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Covariance of fluid-turbulence theory
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Covariance of physical quantities in fluid-turbulence theory and their governing equations under generalized
coordinate transformation is discussed. It is shown that the velocity fluctuation and its governing law have a
covariance under far wider group of coordinate transformation than that of conventional Euclidean invariance,
and, as a natural consequence, various correlations and their governing laws are shown to be formulated in
covariant manners under this wider transformation group. In addition, it is also shown that the covariance of the
Reynolds stress is tightly connected to the objectivity of the mean flow.
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I. INTRODUCTION

In continuum physics, covariance (or form invariance) of
the constitutive relations under the coordinate transformation
plays critically important role. As well as the material-frame-
indifference principle, the principle of covariance imposes
mathematical constraints on the constitutive relations, which
provide us strong guidelines in constructing realistic material
models. Some pioneers have shown that the covariance
principle is also applicable to turbulence modeling, unlike
the material-frame-indifference principle [1–3]. The first
application of the covariance principle to fluid turbulence was
done by Speziale, showing in a clear manner that the Reynolds
stress and other higher-order correlations are all covariant
under arbitrary time-dependent rotation and translation [3]. In
the community of fluid turbulence, the transformation of this
class is sometime referred to as the Euclidean transformation,
and the covariance under this transformation group is termed
the Euclidean invariance. After this pioneering work, various
studies on the Euclidean invariance and its application to the
first-order modeling have been published. Weis & Hutter and
Hamba claimed the importance of the Euclidean invariance
for the algebraic Reynolds-stress model (ARSM) [4,5]. The
resultant ARSM based on the Euclidean invariance has shown
the preferable results in the simulation of the rotating channel
flow [6]. In addition to the Reynolds stress, Qiu et al. obtained
the Euclidean-invariant algebraic heat flux model (AHFM)
by extending the strategy of ARSM [7]. According to these
pioneers, the covariance under the Euclidean transformation
may now have a remarkable position at least in algebraic
turbulence modeling.

The objective of the present work is to propose more
generalized understandings of the covariance in turbulence
physics. It will be shown that various correlations and their
transport equations are covariant under a far more generalized
class of transformation than conventional Euclidean trans-
formation. Furthermore, an organic connection between the
velocity fluctuation and the mean flow is revealed in terms of
the covariance, which shows the fundamental importance of
the covariance for the physical objectivity of the mean flow;
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the covariance should be carefully considered in objective
and realistic descriptions of turbulence. Note that the author
attempts not to propose some specific models using the
covariance principle but to suggest some generalization and
clarity of the covariance principle in fluid turbulence, which
may lead us to more proper understandings of turbulence
physics.

The composition of the present paper can be summarized
as follows. In Sec. II some mathematical basics are reviewed
with emphasis on the tensor analysis and its covariance under
the coordinate transformation. In Sec. III transformation rules
of turbulence quantities are discussed on the basis of the
Reynolds decomposition, which leads to the new observation
that various correlations possess a generalized covariance
under far wider group of transformation than that of the
Euclidean transformation. In Sec. IV the covariant formalism
of dynamical equations for the instantaneous, mean, and
fluctuation velocities are proposed. In Sec. V the covariant
forms of the turbulence constitutive equations are naturally
derived from the covariant fluctuation equation shown in
Sec. IV. In addition, the importance of the general covariance
of the Reynolds stress will be discussed in terms of the
objectivity of the mean flow, using the covariant mean-flow
equation obtained in Sec. IV.

II. MATHEMATICAL PRELIMINARIES

A. Coordinate representations

First we assume the physical space to be a three-
dimensional space with a flat Riemann metric. Then we dis-
criminate the inertial frame from the other frames of reference.
For simplicity, let us here introduce an orthonormal-coordinate
system {z1,z2,z3} = {z} as an inertial frame of reference which
is schematically shown by “A” in Fig. 1. Note that we employ
the capital Roman letters for the indices of inertial-coordinate
representation. For example, the coordinate variables and an
arbitrary multicomponent quantity are represented as zI and
MIJ ···

KL···(I,J, . . . ,K,L, · · · = 1,2,3), respectively.
Let us introduce another class of coordinate system {∗z},

which has a linear relation with the orthonormal inertial-
coordinate system {z} as follows:

zI = QI
A∗ (t) ∗zA∗ + ZI (t). (2.1)
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(a)

(b)

FIG. 1. General coordinate system; The general coordinate sys-
tem {x} (b) is illustrated in contrast to an inertial reference frame (a)
(In general, {z} is not necessarily orthonormal.) We define the class
of general coordinate system as those freely moving as time passes.

