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Drop coalescence and liquid flow in a single Plateau border
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We report a comprehensive study of the flow of liquid triggered by injecting a droplet into a liquid foam
microchannel, also called a Plateau border. This drop-injected experiment reveals an intricate dynamics for the
liquid redistribution, with two contrasting regimes observed, ruled either by inertia or viscosity. We devoted a
previous study [A. Cohen et al., Phys. Rev. Lett. 112, 218303 (2014)] to the inertial imbibition regime, unexpected
at such small length scales. Here we report other features of interest of the drop-injected experiment, related
to the coalescence of the droplet with the liquid microchannel, to both the inertial and viscous regimes, and to
the occurrence of liquid flow through the soap films as well as effects of the interfacial rheology. The transition
between the two regimes is investigated and qualitatively accounted for. The relevance of our results to liquid foam
drainage is tackled by considering the flow of liquid at the nodes of the network of interconnected microchannels.
Extensions of our study to liquid foams are discussed.
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I. INTRODUCTION

Liquid foams are dispersions of gas bubbles within a
continuous liquid phase. Generally, the liquid is an aqueous
solution of surfactants that stabilize the gas-liquid interfaces.
Liquid foams are found in numerous applications, e.g., food
and cosmetics processing, nuclear decontamination, and oil
recovery [1–3]. Their structure is organized as follows. Liquid
films are found at contacts between two bubbles, three bubbles
meet along liquid channels called Plateau borders, and four
Plateau borders join at vertices. This structure is constantly
evolving over time, which might alter the foam properties.
One of the aging processes is drainage, namely, liquid
flows triggered by gravity, other mechanical perturbations,
or capillary suction whenever structural inhomogeneities
occur [4]. The drainage of liquid foams under gravity has raised
important interest and has resulted in numerous macroscopic
measurements at the foam scale [4–8], as well as a few studies
at the bubble scale in the steady regime [9–11]. Drainage
was found to occur mostly in the interconnected network
of Plateau borders. In all these studies, measurements were
satisfactorily accounted for by a model of flow through a
porous medium at low Reynolds number. In this context, the
interfacial rheology was shown to play an important role in
the localization of the flow dissipation [7,12,13]. Surfactants
leading to tangential stress-free gas-liquid interfaces mainly
induce dissipation within the vertices, while surfactants lead-
ing to rigid interfaces tend to localize the dissipation within
the Plateau borders [7,13]. Experiments on flows triggered by
structural inhomogeneities only are scarce and limited to a few
experiments in microgravity [14,15].

We have designed an experiment to study transient flows
inside a Plateau border (PB), with capillarity as the only
driving force and negligible gravity effects. Our drop-injected
experiment consists in releasing a droplet above a single
horizontal PB; the droplet coalesces with the PB as a droplet
does when contacting a liquid bath; this triggers a flow of liquid
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inside the PB, whose dynamics has been systematically studied
for various surfactant solutions and experimental conditions.

For surfactants leading to tangential stress-free interfaces,
low bulk viscosities, and large PBs, we have shown that the
perturbation is dispersed through the formation of structures
analogous to capillary hydraulic jumps, whose constant veloc-
ity was found to be independent of the perturbation size and
to scale as the capillary-inertial velocity c0 = √

γ /ρRi [16],
where γ and ρ are the surface tension and the density of the
surfactant solution, respectively, and Ri stands for the radius of
curvature of the PB. We have derived a model that points out the
analogy with Rayleigh’s description of hydraulic jumps [17]
and accounts for the exact shape of the jump. According to
the experimental conditions, we may also observe a viscous
regime for the liquid redistribution, this time in agreement with
the low-Reynolds-number assumption commonly used in the
literature on foam drainage. Here we present the entire study
in order to complete the work [16] dedicated to the capillary
inertial regime.

The paper is organized as follows. After the introductory
Sec. I, Sec. II describes the experimental setup. Section III
deals with the coalescence of the droplet with the PB and the
subsequent liquid flow, with a detailed description of both the
inertial and the viscous regimes. The transition that may occur
between the two regimes is also rationalized. Section IV is
dedicated to three other important issues in the field of liquid
foam drainage, namely, the imbibition through the vertices,
the role of the soap films, and the influence of the interfacial
rheology.

II. MATERIALS AND METHODS

A. Single-cell model foam

All our experiments were performed on an elementary
foam cell obtained by withdrawing a rigid triangular prism
frame [depicted by dashed lines in Fig. 1(a)] from a surfactant
solution. Its two empty triangular bases are equilateral, with
edges 3 cm long, while the length of the prism can be varied
from 3 to 12 cm. When dipped into a soapy solution, this
frame holds nine soap films; at each end, three films arrange
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FIG. 1. (Color online) Single-cell model foam. (a) Outline of the
experimental setup: The triangular prism frame (dashed black lines)
holds the liquid films that join in seven Plateau borders and two
vertices (bold blue lines). The central horizontal PB that spreads
between the two vertices constitutes the region of interest of our
study (red dotted quadrangles). (b) Side view of the central PB given
by the high-speed camera, from which the apparent thickness eexpt

can be measured. (c) Longitudinal view. The picture shows the cross
section of the PB seen through one of the vertices (and an adjoining
glass plate; see the text for details); the sketch depicts the geometry of
the PB cross section and defines the relevant geometrical quantities
R and e. (d) Graph of R as a function of eexpt given by the calibration
step. The two lengths are proportional to an accuracy of 2% in this
example.

in a tetrahedron, three edges of which are Plateau borders;
the three remaining films stretch in between and join in one
central straight PB, ending at a vertex on each side [Figs. 1(a)
and 1(b)]. The frame is positioned in order for the central PB
to be horizontal and for the cross section of the three films that
hold it to take the shape of a Y [Fig. 1(c)].

