. Figure 10
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FIG. 9. (Color online) The two-point PDF of the normalized
scalar increment. (Sc,r/η) = (25,1) for red solid line; (Sc,r/η) =
(5,1) for black dashed line; (Sc,r/η) = (1,1) for blue dotted line;
(Sc,r/η) = (25,256) for teal long dashed line; (Sc,r/η) = (5,256)
for green dash-dotted line; and (Sc,r/η) = (1,256) for purple dash-
dot-dotted line. The circles are for the Gaussian PDF, and the arrows
indicate the decreasing Sc. (a) Low Reynolds number, (b) high
Reynolds number.
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FIG. 10. (Color online) The PDF of the normalized scalar dissi-
pation rate at different values of Sc and Reλ.

shows the PDFs of the normalized scalar dissipation rate,
where ε′

φ = [〈(εφ − 〈εφ〉)2〉]1/2 is the r.m.s. magnitude of εφ .
Similar to that shown in Fig. 8, it is found that an increase in the
Schmidt number strengthens the scalar dissipation occurring
at large magnitudes.

C. Scalar transport analysis: High Sc versus low Sc

A central problem in turbulent mixing is the transport
of scalar fluctuations in the inertial-convective range. For
Sc � 1 or Sc � 1, this process should be also related to
the viscous-convective or inertial-diffusive range. Figure 11

FIG. 11. (Color online) Two-dimensional contours of scalar field
in (a) C1 and (b) C6, at z = π/2.
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FIG. 12. (Color online) Two-dimensional contours of the advec-
tion term of the scalar variance equation in (a) C1 and (b) C6, at
z = π/2.

shows the two-dimensional contours of scalar fields in the
z = π/2 plane for the Sc = 25 and 1

25 flows. In the highest
Sc flow the low molecular diffusivity leads the scalar field
to roll up and sufficiently mix. Nevertheless, in the lowest-
Sc flow the scalar field loses the small-scale structures by
the high molecular diffusivity and leaves the large-scale,
cloudlike structures. Given that there are density fluctuations
in compressible turbulence, we introduce the density-weighted
scalar � = √

ρφ. The governing equation of scalar variance
is then obtained by Eqs. (2.1) and (2.4) as follows:

∂

∂t

(
�2

2

)
= −uj

∂

∂xj

(
�2

2

)
− 2θ

(
�2

2

)
− χ

β

(
∂φ

∂xj

)2

+ χ

β

1√
ρ

∂2

∂x2
j

(
�2

2

)
. (3.9)

Here, the terms on the right-hand-side of Eq. (3.9) successively
stand for the advection, scalar-dilatation, dissipation, and
diffusion. In statistically homogeneous turbulence, the global
average on the diffusion makes it vanish. Therefore, in a
statistically stationary state, we only focus the first three terms.

In Fig. 12 we present the two-dimensional contours of
the advection terms in the z = π

2 plane for the Sc = 25 and
1

25 flows. In the highest-Sc flow, the small-scale regions of
extreme scalar advection distribute approximately randomly
in space and display as thin streamers. For the lowest-Sc flow,
the small-scale structures are basically smeared by the high

FIG. 13. (Color online) Two-dimensional contours of the scalar-
dilatation term of the scalar variance equation in (a) C1 and (b) C6,
at z = π/2.

molecular diffusivity and, thus, the remaining structures are
large in scale and exhibited as clouds. Figure 13 shows the
contours of the scalar-dilatation terms in the z = π

2 plane for
the same flows. Because of the strong degree of compressibility
induced by forcing, large-scale shock waves appear in the
scalar-dilatation contours. Besides, in the vicinity of a shock
front, the scalar undergoes drastic changes. To observe the
detailed structures at both small and large amplitudes, in
Fig. 14 we plot the logarithms of the dissipation term in the
z = π

2 plane, where the color scale is determined as follows:

ψ = log10

(
D/D′) . (3.10)

Here, D = χ (∂φ/∂xj )2/β, and D′ = [〈(D − 〈D〉)2〉]1/2 is
the r.m.s. magnitude of D. The color changes from blue
to red when dissipation increases. In the highest-Sc flow,
the contour shows that the extreme dissipation regions are
sufficiently mixed and randomly distributed. In contrast, the
high molecular diffusivity in the lowest-Sc flow leads the
contour to retain only the large-scale cloudlike structures.