If we put Q as a time-independent orthogonal matrix and
Z(t) as linear function of t , (2.1) represents the Galilean
transformation. If Z(t) is nonlinear in t , (2.1) is transfor-
mation to an accelerated frame. If Q is a time-dependent
orthogonal matrix, (2.1) represents time-dependent rotation
and translation where the trajectory of the rotation origin is
given by Z(t). The most general case of (2.1) is obtained
when both Q and Z are general functions of t , which may
be called as the affine transformation. More general class of
transformation can be introduced by generalizing (2.1); we
introduce a curvilinear-coordinate system {x}, which can move
freely against the inertial frame {z} by providing a relation such
as

xi = xi (z1 ,z2 ,z3 ,t) = xi(z,t), (2.2)

where i = 1,2,3. Also we impose ∂x/∂z �= 0 where we use
as the coordinate frame. Note that we do not consider the
transformation of time parameter since we treat time as an
independent parameter from physical space. Generally speak-
ing, coordinate system {x} may have rotation and distortion
nonuniform in time and space, which is depicted by (b) in
Fig. 1. In this paper, we call a coordinate system such as
{x} given by (2.2) the general coordinate system. We employ
small Roman letters for the indices of the general-coordinate
representations. In addition, we call the transformations
between general coordinate systems the general coordinate
transformation; i.e., the transformation from {x} to another
general-coordinate system {x̃} is given by

x̃ã = x̃ã(x1,x2,x3,t) = x̃ã(x,t), (2.3)

where ã = 1,2,3. In the later discussions, we rewrite x̃ã as
xã to simplify the notations, since we can enough distinguish
the coordinate representations by indices. Likewise, arbitrary
multicomponent quantity M can be written as Mij ···

kl··· and
Mãb̃···

c̃d̃··· in {x} and {x̃}, respectively. This logic can be
also applied to the transformation coefficients. For example,
∂xi/∂xã can be rewritten as xi

,ã , since we can recognize the xã

differentiation only by the index ã. Following these manners,

in transformations between the general and inertial frames, we
use xi

,I or zI
,i instead of ∂xi/∂zI or ∂zI /∂xi .

Note that the conventional transformation groups such as
the Galilean and Euclidean groups (Ga and Eu) are both the
subgroup of the general-coordinate-transformation group (Ge):

Ge ⊃ Af ⊃ Eu ⊃ Ga,

where Af is the affine transformation group. Some more de-
tails about these group structures are explained in Appendix B.

B. Tensor analysis and general covariance

In continuum physics, the tensor plays especially important
roles in the covariant formulation of the theory. We require an
arbitrary tensor field C to satisfy the transformation rule as
follows:

Cãb̃···
c̃d̃··· = xã

,i x
b̃
,j · · · xk

,c̃ xl
,d̃ · · · Cij ···

kl···. (2.4)

It is well known that sums and products of tensors are tensors,
which may be rephrased as follows: a polynomial of tensors is
a tensor. A tensor monomial is defined as a multicomponent
quantity whose coordinate components are given by a product
such as Ai···

j ··· Bk···
l··· · · · , where A, B, . . . are tensors. In

general, some pairs of covariant and contravariant indices may
be contracted, so it would be better to rewrite the previous
form as Ai···m···

j ···n··· Bk···n···
l···m··· · · · . The transformation rule

of the monomial is given as follows:

Aã···ẽ···
b̃···f̃ ··· B

c̃···f̃ ···
d̃···ẽ··· · · ·

= xã
,i · · · xj

,b̃ · · · xc̃
,k · · · xl

,d̃ · · ·
×Ai···m···

j ···n··· Bk···n···
l···m··· · · · .