Preliminary results (data not shown) showed that the length
of the PB, which varies from 1.5 to 11.5 cm when varying
the length of the frame in the above-mentioned range, has
no effect on the observations reported below; therefore, we
kept it constant, equal to 2.5 cm throughout the present study
unless stated otherwise. Because the structure is maintained
horizontally, gravity effects on the central PB are reduced and
its thickness remains uniform from one vertex to the other.
However, the PB thickness decreases slowly with time due
to drainage in the vertical direction. A way to compensate
for the drainage as well as to vary the PB thickness consists
in continuously injecting liquid into the foam cell from one
upper corner of one triangular base of the frame [Fig. 1(a)].
The liquid spreads throughout the structure, which leads to a
quasiuniform and constant thickness for the central PB. The
exact flow rate through the PB is not known since most of
the liquid leaks downward and does not flow through the
central PB. Nevertheless, the PB thickness can be significantly
increased by increasing the flow rate of the liquid injected.

Experiments are lit from behind and filmed from the side
by means of a high-speed camera [1000 to 3000 frames per
second (fps)], in order to keep track of the time evolution of
the PB [Fig. 1(b)]. The apparent thickness of the PB, eexpt, can
be measured at any given time; however, this measurement is
setup dependent (the light intensity and the threshold used for
the image analysis, inter alia, slightly influence the measured

value of the apparent thickness). In order to deduce the real
radius of curvature R of the PB from its apparent thickness,
a calibration step needs to be performed before each set of
experiments. It consists in coupling simultaneous side and
longitudinal views of the PB. The former is given by the
high-speed camera, whereas the latter is obtained by use of
a standard camera (10 fps) placed on the axis of the PB in
order to capture its cross-section geometry through one of
the vertices (see [11] for details). To prevent troublesome
refractive effects, a glass plate is put in contact with the
vertex during calibration; Fig. 1(c) shows a typical picture
thus obtained. The cross-section geometry of the PB is formed
by three menisci of the same radius of curvature R in close
contact. Here R is proportional to the height e of the small
triangle drawn in Fig. 1(c): e =

√
3

2 R. Experimentally, we
access eexpt from the side view and e from the longitudinal
view simultaneously. We then compute R from e and plot it
as a function of eexpt as shown in Fig. 1(d). All the calibration
curves have been found to be linear to an accuracy of a few
percent only. The initial radius of curvature of the Plateau
border Ri varies from 0.1 to 1.3 mm in the experiments.

B. Droplet addition

We probe the stability of the PB and study its return to
equilibrium by making droplets coalesce with the PB. For this
purpose, we release from above small droplets of the same
surfactant solution as the single-cell model foam. Due to the
Y shape of the liquid films, the droplet stabilizes on top of the
PB after some bounces on the upper liquid films and/or the PB
itself. The height at which the droplet is released must not be
too large, otherwise the droplet deforms the PB too much; in
extreme cases, the droplet can even be penned into a gas bag
(forming what is called an antibubble) and then passes over
the PB and is evacuated along the vertical bottom liquid film
without coalescing (images not shown). The radius r of the
droplet is deduced from the photographs afterward. It varies
from 0.2 to 1.8 mm in the experiments.

C. Aqueous surfactant solutions

Two kinds of surfactant solutions were used in the experi-
ments.

(i) Solutions A were obtained by dissolving tetradecyl
trimethyl ammonium bromide (TTAB) into deionized water
and adding various amounts of glycerol in order to vary the
viscosity. The concentration in TTAB was 3 g/l for the aqueous
solution A1 containing no glycerol and was raised to 6 g/l for
the solutions containing glycerol to enhance the stability of
the foam cell under study. Solutions A are characterized by
tangential stress-free interfaces (high-surface-mobility limit).

(ii) Solution B was one of the surfactant mixtures proposed
by Golemanov et al. [18] to vary the dynamics surface
properties. This mixture contains sodium lauryl-dioxyethylene
sulfate (SLES), cocoamidopropyl betaine (CAPB), and lauric
acid (LAc). It was prepared following the protocol reported
in [18].

Room temperature was kept to 20 °C throughout the whole
study. The properties of solutions A and B at 20 °C are given
in Table I. The density ρ was measured by weighing a known
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TABLE I. (Color online) Properties of the aqueous surfactant solutions at 20 °C.

Solution Glycerol (wt. %) ρ (kg/m3) η (mPa s) γ (mN/m) η∗ (mPa s m) Symbol

A1: TTAB 3 g/l 0 1030 1.0 38 0.080
A2: TTAB 6 g/l 45 1100 3.4 34 0.084
A3: TTAB 6 g/l 60 1140 9.2 34 0.115
A4: TTAB 6 g/l 75 1150 10.4 33 0.118
A5: TTAB 6 g/l 80 1160 12.4 33 0.161
A6: TTAB 6 g/l 85 1190 27.8 32 0.172
B: SLES + CAPB + LAc 0 980 0.9 20 1.115

volume of solution (error of ±50 kg/m3), the bulk viscosity η

was determined using a Ubbelohde viscometer (error of ±2%),
and the surface tension γ was measured using the pendant
drop method (error of ±1 mN m−1). The dynamics surface
properties were characterized through the surface viscosity
η∗, which was measured from the growth dynamics of a PB
during a T1 process as described in [19] (error of ±5%).

In summary, we use solutions A to study effects of the bulk
viscosity, which changes by a factor 30, while the surface
mobility does not vary significantly (factor 2 only on the

surface viscosity). A comparison between solutions A1 and
B makes it possible to investigate the effects of the surface
mobility (factor 14 on the surface viscosity) at constant bulk
viscosity (1.0 ± 0.1 mPa s).