We now focus on the spectral analysis of the transport of
scalar fluctuations. First, Eq. (3.9) in Fourier space is written
as follows:

�̂∗ (k)
∂

∂t
�̂ (k) = −�̂∗ (k) ̂u · ∇� (k) − �̂∗ (k) θ̂� (k)

+ χ

β
�̂∗ (k)

̂1√
ρ

∇2� (k) , (3.11)
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FIG. 14. (Color online) Two-dimensional contours of logarithm
of the dissipation term of the scalar variance equation in (a) C1 and
(b) C6, at z = π

2 .

where the carets denote the Fourier coefficients, and the
asterisks denote complex conjugates. In Fig. 15 we depict
the log-log plots of the spectral densities of the advection
and dissipation terms from Eq. (3.11). It is observed that
in Sc = 25 and 1

25 flows, there appear k−5/3 power laws for
both advection and dissipation. This indicates that, although
in compressible turbulent mixing, the presence of large-scale
shock waves significantly affects the transport of scalar
fluctuations, the processes of advection and dissipation may
follow the Kolmogorov picture. Note that the process of scalar-
dilatation coupling may not obey the Kolmogorov picture.
The insets show the spectra of advection and scalar dilatation
normalized by the dissipation spectrum. In the highest-Sc flow,
both the advection and scalar-dilatation spectra fall quickly
as wave number increases. In contrast, in the lowest-Sc flow
the advection spectrum increases at large wave numbers;
however, the scalar-dilatation spectrum is positive at small
wave numbers but becomes negative at large wave numbers,
indicating mutually opposing scalar transfer processes.

To determine the scalar spectra in both the highest- and
lowest-Sc flows, we compute the compensated scalar spectra
relative to the kinetic energy spectrum. According to the afore-
mentioned theories, the results are k−2/3Eφ/Ek at Sc = 25 and
k4Eφ/Ek at Sc = 1

25 . Figure 16 shows that plateaus appear for
k−2/3Eφ/Ek in the range of 38 � k � 51 (gray region with
dashed edge lines) and k4Eφ/Ek in the range of 23 � k � 34
(gray region with dash-dotted edge lines), respectively, which
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0
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FIG. 15. (Color online) Spectral densities of terms in the scalar
variance equation in Fourier space, where the solid and dotted lines are
for the advection and dissipation terms, respectively. Inset: advection
(solid line) and scalar-dilatation (dashed line) spectra normalized by
the dissipation spectrum. (a) C1, (b) C6.

indicates that the related spectra defined in the viscous-
convective and inertial-diffusive ranges have flat regions lo-
cated at relatively large and small wave numbers, respectively.
Undoubtedly, the kinetic-energy spectrum for both flows have
the inertial range of Ek(k) = Ck〈ε〉2/3k−5/3 [21], where Ck is
the Kolmogorov constant. This in turn yields Eφ as follows:

Eφ ∝ Ck〈ε〉2/3k−1, Sc = 25, (3.12)

Eφ ∝ Ck〈ε〉2/3k−17/3, Sc = 1
25 . (3.13)

k100 101 102
10-1

100

101

102

103

104

105

k4Eφ/Ek
k-2/3Eφ/Ek

FIG. 16. (Color online) The relative compensated scalar spectra
of k−2/3Eφ/Ek and k4Eφ/Ek in C1 and C6, respectively.
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FIG. 17. (Color online) Spectral coherency of scalars in C1 and
C6. The slope value of line is − 2

3 .