We should remark that the form of monomial itself does not
change through the coordinate transformation while the values
of components may change, which also holds for a polynomial.
We may denote the transformation of a tensor polynomial as

P F ãb̃···
c̃d̃···[Ã,B̃, · · · ]

= xã
,i x

b̃
,j · · · xk

,c̃ xl
,d̃ · · · P F ij ···

kl···[A,B, · · · ], (2.5)

where P F is a polynomial function of A,B, . . . . In the
present work, we call the invariance of algebraic structures
of polynomial or equations under the general coordinate
transformations covariance under the general coordinate
transformation, general covariance, or simply covariance
unless it creates any confusion. The “general covariance”
here is discussed on the basis of 3+1 space-time concepts of
nonrelativistic mechanics and never means the transformations
of four-dimensional space-time manifold in the theory of
general relativity. In terms of covariance, there is an important
tensor theorem:

Theorem 1. A polynomial of tensors is generally covariant.
As a natural consequence, algebraic equations consisting

of tensor polynomials are generally covariant. Because of the
above theorem, tensors play distinct roles from the other multi-
component quantities in descriptions of covariant relations. In
some pioneering works, the terminology tensor is also applied
to Q in (2.1), which is actually xã

,i or xi
,ã in general. However,

these quantities are only transformation coefficients that never
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possess the features of tensor discussed above, so that we
clearly discriminate tensors from transformation coefficients.

Tensor polynomial is not the only way to construct the
covariant relations. For example, the covariant derivative of
an arbitrary tensor C given by

∇aC
ij...

kl...

= Cij...
kl... ,a + �i

maC
mj...

kl... + �j
maC

im...
kl... + · · ·

−�n
kaC

ij...
nl... − �n

laC
ij...

kn... − · · ·
is also a generally covariant operation, where � is the
Christoffel symbol of the second kind given by

�a
ij = 1

2
gab(gbj,i + gbi,j − gij,b),

where g is the metric tensor. The relation between the
metric and the Christoffel symbol given above leads to a
well-known identity: gij ;k = 0. Note that neither the simple
derivative Cab···

cd··· ,j nor � transforms as tensor. Especially
the transformation rule of the Christoffel symbol is given by

�ã

b̃c̃
= xã

,i x
j
,b̃ xk

,c̃ �i
jk − xã

,jk xj
,b̃ xk

,c̃. (2.6)

If necessary, we use the abbreviated form of the covariant
derivative given by ∇aC

ij...
kl... = Cij...

kl... ;a .
In the later sections, we will treat the Reynolds decompo-

sition of physical quantities based on the ensemble average.
Let us see here some trivial but important theorems about
the Reynolds decomposition of tensors. In the Reynolds
decomposition, we decompose a physical quantity, say, f ,
into the ensemble average 〈f 〉 and the fluctuation f ′ ≡
f − 〈f 〉, where the angular bracket 〈· · · 〉 represents the
ensemble average. Note that we apply the coordinate frames
independently from the ensemble of realizations in the present
work. By taking the ensemble average of (2.4), we have

〈Cij ···
kl···〉 → 〈Cãb̃···

c̃d̃···〉 = xã
,i x

b̃
,j · · · xk

,c̃ xl
,d̃ · · · 〈Cij ···

kl···〉,
which leads to the following theorem:

Theorem 2. The ensemble average of an arbitrary tensor is
a tensor.

The fluctuation C′ given by the difference between two
tensors C and 〈C〉 is obviously a tensor from Theorem II B.
Indeed, we have

C ′ãb̃···
c̃d̃··· = Cãb̃···

c̃d̃··· − 〈Cãb̃···
c̃d̃···〉

= xã
,i x

b̃
,j · · · xk

,c̃ xl
,d̃ · · · (Cij ···

kl··· − 〈Cij ···
kl···〉)

= xã
,i x

b̃
,j · · · xk

,c̃ xl
,d̃ · · · C ′ij ···

kl··· ,

which may be summarized as follows:
Theorem 3. The fluctuation of an arbitrary tensor is a tensor.
Another theorem is obtained by averaging (2.5):

〈P F ãb̃···
c̃d̃···[Ã,B̃, · · · ]〉

= xã
,i xb̃

,j · · · xk
,c̃ xl

,d̃ · · · 〈P F ij ···
kl···[A,B, · · · ]〉, (2.7)

where the algebraic structure of P F including angular bracket
conserves under the coordinate transformation. Thus we have
the following;

Theorem 4. The average of a tensor polynomial is generally
covariant.