III. MAIN STUDY

A. Three-stage process

The perturbation of the Plateau border following the
droplet release can be divided into three stages. The first
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FIG. 2. (Color online) (a) Image sequence of the coalescence of the droplet with the PB and enlarged pictures of the droplet at t = 0
and Tcoal defined as the coalescence time. (b) Coalescence time as a function of the initial radius of curvature of the PB (see Table I for the
correspondence between the markers used in (b)–(d) and the surfactant solutions). (c) Coalescence time as a function of the droplet radius.
Each colored straight line is the best linear fit going through zero for the data points represented by markers of the same color. The computed
slope equals 5.5 ± 0.2, 7.7 ± 0.3, 6.7 ± 0.2, 6.9 ± 0.2, 7.1 ± 0.1, 9.0 ± 0.4, and 8.7 ± 0.9 for solutions A1, A2, A3, A4, A5, A6, and B,
respectively. (d) Ratio of the coalescence time to the capillary-inertial time as a function of the ratio r/Ri (logarithmic scales). Dashed black
straight lines correspond to y = 1 and a slope −0.4, respectively.
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stage is marked by the droplet rebounds and the consequent
deformations of the Plateau border. It ends up with the droplet
stabilization on a gaseous lubrication layer. We will not detail
this stage here. The second stage deals with the coalescence
of the droplet with the PB, which follows the thinning of
the lubrication layer under the droplet weight pressure, and its
rupture. A third stage deals with the redistribution of the liquid
brought by the droplet along the Plateau border. These last two
stages are successively described in the following sections.

B. Coalescence stage

Once stabilized on the PB, the released droplet rests on
a thin layer of air that slowly drains to its point of rupture.
This defines the time t = 0 at which contact is established
between the droplet and the PB. From that time, due to
surface tension forces, the area of contact quickly increases;
simultaneously, the droplet surface deforms, as can be seen
in the image sequence of Fig. 2(a). The perturbation of the
drop shape spreads upward, the top of the droplet flattens, and
the droplet’s curvature eventually changes its sign. In some
cases, this process leads to the creation of a daughter droplet,
as observed by Thoroddsen and Takehara [20] for droplets
coalescing with a liquid bath. The coalescence process is rapid
and occurs for the biggest drops within 15 ms for solutions
A and 20 ms for solution B (low surface mobility). Following
Thoroddsen and Takehara, we define a coalescence time Tcoal

as the time at which the curvature of the top of the droplet
comes to zero before changing its sign. Results are reported
in Fig. 2. For a given surfactant solution, the coalescence time
does not exhibit any clear trend as a function of the radius
of curvature Ri of the PB [Fig. 2(b)], whereas it strongly
correlates with the droplet radius r whatever the Ri value
[Fig. 2(c)]. As can be expected, the coalescence time increases
with the droplet size. This increase is compatible with a linear
trend. The slope of the best linear fits equals 8.7 for solution B
and varies from 5.5 to 9.0 for solutions A; this slight variation
(factor 1.6) does not correlate with the variation (factor 30) in
bulk viscosity for solutions A.

The coalescence process is driven by surface tension forces
which tend to minimize the total liquid-gas interface area of
the system. Experimentally we observe (Fig. 2) that effects
of the bulk viscosity and of the initial radius of curvature
of the PB are small compared to the effects of the droplet
radius. Assuming that gravity does not play any role except
for bringing together the droplet and the PB, this suggests
that the surface tension forces might be balanced by the fluid
inertia inside the droplet and that the coalescence time should
be compared to the capillary-inertial time

√
ρr3/γ . Without

loss of generality, the coalescence time is written

Tcoal =
√

ρr3

γ
f̃coal

(
Oh,

r

Ri

)
, (1)

where f̃coal is a dimensionless function of two dimensionless
numbers, the Ohnesorge number Oh = η/

√
ργRi , which is

built by balancing bulk viscous effects with the capillary and
inertial ones, and r/Ri is the ratio of the droplet radius to the
PB radius of curvature.

ms

ms

ms
mm

FIG. 3. (Color online) Three sets of snapshots that illustrate the
various regimes observed for the liquid redistribution in a single
Plateau border. The first six images of each set were taken every
5 ms after contact between the droplet and the PB; the seventh image
was taken after 100 ms. (a) Capillary-inertial regime (solution A1).
A sharp front, which moves at constant high velocity (∼0.5 m/s),
separates two regions of constant uniform thickness of the PB. Here
cr (cl) stands for the velocity of the front that travels toward the right
(left); the preexisting flow goes to the left. The red dashed lines are
guides to the eyes to follow the front position. (b) Viscous regime
(solution A5). The perturbation slowly spreads along the PB. The
evolution can be characterized by measuring S(t) (see Sec. III C2 for
details). The red dashed lines are guides to the eyes to compare the
actual spreading of the perturbation to a spreading linear in time.
(c) Liquid redistribution observed in the low-surface-mobility limit
(solution B). The red dashed lines are guides to the eyes to a constant
spreading velocity.

Figure 2(d) shows that Tcoal/
√

ρr3/γ is close to unity,
which supports the capillary-inertial mechanism suggested
above. A finer analysis shows no correlation of Tcoal/

√
ρr3/γ

with Oh, but exhibits a slight dependence on r/Ri , which
can be described by the following empirical law: f̃coal =
(1.3 ± 0.1)( r

Ri
)−(0.4±0.1) if r/Ri < 1 and f̃coal ∼ 1 if r/Ri > 1.