It is useful to work with the spectral coherency defined as

ρuφ(k) ≡ Euφ(k)/[Ek(k)Eφ(k)]1/2. (3.14)

Here, Euφ(k) is the cospectrum of velocity and scalar, which
is defined by [37]

Euφ (k) ≡
∫

dSk〈u (k) φ∗ (k)〉, (3.15)

where the integral
∫

dSk is taken over a spherical shell in
wave-number space. Lumley [38] proposed a k−7/3 power law
for Euφ(k) in the inertial-convective range, which was in good
agreement with a recent simulation study [37]. Since both
Ek(k) and Eφ(k) scale as k−5/3 under similar conditions, the
corresponding result for ρuφ(k) must be k−2/3. In Fig. 17, at
high wave numbers, the spectral coherency in the Sc = 25
and 1

25 flows decay faster than k−2/3. This deviation is mainly
caused by the contribution from the coupling of scalar and
dissipation, which provides a different power law. Contrary to
the observations from incompressible turbulent mixing [15],
here when Sc increases, the spectral coherency falls more
slowly with wave number. Furthermore, the scattering of the
spectral coherency points in the higher-Sc flow because of the
lower Reynolds number.
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3 <
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Yeung

1

FIG. 18. (Color online) Compensated spectrum of scalar accord-
ing to the Obukhov–Corrsin variables. The data from C4 and
Refs. [31,32] are denoted by the solid, dashed, and dotted lines,
respectively.
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FIG. 19. (Color online) Autocorrelation of scalar dissipation
rate, as a function of r/η, where the squares and circles are for the
data from C4 and Ref. [30], respectively.

D. Comparison between compressible
and incompressible results

In the final section we discuss the comparisons of certain
results between compressible and incompressible turbulence.
Herein, we focus solely on cases of Schmidt number at unity.
In Fig. 18 we plot the compensated scalar spectra according to
the OC variables from C4 and Refs. [31,32], where the values
of Reλ are 208, 240, and 258, respectively. For C4 the plateau
centered at around kη ≈ 0.11 gives Cφ ≈ 1.12. In contrast,
the plateaus from the two incompressible flows are centered
at lower wave numbers, and the values of Cφ are 0.67 ∼ 0.68.
The spectral bumps appearing in the two incompressible flows
are quite conspicuous. However, in the compressible flow it is
difficult to identify a clear bump. Furthermore, owing to the
contribution of dissipation from shock waves, in the dissipative
range, the scalar spectrum of compressible flow decays more
quickly than its two incompressible counterparts.

Another discriminative issue involves the scalar intermit-
tency in dissipative range. A commonly used method for
quantifying this intermittency is to compute the so-called
intermittency parameter μφ through the autocorrelation of
scalar dissipation rate; namely,

〈εφ (x) εφ (x + r)〉 ∼ r−μφ . (3.16)

Figure 19 presents a log-log plot of the autocorrelations of
εφ from C4 and Ref. [30] as functions of the normalized
separation distance r/η. It shows that the values of μφ

from the compressible and incompressible flows are 0.73
and 0.61, respectively. This means that, compared with its
incompressible counterpart, the scalar dissipation field in the
compressible turbulent mixing is more intermittent by virtue
of the contribution from shock waves.

IV. SUMMARY AND CONCLUSIONS

In this paper, we systematically studied the effects of the
Schmidt number on passive scalar transport in compressible
turbulence. The simulations were solved numerically by adopt-
ing a hybrid approach of a seventh-order WENO scheme for
shock regions, and an eighth-order CCFD scheme for smooth
regions outside shocks. Large-scale predominant compressive
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forcing was added to the velocity field for reaching and
maintaining a statistically stationary state. The simulated flows
were divided into two groups. One was used to explore
the scalar with low molecular diffusivity in low-Re flows,
where the Schmidt number Sc was decreased from 25 to 1,
and the Taylor microscale Reynolds number Reλ was around
35. The other was addressed to the scalar with high molecular
diffusivity in high-Re flows, where Sc was decreased from
1 to 1

25 , and Reλ was around 210. Our results show that, in
both groups, the ratio of the mechanical to scalar timescales
increases as Sc decreases. As an alternative to rφ , fφ was
found to fall monotonically when the product of Reλ and Sc
increases.