So far we have discussed the tensor fields under the
general-coordinate-transformation group Ge. Note that some
quantities obey (2.4) only under limited-transformation groups
such as Af , Eu, and Ga , and we may call these quantities the
affine, Euclidean, and Galilean tensors, respectively. Thus the
pioneering works have been discussing the limited covariance
under the Euclidean groups (we rephrase the “Euclidean
invariance” the “Euclidean covariance” in the following
discussions). The above theorems hold for tensors of these
limited groups by replacing the words “tensor” and “covariant”
with limited versions. For example, Theorem II B turns into the
following: a polynomial of affine/Euclidean/Galilean tensors
is affine/Euclidean/Galilean covariant.

C. Continuum quantities

A typical example of a tensor in continuum physics may be
the stress; providing the contravariant components of the stress
be σ ij , its transformation rule is given by σ ãb̃ = xã

,i xb̃
,j σ

ij .
On the contrary, a velocity field, which plays the central role in
continuum physics, does not obey the tensor rule (2.4). Instead,
its transformation rule is given by

vã = xã
,i v

i + xã
,t , (2.8)

which is accompanied by an extra term (see Appendix A). Thus
we need some special treatment in extracting the covariant
properties of material motion. For example, the velocity
gradient vi

;j transforms as

vã
;b̃ = xã

,i xj
,b̃ vi

;j + xã
,it x

i
,b̃ + �ã

b̃c̃
xc̃

,t , (2.9)

which again does not obey (2.4) and is not a tensor. Thus
the symmetric part of it, namely, vi;j + vj ;i , is not a tensor
under the general-coordinate formalism. sij = vi,j + vj,i , the
familiar form in classical fluid mechanics, holds only in the
case of the Euclidean transformation; namely, vi,j + vj,i is a
Euclidean tensor. Instead, in the modern theory of continuum
physics, the strain rate is defined by

sij = d

dt
gij = d

dt
gij + vb

;i gbj + vb
;j gib

= gij,t + vi;j + vj ;i , (2.10)

which is generally covariant (often defined as the half of
the above in rheology, namely, 1

2dgij /dt). The operation
d/dt , which is called the convected derivative, is a generally
covariant operation [8]. The operation of d/dt for the general
tensor C is given by

d

dt
Cij ···

kl··· = d

dt
Cij ···

kl···−vi
;aC

aj ···
kl···−vj

;aC
ia···

kl···− · · ·

+ vb
;kC

ij ···
bl··· + vb

;lC
ij ···

kb··· + · · · , (2.11)

where the operator d/dt called the Lagrangian derivative,
which has been often used in ordinary fluid dynamics, is given
by

d

dt
= ∂

∂t
+ vj∇j . (2.12)

It is well known that the Lagrangian derivative is Galilean
covariant. Note that this is not covariant under Eu and wider
groups, except when it operates on scalar fields.
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III. TRANSFORMATION RULES OF TURBULENCE
QUANTITIES

A. Velocity fluctuation

By taking the fluctuation of (2.8), we obtain

v′ã ≡ vã − 〈vã〉 = xã
,i{vi − 〈vi〉} = xã

,i v
′i , (3.1)

which is consistent with the general tensor rule (2.4). Thus
the velocity fluctuation v′, which is the most fundamental
quantity of turbulence, is a vector (one-rank tensor). As a
natural consequence, we notice that various quantities con-
structed by the velocity fluctuation are generally covariant. For
example, from Theorem II B, we can immediately conclude
that moments of v′ at arbitrary orders are generally covariant.
Indeed, using (3.1) we obtain

〈v′ã v′b̃ v′c̃ · · · 〉 = xã
,i xb̃

,j xc̃
,k · · · 〈v′i v′j v′k · · · 〉. (3.2)

In case of the second order (3.2) proves that the Reynolds
stress is covariant. The turbulence energy K ≡ 〈v′

j v
′j 〉/2 and

its dissipation rate ε ≡ ν〈v′i;j v′
i;j 〉 (ν; kinematic viscosity),

both of which play important roles in case of incompressible
Newtonian fluids, are also generally covariant, or, more strictly
speaking, invariant.