The dependence of f̃coal on r/Ri is small but reveals a
specificity of our one-dimensional PB-supported geometry
when comparing with the coalescence of droplets on a liquid
bath (see, e.g., [20]).

C. Liquid redistribution stage

Following the coalescence of the droplet with the PB, the
additional liquid reorganizes due to surface tension forces that
tend to return the PB to a uniform thickness. Figures 3(a)–
3(c) illustrate the three flow regimes that were identified.
Section III C is devoted to the first two regimes, the third one
observed for solution B in the low-surface-mobility limit will
be detailed and discussed specifically in Sec. IV C. Figure 3(a)
depicts the major characteristics of the inertial regime. Two
traveling jumps appear on both sides of the coalescing droplet
promptly, even before the end of the coalescence process;
the velocity of the sharp fronts proves to be constant, and
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FIG. 4. (Color online) (a) Sketch of the capillary jump geometry, which is characterized by the two radii of curvature Ri and Rj of the
unperturbed and the perturbed parts of the PB, respectively. The sharp front between these two zones of uniform constant thickness moves
with a velocity c. (b) Radius of curvature upstream of the jump Rj as a function of the radius of curvature downstream Ri for various radii of
the coalescing droplets for solutions A1–A4 (see Table I for markers). The black straight line has a slope equal to 1.7. The inset shows Rj as a
function of the radius r of the released droplet. (c) Measured front velocity cexpt as a function of the radius of curvature Ri of the PB far from
the perturbation [same experiments as in (b)] (on a logarithmic scale). The black straight line on the graph has a slope −0.5. The inset shows
cexpt as a function of the radius r of the released droplet. (d) Measured front velocity cexpt compared to the theoretical velocity derived using
the capillary hydraulic jump geometry. The black straight line of slope 1 emphasizes the good agreement between the experimental values and
the modeling.

remarkably high, of the order of 1 m s−1; upstream of the
jumps, the PB is thicker, yet its thickness is uniform, and
constant as long as the PB can be supplied in liquid. The
viscous regime [Fig. 3(b)] strongly contrasts with the inertial
regime, which is much slower, and exhibits a smooth bell-like
profile for the PB perturbation, which flattens more and more
slowly until it eventually disappears.

1. Inertial regime

The occurrence of a capillary-inertial regime for transient
flows in a single foam microchannel was reported in [16,17]
and was unexpected at the small length scales that characterize
such a system. This flow regime was described in [16]
from measurements performed on two low-viscosity surfactant
solutions, one of them being the solution A1. Here we
investigate it further through the use of solutions A having
higher viscosities. We observed the capillary-inertial regime
for bulk viscosities up to 10 mPa s (solutions A1–A4).
The capillary jump geometry that characterizes the capillary-

inertial regime is recalled in Fig. 4(a). Measurements of the
constant uniform radius of curvature upstream of the jump Rj

and the jump velocity c are reported in Figs. 4(b) and 4(c),
respectively. Note that measurement of the jump velocity
requires us to take into account the flow that preexists inside
the PB due to the continuous supply in liquid; we compute
it as the mean value of the velocities cr and cl measured for
the jumps propagating in the opposite (on the right-hand side
of the PB perturbation in Fig. 3) and in the same (on the
left-hand side of the PB perturbation in Fig. 3) directions
of the preexisting flow. Figure 4(b) shows that the ratio
Rj/Ri is constant for a given surfactant solution and does
not significantly depend on the viscosity of the solution. The
slopes of the best linear fits going through zero for solutions
A1–A4 are reported in Table II. The measured jump velocity
is found to decrease when the radius of curvature of the
PB increases [Fig. 4(c)]. A power-law interpolation of the
data points obtained with solution A1 leads to c = (0.0057 ±
0.0002)R−0.50±−0.02

i (c and Ri are given in m/s and m,
respectively).
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TABLE II. Results of the curve fitting for solutions A1–A4 in the
capillary-inertial regime.

Solution c/R
−1/2
i (m3/2 s−1) Rj/Ri

A1 (57 ± 2) × 10−4 1.5 ± 0.1
A2 (53 ± 3) × 10−4 1.5 ± 0.1
A3 (58 ± 1) × 10−4 1.7 ± 0.1
A4 (59 ± 2) × 10−4 1.7 ± 0.1

This is consistent with [16], from which c is expected to
scale as c0 = √

γ /ρRi . Imposing the exponent of the power
law to be −1/2 gives the prefactors reported in Table II. The
solution viscosity has negligible effects on c, as on Rj/Ri .
In addition, both quantities prove to be independent on the
droplet radius r , as seen in the insets of Figs. 4(b) and 4(c).
Mass and momentum balance equations, when formulated in
the specific geometry of the capillary hydraulic jump, lead to
an intrinsic relation between the imbibition velocity and the

jump geometry characterized by the ratio Rj/Ri [16]:

c(Rj/Ri) = c0
1√

Ri/Rj (1 + Ri/Rj )
. (2)

The measured jump velocity is plotted in Fig. 4(d) as a function
of the theoretical velocity computed using the experimental
value of the ratio Rj/Ri for each surfactant solution (Table II).
All data points for all four solutions A1–A4 collapse on the
diagonal to a good approximation. In conclusion, this regime
does not depend on the bulk viscosity of the surfactant solution
and its dynamics results from a balance between capillary
and inertia. These results confirm and extend the conclusions
drawn in [16].