In the inertial-convective range of L−1
φ � k � η−1, the

scalar spectrum seems to obey the k−5/3 power law, especially
for the Sc = 1 flows. Besides, the tendencies of the scalar
spectra to grow and fall with wave numbers between the
inertial-convective and dissipative ranges are reinforced by
the increase and decrease in Sc, respectively. For the 1D
scalar spectrum, the spectral bump becomes more visible as Sc
increases, and the related OC constant and its 3D counterpart
satisfy the relation C1φ = 3Cφ/5. Furthermore, the scalar
spectrum in the viscous-convective range of η−1 � k � η−1

B

from the Sc = 25 flow follows the k−1 power law, while that in
the inertial-diffusive range of η−1

OC � k � η−1 from the Sc =
1

25 flow shows a k−17/3 scaling. At large scales, the scaling
constant computed by the second-order structure function of
scalar increment can be approximately described by using an
asymptotic formulation developed for incompressible turbu-
lence. Simultaneously, the one computed by the mixed third-
order structure function of velocity-scalar increment shows
that the dependence on the Reynolds number is negligible,
and the effect of compressibility makes it smaller than the 4

3
value from incompressible turbulence. In addition, this scaling
constant has an increasing tendency when Sc grows.

At small amplitudes, the one-point PDF of scalar fluc-
tuations collapses to the Gaussian distribution, whereas at
large amplitudes it is sub-Gaussian, exhibiting a decay that
is quicker than Gaussian. For the one-point PDF of scalar
gradient, the convex PDF tails are much longer than Gaussian,
indicating strong intermittency. In both high and low Re flows,
the PDF tails on each side become broader as Sc increases.
Furthermore, for the Sc = 1 flows a notable increase in Reλ

leads the PDF tails to be significantly wide, implying that the
growth in the Reynolds and Schmidt numbers will enhance the
events of extreme scalar oscillations at small scales. At large
scales, the behavior of the two-point PDF of scalar increment
resembles the one-point PDF of scalar fluctuation, while at

small scales, it is similar to that of scalar gradient. In terms of
scalar dissipation, it occurs more at large magnitudes when Sc
grows.

The contour shows that in the highest-Sc flow the scalar
field rolls up and gets sufficiently mixed, whereas in the
lowest Sc flow it loses the small-scale structures because
of high molecular diffusivity, and leaves the large-scale,
cloudlike structures. A further study on the contours of scalar
advection and dissipation finds that in the highest-Sc flow,
streamers with extreme values are small in scale and are
distributed approximately randomly in space, whereas in the
lowest-Sc flow only the large-scale, cloudlike structures exist.
In certain ranges, the spectral densities of scalar advection and
dissipation seem to have the k−5/3 power law. This indicates
that, for the transport of scalar fluctuations in compressible
turbulent mixing, the advection and dissipation other than the
scalar-dilatation coupling may follow the Kolmogorov picture.
By computing the compensated spectra of scalar relative to
the kinetic-energy spectrum, it is confirmed that the scalings
of k−1 and k−17/3 are defined for the scalar spectra in the
viscous-convective and inertial-diffusive ranges, respectively.
It then shows that, at high wave numbers, the magnitudes
of spectral coherency in both the highest- and lowest-Sc
flows decay faster than k−2/3, which is not similar to the
prediction from classical theory. Finally, the comparison with
incompressible results displays that the scalar in the Sc = 1
compressible flow lacks a conspicuous bump structure in
its spectrum near the dissipative range; however, it is more
intermittent in this range.

In summary, the above findings reveal that the change
in the Schmidt number has pronounced influence on the
small-scale statistics and field structure of passive scalar in
compressible turbulence. Besides, although the turbulent Mach
number used in the current study is not very high, the effect of
compressibility still affects scalar mixing in certain respects. A
deeper investigation on this topic under much higher Reynolds
and Schmidt numbers will be carried out in the near future.
Also, we will examine the effects of Mach number and forcing
scheme on compressible turbulent mixing.
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