B. Mean velocity

The transformation rule for the mean velocity field is
obtained by taking the ensemble average of (2.8) as follows:

V ã = xã
,i V i + xã

,t , (3.3)

where V = 〈v〉 is the mean velocity. Here we should remark
that the mean velocity field V transforms in the same manner
as the instantaneous velocity field v as (2.8). Owing to this
similarity between (3.3) and (2.8), we can apply various
effective techniques that have been developed in the ordinary
continuum physics to the analysis of the mean flow. For
example, as the counterpart of d/dt given by (2.11), we can
immediately derive the following derivative operation:

D

Dt
Cij ···

kl··· = D

Dt
Cij ···

kl··· − Caj ···
kl···V i

;a−Cia···
kl···V j

;a− · · ·

+Cij ···
bl···V b

;k + Cij ···
kb···V b

;l + · · · , (3.4)

where the derivative operation given by

D

Dt
= ∂

∂t
+ V j∇j

shows completely the same behavior as d/dt in terms of
their coordinate transformation rule. As well as d/dt , D/Dt is
Galilean-covariant operation.

Likewise, we can derive some useful derivative operations
based on V by simply replacing v in derivative operations
of continuum physics, such as the Jaumann or Truesdell
derivatives, with V. Here let us introduce an important
counterpart of the strain rate defined by (2.10):

Sij = D

Dt
gij = gij,t + Vi;j + Vj ;i , (3.5)

which may be called as the strain rate of the mean flow. The
covariance of S is obvious from the covariance of D/Dt . One
may call S as the averaged strain rate since it is also obtained

by taking the ensemble average of s, where the covariance of S
is also proved by Theorem II B. Likewise, simple replacement
of v with V can yield physical quantities of the mean flow
corresponding to those of instantaneous flow. In this paper, let
us call this as the v − V correspondence.

IV. GENERAL COVARIANCE OF DYNAMICAL
EQUATIONS

In Sec. III A the general covariance of the velocity fluctu-
ation has been proved in a rigorous manner, so that one may
naturally expect the velocity-fluctuation equation to be also
generally covariant. In this section, however, we will see that
not only the fluctuation equation but also the equations for
the instantaneous and mean flows can be written in generally
covariant forms, despite the instantaneous and mean velocities,
namely, v and V, are not general vectors. The importance of
generally covariant formulation of these three will be discussed
in Sec. V.

A. Instantaneous-flow equation

In an inertial frame {z}, the equation of instantaneous flow
is given by

dvI

dt
= 1

ρ
σ IJ

;J + f I , (4.1)

where ρ is the mass density, σ is the stress and f is the
external force per unit mass. It is well known that (4.1) has
the covariance under the Galilean group. Although σ and f
are covariant under the general-coordinate transformations,
the acceleration term dv/dt has only covariance under the
Galilean group. In this section, it will be shown that (4.1) can
be rewritten in generally covariant form if we once define the
inertial frame of reference.

Let us start from the transformation rule of the acceleration
using (2.8). Taking the simple time derivative of (2.8) yields

vã
,t = (xã

,it + xã
,ij x

j
,t )v

i + xã
,i(v

i
,t + vi

,j x
j
,t )

+ xã
,tt + xã

,tix
i
,t .

Taking a partial spatial derivative of (2.8) and multiplying it
by vb̃ = xb̃

,j v
j + xb̃

,t yields

vã
,b̃ vb̃ = xã

,ij vi(vj − xj
,t ) + xã

,i v
i
,j (vj − xj

,t )

+ xã
,j t (v

j − xj
,t ).

Combining (2.6) and (2.8) yields

�ã

b̃c̃
vb̃vc̃ = (

xã
,i�

i
jk − xã

,jk

)
vjvk + 2�ã

b̃c̃
xb̃

,ix
c̃
,t v

i

+�ã

b̃c̃
xb̃

,t x
c̃
,t .

By summing up these three, we obtain the transformation rule
of acceleration dv/dt as follows:

dvã

dt
= xã

,i

dvi

dt
+ (

xã
,tt + �ã

b̃c̃
xb̃

,t x
c̃
,t

)

+ 2
(
xã

,tix
i
,b̃ + �ã

b̃c̃
xc̃

,t

)
(vb̃ − xb̃

,t ).