2. Viscous regime

The dynamics observed during the liquid redistribution
stage drastically changes when further increasing the bulk
viscosity of the surfactant solution, all other things being
equal. Figure 3(b) illustrates the relaxation of the PB with
a drop. In this regime the central bulge appears to spread

FIG. 5. (Color online) (a) Time evolution of the spreading distance S(t) (blue dots) measured for an experiment performed with the
most viscous surfactant solution (solution A6 with Ri = 0.7 mm and r = 1.2 mm). The red dashed curve is the

√
D(t − t0) interpolation

(D = 1.3 m2/s and t0 = 12 ms). The inset shows the bell-like profile of the overthickness of the PB, at three different times. (b) Coefficient D

as a function of the droplet radius r . Markers refer to solutions A3–A6 as stated in Table I. The straight colored lines are the best linear fits
going through zero for the data sets obtained using the various surfactant solutions. The inset shows D as a function of the initial radius of
curvature of the PB (same experiments). (c) Coefficient D compared to the capillary-viscous diffusion coefficient γ r/η. The black dashed line
has a slope 1. (d) Time t0 as a function of the capillary-inertial time

√
ρr3/γ . Lines of slope 1 and 10 were drawn for the sake of comparison.
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smoothly and the liquid in excess is slowly evacuated
into the PB. At any given time, the variation in thickness
eexpt(t) − eexpt(0) measured along the longitudinal axis Ox of
the PB yields a bell-like profile as depicted in the inset of
Fig. 5(a). As stated previously, t = 0 stands for the beginning
of the coalescence stage. We characterize such a dynamics
for the liquid redistribution by means of the time evolution of
the spreading distance S(t), which we define as the distance
between the two edges of the perturbation [Fig. 3(b)]. In
practice, S(t) may be difficult to measure accurately. Strong
oscillations of the PB are usually observed after the droplet
coalescence, which induces some noise, especially on the basis
line of the bell curve. Also, we worked with a PB as long as
possible (12 cm) to minimize the effects of the vertices, which
may perturb the flow, however this implies that we zoom out
and consequently lessen the spatial resolution of the images.
We used an algorithm to compute the spreading distance S(t)
as the largest distance between two points that belong to the
bell curve and whose overthickness is smaller than 0.2 mm.
With the help of this subjective criterion, we were able to
obtain the time evolution of S for each experiment, as plotted in
Fig. 5(a). Despite slight residual noise in the experimental data,
it appears clearly that the spreading slows down, according to
a sublinear law. We chose to interpolate the S(t) curves by a
diffusive law of the form

S(t) =
√

D(t − t0), (3)

where D and t0 are two fitting parameters, which have the
dimensions of a diffusion coefficient and time, respectively.
We do not claim that the curve fitting leads unambiguously to
an exponent 1/2, however a diffusive law is fully compatible
with our experimental data and is supported by a simple
dimensional analysis as shown below. Scaling laws with
exponents 1/3 and 2/3, as found by Piroird and Lorenceau [21]
for the imbibition dynamics of oil droplets into a PB, proved to
be less consistent with our experimental data than a diffusive
law (see Sec. IV C for a brief discussion on the work by Piroird
and Lorenceau, which was performed with rigid surfactant
solutions, in relation to ours).

This dynamical regime was observed for solutions A3–A6.
Overall, we obtained D values in the range 0.5 × 10−3 to 4.5 ×
10−3 m s−2 and t0 in the range 5–100 ms. The coefficient D is
plotted in Fig. 5(b) as a function of the droplet radius r for all
experiments in this regime; D increases with r . For any given
surfactant solution, the data follow a linear trend; the higher
the bulk viscosity of the solution, the smaller the coefficient
D and the slope of the linear fit. The inset of Fig. 5(b) does
not show any correlation between D and the initial radius of
curvature of the PB.

The experimental results in this regime can be rationalized
by considering the dynamics of the liquid redistribution as
the result of a capillary-viscous process. The surface tension
and the bulk viscosity of the surfactant solution determine the
driving force and the damping, respectively. Using the droplet
radius r , which appears to be the only relevant length scale,
we can build a diffusion coefficient D = γ r/η. A comparison
with the experimental D values is shown in Fig. 5(c) and
the slopes of the best linear fits for solutions A3–A6 are
given in Table III. The good agreement between the two
quantities supports the capillary-viscous mechanism and a

TABLE III. Numerical values for solutions A3–A6 in the viscous
regime.

Solution D/(γ r/η) t0/
√

ρr3/γ

A3 1.1 ± 0.2 6.6 ± 0.4
A4 1.1 ± 0.1 7.2 ± 0.4
A5 1.0 ± 0.1 7.3 ± 0.4
A6 1.0 ± 0.1 6.6 ± 0.4

diffusive dynamics. We will thus name this regime the viscous
regime. A similar dimensional analysis suggests that t0 scales
as the capillary-inertial time

√
ρr3/γ introduced in Sec. III B.

Figure 5(d) plots t0 as a function of the capillary-inertial time
and Table III gives the slopes of the best linear fits for solutions
A3–A6. An average over all the measurements yields a value
of 6.9 ± 0.4 for the slope.

In conclusion, for large bulk viscosities and for small
radii of curvature of the Plateau border, a viscous regime is
observed. The liquid inhomogeneity spreads with a smooth
thickness profile of the PB. The spreading distance follows
a diffusionlike dynamics whose diffusion coefficient depends
on the surface tension, the drop radius, and the bulk viscosity.
Conversely to the inertial regime, the viscous regime does not
depend on the liquid density or on the PB radius of curvature.