This clearly shows that the acceleration of material does not
transform as a general vector. However, we can reform this into
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a general vector by introducing an inertial frame of reference.
Providing we identify an inertial-coordinate system {z} (which
is referred to as the basic-inertial frame in this article), we have

dvi

dt
− αi[v; {z}] = xi

,I

dvI

dt
, (4.2)

where α[v; {z}] is given by

αi[v; {z}] = 2
(
xi

,tI z
I
,j + �i

jkx
k
,t

)
(vj − xj

,t )

+ (
xi

,tt + �i
jk xj

,t x
k
,t

)
. (4.3)

In totally the same manner, we obtain the counterpart in another
general-coordinate frame {x̃} as

dvã

dt
− αã[v; {z}] = xã

,I

dvI

dt
. (4.4)

Transforming (4.2) as dvI /dt = zI
,i(dvi/dt − αi) and substi-

tuting it into the right-hand side of (4.4) yields

dvã

dt
− αã[v; {z}] = xã

,I zI
,i

(
dvi

dt
− αi[v; {z}]

)

= xã
,i

(
dvi

dt
− αi[v; {z}]

)
. (4.5)

Thus dv/dt − α transforms in a covariant manner. Note that
there exists a subgroup of coordinate transformation where α

vanishes. Let one of such coordinate frames be {z̃}, for which
we have αÃ[v; {z}] = 0. From (4.3) such a coordinate variable
z̃(z,t) is determined by the following set of equations:

zÃ
,tt + �Ã

B̃C̃
zB̃

,t zC̃
,t = 0,

zÃ
,tI zI

,B̃ + �Ã
B̃C̃

zC̃
,t = 0.

These are interpreted as the equations of motion in {z̃} of every
point fixed to {z}; the first equation means that every fixed point
has a linear uniform motion in {z̃}, while the second means that
the velocity of a fixed point is obtained by the parallel shift
of others. Thus the frame {z̃} is another inertial frame, and
the subgroup such that α vanishes is the Galilean group, and
hence we notice that α is related to the inertial force. Indeed,
by substituting (2.1) into (4.3), we obtain α in a Euclidean
coordinate system {∗z} as follows:

αA∗ = −QA∗
I Z̈I − 2F 	A∗

B∗ vB∗

− F 	A∗
B∗ F 	B∗

C∗ zC∗ − F 	̇A∗
B∗zB∗

, (4.6)

where F � represents the angular velocity of the frame rotation
(see Appendix C for more details). Note that F � does not
transform as a general tensor. The first term of (4.6) originates
from the acceleration of the center of {∗z}, and the second
and third terms are the Coriolis and centrifugal forces. Under
larger transformation groups Ge and Af , α includes more
complicated terms such as caused by the deformation of the
coordinate frame. In this sense α may be understood as a
generalization of the inertial force. A brief derivation of (4.6)
is given in Appendix D.

In the following discussions we write α without {z}. It
is easily proved in Appendix G that α is invariant under an
arbitrary change of the basic-inertial frame {z} to another, so
that we are not stuck on only one basic-inertial frame anymore.

Now let us return to the equation of motion. Since α = 0 in
inertial frames, (4.1) can be rewritten as

dvI

dt
− αI [v] = 1

ρ
σ IJ

;J + f I . (4.7)

It is well known that σ and f transform as the general tensor
and vector for ordinary material in nonrelativistic frameworks.
Thus, by multiplying (4.7) by xi

,I and using the identity (4.5),
we immediately obtain the equation of motion in an arbitrary
general coordinate system {x} as follows:

dvi

dt
− αi[v] = 1

ρ
σ ij

;j + f i, (4.8)

which is the generally covariant dynamical equation of the
instantaneous flow. Comparing (4.7) and (4.8), it is obvious
that the equation in the inertial frame is included in the
generally covariant representation (4.8).

B. Mean-flow equation

Here we attempt to derive the mean-flow equation which
is simply obtained by taking the ensemble average of (4.8).
Averaging the Lagrangian-derivative term yields〈

dvi

dt

〉
=

〈(
D

Dt
+ v′j∇j

)
(V i + v′i)

〉

= DV i

Dt
+ 〈v′i

;j v′j 〉 = DV i

Dt
+ 〈v′iv′j 〉;j .

Owing to the linear dependence of α on v, the average of α is
achieved simply by replacing v by V:

〈αi[v]〉 = 2
(
xi

,tI z
I
,j + �i

jkx
k
,t

)
(V j − xj

,t )

+ (
xi

,tt + �i
jk xj

,t x
k
,t

)
= αi[V].

Thus the ensemble average of (4.8) yields

DV i

Dt
− αi[V] = 1

ρ
〈σ ij 〉;j + 〈f i〉 − Rij

;j . (4.9)

Considering the similarity to (4.8), one may soon notice the
general covariance of (4.9). 〈σ 〉 and 〈f〉 are general tensor and
vector from Theorem II B. In addition, owing to the v − V
correspondence, the left-hand side of (4.9) transforms in the
same manner as (4.5), namely,

DV ã

Dt
− αã[V] = xã

,i

(
DV i

Dt
− αi[V]

)
, (4.10)

which is also directly proved by averaging (4.5).

C. Velocity-fluctuation equation

The velocity-fluctuation equation is obtained by subtract-
ing (4.9) from (4.8), which yields

Dv′i

Dt
+ V i

;j v
′j + v′i

;j v′j − 2
(
xi

,I t z
I
,j + �i

jk xk
,t

)

= 1

ρ
σ ′ij

;j + f ′i + Rij
;j . (4.11)
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Note that both σ ′ and f′ are a tensor and vector because of
Theorem II B. In order to transform the fourth term on the
left-hand side of (4.11) we utilize the transformation rule for
the velocity gradient (2.9); applying this to the transformation
of the mean-velocity gradient from {z} to {x} yields

V i
;j = xi

,I zJ
,j V I

;J + xi
,I t z

I
,j + �i

jk xk
,t ,

⇔ xi
,I t z

I
,j + �i

jk xk
,t = V i

;j − xi
,I zJ

,j V I
;J .

By substituting this into (4.11) we obtain

Dv′i

Dt
− V i

;j v
′j + v′i

;j v′j − 2xi
,I zJ

,j V I
;J v′j

= 1

ρ
σ ′ij

;j + f ′i + Rij
;j .

The first and second terms are combined together and rewritten
as the convected derivative of the velocity fluctuation. Let us
introduce a two-rank tensor in general coordinate frame {x}
given by


i
j ≡ xi

,I zJ
,j V I

;J . (4.12)

� is an objective measure of deviation of the mean-flow
motion from the inertial motion and behaves as a general tensor
(see Appendix E). Then we reach a covariant equation of the
velocity fluctuation:

Dv′i

Dt
+ v′i

;j v′j + 2
i
j v′j = 1

ρ
σ ′ij

;j + f ′i + Rij
;j . (4.13)

The symmetric part of 
ij = gik

k
j is rewritten as


ij + 
ji

= zI
,i z

I
,j (VI ;J + VJ ;I )

= zI
,i z

I
,j

(
gIJ,t + V K gIJ ;K + V K

;I gKJ + V K
;J gIK

)

= zI
,i z

I
,j

D

Dt
gIJ = D

Dt
gij = Sij , (4.14)

where we used gIJ,t = 0 and gIJ ;K = 0. The antisymmetric
part is the generalized absolute vorticity of the mean flow (see
Appendix F), which is written in the present work as

�ij = 
ij − 
ji. (4.15)

Thus (4.13) is also written as

Dv′i

Dt
= −(

Si
j + �i

j

)
v′j − v′i

;j v′j

+Rij
;j + 1

ρ
σ ′ij

;j + f ′i . (4.16)

Since both (4.13) and (4.16) are written as a tensor-polynomial
equation, these are generally covariant equations for
Theorem II B. Note that one can choose another time derivative
instead of D/Dt . This can be conducted by adding generally
covariant terms to both sides of (4.13) or (4.16), which again
results in the generally covariant equations.

V. DISCUSSIONS

A. General covariance of turbulence constitutive relations

Since (4.13) and (4.16) are tensor-polynomial equations,
any moment equations constructed from (4.13) or (4.16)

are represented as the averaged tensor-polynomial equations,
which are generally covariant for Theorem II B. Indeed, by
multiplying (4.16) by v′j , adding an i − j transposed equation
to it, and taking the ensemble average of the result, we obtain
the following differential equation for the Reynolds stress:

D

Dt
Rij = −(

Si
kR

jk + S
j

k Rik
) − (�i

kR
jk + �j

kR
ik)