3. Inertial-viscous transition

For intermediate bulk viscosities, namely, for solutions A3
and A4, we experimentally observe that the system switches
progressively from the inertial regime to the viscous one. At
short times, the jump geometry and a constant imbibition
velocity are typical of the capillary-inertial regime; at longer
times, the thickness profile is smoothed out and the dynamics
slows down, in a way reminiscent of the viscous regime.
We illustrate this behavior in Fig. 6(a), which displays the
time evolution of the spreading distance for an experiment
performed with solution A3. For each experiment, we define
the critical spreading S

expt
c as the spreading distance for

which the data points depart from the linear start. Note that
spreading distances larger than S

expt
c are difficult to measure

accurately since the rims of the PB perturbation are no longer
well-defined fronts. This results in the increasing noise that
can be seen in Fig. 6(a).

Let us assume that the slower mechanism imposes its dy-
namics on the system; the transition between the two regimes
then occurs when their spreading velocities are similar. The
imbibition velocity in the capillary-inertial regime scales as
c0 = √

γ /ρRi [Eq. (2)]. Its counterpart cη(t) = 1
2dS(t)/dt =

D/4S(t) in the viscous regime scales as γ r/ηS(t). Equating the
two yields the following scaling for the critical spreading Sc:

Sc ∝ r

Oh
, (4)

where Oh is the Ohnesorge number introduced in Sec. III B. A
comparison with experiments is displayed in Fig. 6(b). Good
agreement is observed, with a prefactor close to 1/2. Note
that the range of comparison is restricted due to experimental
constraints. We cannot measure values of Sc smaller than about
one droplet diameter, which is the approximate distance for the

053008-7



COHEN, FRAYSSE, AND RAUFASTE PHYSICAL REVIEW E 91, 053008 (2015)

expt(m
)

(s)
mOh

ex
pt

m

FIG. 6. (Color online) (a) Time evolution of the spreading distance S(t) measured for an experiment performed with solution A3 with
Ri = 0.7 mm and r = 1.2 mm. The thin black lines underline the two consecutive regimes. The critical spreading distance Sexpt

c at the transition
is determined from the experimental curve. (b) Critical spreading distance determined experimentally as a function of the ratio r/Oh. The
dashed straight line has a slope 1/2.

imbibition process to become discernible. We were not able to
reach large values of Sc either; this would require a large initial
radius of curvature of the PB and thus a large liquid reservoir
to sustain the inertial regime (let us recall that the upstream
radius of curvature of the PB is about twice the downstream
radius of curvature) over a distance large enough to be
measured. We did not succeed in making coalesce droplets
with the PB that were large enough to meet this condition.

The existence of a critical spreading distance related to
a transition between the inertial and the viscous regimes, as
well as its scaling, refine and amend the criterion given by
Cohen et al. [16]. Let us recall that a constant value of Oh,
approximately equal to 0.05, had been considered to be a limit
above which the dynamics was dominated by viscosity and
under which the capillary inertial regime was observed for all
values of r and Ri . However, because our purpose was a careful
study of the newly observed inertial regime, we considered
its occurrence as certain when the capillary jump had been
observed over a distance large enough, typically larger than
5r , from the center of the coalescing droplet. This resulted in
a biased criterion, which is deduced from the one given above
by assigning the value of the critical spreading to 10r (twice
the arbitrary value that we had chosen for the distance traveled
by the jump on one side of the droplet).

A phenomenological criterion to transiently observe the
inertial regime in liquid foams can be derived. We may
reasonably assume that capillary jumps become discernible
from the liquid perturbation that emitted them once the
distance they have traveled is larger than about the size of
the initial liquid perturbation. Therefore, a minimal condition
to detect the inertial regime before the viscous regime takes
place is that the critical spreading is larger than the liquid
perturbation size (Sc � 2r). This defines a critical radius of
curvature of the Plateau borders for the liquid foam: Rc

i ∝ 4η2

γρ
.

For an ideal foam obeying the Kelvin structure, the radius of
curvature of the PBs is related to the bubble radius Rb and the

liquid fraction φl : R ∝ Rb

√
φl

0.33 . These two expressions yield

a critical bubble size, of the order of the micrometer for usual
aqueous surfactant solutions and dry foams (η = 1 mPa s,
ρ = 1000 kg m−3, γ = 30 mN m−1, and φl = 0.01), above
which capillary jumps should be observed, at least for a
short time, when liquid inhomogeneities occur within a liquid
foam.

IV. OTHER FEATURES

A. Flow through a vertex in the inertial regime:
Influence of the bulk viscosity

Dissipation in the PB greatly differs according to the flow
regime. In particular, shear occurs all over the PB perturbation
in the viscous regime; in contrast shear is localized in the
narrow zone of the capillary hydraulic jump in the inertial
regime, which leads to the faint dissipation evidenced by
the independence of the dynamics from the bulk viscosity
(see Sec. IIIC1). Let us turn now to what happens at the
vertices in the inertial regime. When a hydraulic jump reaches
a vertex, a much more complicated flow might result from the
three-dimensional geometry and dissipation might be affected.
To get some insight into this issue, we performed experiments
using the same experimental setup and procedure as before,
this time focusing the fast camera on the right-hand side
vertex. In order to probe the influence of the bulk viscosity,
we used the solutions A1 and A3, A3 being the most viscous
TTAB-glycerol solution leading to the inertial regime; their
viscosities are 1.0 and 9.2 mPa s, respectively; their surface
tension and density do not differ significantly. The initial radius
of curvature of the PB was varied over one decade. Droplets
of large and approximately the same volume were dropped
on the PB in order to ensure a large pressure reservoir that
supplies the vertex with liquid in a sufficiently durable and
steady way to make the analysis possible. Figure 7(a) shows
snapshots taken after the droplet has coalesced with the PB,
when the perturbed part of the PB reaches the vertex and
proceeds through it. Once the capillary hydraulic jump has
hit it, the vertex swells and three secondary jumps are created
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FIG. 7. (Color online) (a) Snapshots of the vertex before and after
being hit by a capillary hydraulic jump (solution A1). (b) Time
evolution of the size of the vertex. The thick red crosses spot the
points that correspond to the snapshots in (a). The slope of the thick
black straight line defines the rate of increase V . The horizontal thin
black line emphasizes the saturation at a value Rv

max.

and propagate along the three PBs starting from the vertex; the
growth of the vertex eventually saturates; as the liquid reservoir
empties, the vertex progressively goes back to its initial size.
To quantify the swelling of the vertex observed during this
process, we measure the radius a(t) of the circle inscribed in
the vertex [see Fig. 7(a)] as a function of time. For comparison
with the PB, we define the size of the vertex Rv as the quantity
proportional to a that satisfies the relation Rv(t = −∞) = Ri .
Note that, due to Laplace’s law, the geometry of the vertex
consists of four portions of spheres having the same radius
of curvature at equilibrium and a factor 2 exists between the
radius of curvature of the PB (or, equivalently, the size of the
vertex Rv) and the radius of curvature of the portions of spheres
that compose the vertex interface. A typical measurement is
displayed in Fig. 7(b): Rv increases from its initial value Ri to
a constant value Rv

max, at a roughly constant rate V , of the order
of 10−2 m s−1. Deflation is much slower. A linear adjustment
gives rates about 10−3 m s−1 (data not shown).

The increase in size of the vertex Rv
max − Ri and the

swelling rate V are plotted as a function of the initial radius
of curvature Ri in Figs. 8(a) and 8(b), respectively, for two
sets of experiments performed with solutions A1 and A3.

m

mm
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m

m

m

m
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m
ax s m
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FIG. 8. (Color online) Characterization of the swelling of the
vertex for solutions A1 (blue squares) and A3 (gold triangles), which
differ by a factor 9 in viscosity. (a) Maximum increase in size of the
vertex Rv

max − Ri as a function of its initial size Ri . The inset shows
the same data on a logarithmic scale. The straight thick line has a
slope −1. (b) Swelling rate of the vertex V as a function of its initial
size Ri . The inset shows the same data on a logarithmic scale. The
straight thick line has a slope −1.

Both quantities decrease when Ri increases and the data
are compatible with 1/Ri laws. Remarkably, the two sets
of experimental data are superimposed on these plots: The
solution viscosity appears to be irrelevant. Imposing the
exponents of the power laws to be −1, the best fits give
Rv

max − Ri = (0.9 ± 0.1)10−7R−1.0
i and (1.4 ± 0.1)10−7R−1.0

i

and V = (5.2 ± 0.5)10−6R−1.0
i and (5.8 ± 0.6)10−6R−1.0

i for
solutions A1 and A3, respectively (lengths and times are given
in meters and seconds). At longer times, the liquid reservoir
empties and the whole system slowly drains back to its initial
state. Again, no dependence on the solution viscosity could be
detected during the shrinkage of the vertex (data not shown) in
the range of parameters we investigated. We did not proceed
further in the study of the deflation dynamics, which is partially
ruled by gravitational drainage and is certainly affected by
finite-size effects as the secondary jumps reach the frame
within a few tens of milliseconds.

The characterization of the growth of the vertex gives some
insight into its internal flow dynamics. While the viscosity
ratio between the two solutions is equal to 9, the ratio of
the interpolations of the measured velocity is only 1.1 and
the ratio of the interpolations of the measured variation in
size Rv

max − Ri is about 1.6. This shows that the viscosity
does not play any significant role in the vertex dynamics and
suggests that when the BP imbibition is inertial, the flow inside
the vertex is inertial as well. However, the narrow range of
parameters we have access to makes an extensive experimental
study of the flow through a vertex very difficult.

The above results prompt two remarks. First, the exponents
of the interpolations are difficult to retrieve within the frame-
work of a dimensional analysis. This would be very difficult
to test experimentally anyway since, as already mentioned,
we are not able to significantly vary the other parameters:
density, surface tension, and droplet size. The droplet size
could not be varied over one decade without qualitatively
changing the behavior observed, mainly because the droplet
empties before the vertex has significantly grown. The second
remark deals with the origin of dissipation in liquid foams. In
the context of the drainage equation, it is now widely accepted
that dissipation occurs mainly within the vertices when dealing
with stress-free interfaces [7,12], since one expects plug flows
in the PBs and the shear zones to be located within the vertices.
Our results question this conjecture as they show no evidence
that the vertex prevails on the PB. This holds for the particular
configuration we study, however this could also hold for liquid
foams whose liquid fraction is not homogeneous, for instance,
in the zone of transition between the dry and the swollen
regions observed in macroscopic drainage studies.

B. Drainage through the bottom film

In some cases, some of the liquid brought by the coalescing
droplet flows through the vertical bottom film (see Fig. 1)
instead of being evacuated within the PB. Figure 9 illustrates
this behavior for solutions A1 and A6. A blob of liquid
is observed to stretch downward before eventually flowing,
which is emphasized by the presence of a wake. A flow diagram
is displayed in Fig. 10(a), which reports the occurrence of the
film drainage. Note that this occurrence is independent of the
flow regime, inertial or viscous, inside the PB.
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FIG. 9. Sequences of images that illustrate the film drainage for the low-viscosity surfactant solution A1 (top) and for solution A6, which
is 30 times more viscous than A1 (bottom).

Within our parameters range, the drainage through the bot-
tom film occurs for coalescing droplets having a radius larger
than approximately 1 mm, independently of the surfactant
solution properties, as well as of the radius of curvature of
the PB. This length is comparable to the capillary length. This
suggests that gravity needs to be taken into account, which
can be done by introducing the Bond number Bo = ρgr2

γ
.

Figure 10(b) shows a transition for a value of Bo of about 0.36.

C. Influence of the surface mobility of the surfactant solutions

Solution B was used to investigate the effects of the surface
mobility. This surfactant solution has the same low bulk
viscosity and a surface viscosity significantly higher (by a
factor 14) than solution A1. Let us recall that we always
observed the inertial regime with solution A1.

The coalescence stage did not show any qualitative dif-
ference between solution B and solution A1. The data points
in Figs. 2(c) and 2(d) follow the same trends as the ones
obtained with the low-surface-viscosity solutions and the slight
variation observed cannot be ascribed to the difference in
surface mobility.

In contrast, the liquid redistribution stage differs greatly,
as can be seen by comparing the time evolutions reported
in Figs. 3(a) and 3(c). In the low-surface-mobility limit, the

m

m B
o

FIG. 10. Film drainage diagrams. The open symbols stand for the
occurrence of film drainage, while no film drainage was observed
for closed symbols. (a) The r-Ri diagram for solution A3 (η =
9.2 mPa s). (b) The Bo-r/Ri diagram for all the measurements
performed with solutions A1–A6. The dashed black line underlines
a transition around Bo = 0.36.

dynamics is characterized by the presence of a spatially ex-
tended front; the imbibition velocity c∗, which was computed
as before (see Sec. IIIC3) as half of the time derivative of the
spreading distance, is found to be constant, at least during the
early stage of the liquid redistribution. We did not observe any
correlation between the imbibition velocity and the droplet
radius [inset of Fig. 11(a)], however Fig. 11(a) shows a clear
dependence of c∗ on the initial radius of curvature of the PB,
Ri , as is the case for the capillary inertial regime except that the
opposite trend is obtained here: The larger the PB initial radius
of curvature Ri , the higher the imbibition velocity c∗. Both
quantities are roughly proportional and a linear interpolation
leads to c∗ = (156 ± 20)Ri (c∗ and Ri are given in m/s and m,
respectively). This leads to Reynolds numbers larger than a
few tens.

These results call for a comparison with the imbibition
dynamics reported by Piroird and Lorenceau [21] for the
suction of oil droplets by a single PB. Even though the setup
geometries are analogous and the experiments are performed
with two similar surfactant solutions, both in the low-surface-
mobility limit, distinct results and trends are obtained. In

m

m
s

FIG. 11. (Color online) Imbibition velocity c∗ (solution B) as a
function of the initial radius of curvature of the PB Ri . The straight
line on the graph is the best linear fit going through zero of the data
points and has a slope 156 ± 20 s−1. The inset shows the imbibition
velocity as a function of the droplet radius r .
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particular, the dynamics of the oil droplet imbibition is faster
as Ri decreases, in contrast with our case (Fig. 11). However,
the mechanisms at play are expected to differ fundamentally
between the two physical systems. Let us recall that Piroird and
Lorenceau use silicon oils. First, these liquids are immiscible
with the aqueous surfactant solution and the droplet creates an
additional interface that alters the shape of the PB cross section
and thus the capillary pressure. Second, the silicon oils are
much more viscous than the surfactant solution. Indeed, Piroird
and Lorenceau show that the elongation of an oil droplet inside
a PB is a viscous process. In our case, the Reynolds numbers
suggest that the flow might be inertia dominated.

Another specific feature of the liquid redistribution for
solution B is noticeable in the last snapshot of Fig. 3(c).
For not too small droplets, namely, droplets whose radius
is larger than the radius of curvature of the PB, part of the
liquid transfers during the coalescence process to the three
films that hold the PB and remains trapped there while only
the remainder flows into the PB. Moreover, we hardly ever
observed drainage through the bottom film (see Sec. IV B),
even for the biggest droplets; consequently, the criterion given
above in the high-surface-mobility limit does not hold in the
low-surface-mobility limit.

The surface viscosity of the surfactant solutions accounts
for the interfacial stresses that oppose the interface dilatation
and shear. This characteristic is expected to significantly
influence the dynamics of the interface as the PB deforms
and the holding films open, but also the dynamics of the
bulk flow inside the PB, which strongly depends on the
boundary conditions imposed at the interface [4]. Investigating
the various effects of the surfactant mobility at the interfaces
and rationalizing the experimental results would require us to
vary the surface characteristics of the surfactant solutions more
systematically, which may be possible by taking advantage
of the physical chemistry of the surfactants; however, this is
beyond the scope of the present study.

V. CONCLUSION

We have designed a local scale experiment to study transient
flows in liquid foams. This drop-injected experiment has
yielded the following main results. First, we have shown that
the coalescence of a droplet with a single Plateau border is
inertia dominated and its dynamics is similar to the dynamics
of coalescence of a droplet with a liquid bath. Second, the
imbibition process proves to be dominated either by inertia
or viscosity. In the first case, its dynamics is controlled by
the surface tension and the density of the surfactant solution,
and the radius of curvature of the PB, whereas the relevant
parameters in the second case are the surface tension and
the viscosity of the surfactant solution, and the radius of
the coalescing droplet. The liquid redistribution may actually
switch from the capillary inertial regime to the viscous one
in the course of an experiment. We propose to rationalize this
transition by assuming a velocity-limiting mechanism.

We have shown that the interfacial rheology plays a major
role in the regime that is inertia dominated in the high-surface-
mobility limit. This issue would need to be investigated further.

In the future, the occurrence of the inertia-dominated
regime triggered by capillary suction needs to be investigated
at the foam scale. Microgravity experiments might be an
option [14,15]; a close look at the front zone in drainage
experiments [22,23] could also disclose evidence of the
capillary-inertial regime.
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