− T ijk
;k + 1

ρ
〈σ ′ik

;kv
′j + σ ′jk

;kv
′i〉

− 〈f ′iv′j + f ′j v′i〉, (5.1)

where T ijk is the triple moment 〈v′iv′j v′k〉. Obviously (5.1)
is a generally covariant equation. By multiplying (4.16) by
v′j and v′k , summing up the cyclic permutations of (i,j,k),
and taking the ensemble average of the result, we obtain the
triple-moment equation as follows:

D

Dt
T ijk = −(

Si
aT

ajk + Sj
a T iak + Sk

aT
ija

)

− (
�i

aT
ajk + �j

aT
iak + �k

aT
ija

)
−〈v′iv′j v′kv′a〉;a

+ 1

ρ
〈σ ′ia

;av
′j v′k + σ ′ja

;av
′kv′i + σ ′ka

;av
′iv′j 〉

− 〈f ′iv′j v′k + f ′j v′kv′i + f ′kv′iv′j 〉
+Ria

;aR
jk + Rja

;aR
ki + Rka

;aR
ij , (5.2)

which is again obviously covariant. Likewise, we can obtain
equations for moments of arbitrary orders in generally co-
variant forms. Let us see here the force-free Navier-Stokes
equation for simplicity, where f = 0. The stress tensor is given
by

σ ij = ρ(−pgij + νsij ),

where p is the pressure divided by the constant mass density,
and ν is the kinematic viscosity. The velocity-fluctuation
equation (4.13) is rewritten as

Dv′i

Dt
+ v′i

;j v′j + 2
i
j v′j = −p′;i + ν�v′i + Rij

;j .

By taking the covariant divergence of both sides, we obtain
a generally covariant equation for the pressure fluctuation as
follows:

�p′ = −2
i
j v′j

;i − v′i
;j v′j

;i + Rij
;ij ,

which determines p′ in a covariant manner. Indeed p′ is a
scalar (zero-rank tensor) because of Theorem II B. Now (5.1)
turns into

D

Dt
Rij = −(

Si
kR

jk + S
j

k Rik
) − (�i

kR
jk + �j

kR
ik)

− εij + φij − t ijk
;k, (5.3)

where the dissipation ε, the redistribution φ, and the flux t are
given, respectively, by

εij = 2ν〈v′i;kv′j
;k〉,

φij = 〈p′ (v′i;j + v′j ;i)〉,
t ijk = 〈p′gikv′j + p′gjkv′i〉 + 〈v′iv′j v′k〉 − νRij ;k,
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all of which are obviously covariant. Thus (5.3) provides the
Reynolds stress equation in generally covariant form. A simple
example of modeling of (5.3) is shown in Appendix H, where
each term should be modeled in covariant form. The equations
for turbulence energy and its dissipation rate are obtained,
respectively, as

DK

Dt
= −1

2
RijSij − ε +

〈(
1

2
gabv

′av′b + p′
)

v′j
〉

;j + ν�K,

(5.4)
Dε

Dt
= −2ν〈v′i

;j v
′
i;kv

′j ;k〉 − 2ν2〈v′i;jkv′
i;jk〉

− ν
(
Si

j + �i
j

)〈v′
i;kv

′j ;k + v′
k;iv

′k;j 〉
− ν(Sij ;k + �ij ;k)〈v′j v′i;k〉
− (ν〈v′a;bv′

a;bv
′j 〉 + 2ν〈p′

,av
′j ;a〉);j + ν�ε, (5.5)

both of which are generally covariant (or, more strictly
speaking, invariant). Note that D/Dt operations on scalars
coincide with those of D/Dt , so that one can replace D/Dt

in the above two equations with D/Dt , which may be more
frequently used in conventional notations.

Note that equations for various correlations are written
in generally covariant forms due to the general covariance
of the fluctuation equation. In this sense the covariance of
the fluctuation and its equation is much more fundamental
feature than that of turbulence constitutive relations such
as (5.1)–(5.5). The very reason for the general covariance of
the constitutive relations is finally attributed to the general
covariance of (4.16).

B. Covariance and physical objectivity

Generally speaking, change of the reference frame does not
change the physical state of nature. Since the instantaneous
flow remains in the same physical state under arbitrary coordi-
nate transformation (2.8), we may say that the instantaneous
flow has the physical objectivity. If Eq. (4.8) properly predicts
the instantaneous flow, it must be consistent with the physical
objectivity. Let us investigate this consistency through the
following steps, providing we solve the instantaneous flow in
two coordinate systems independently; namely, we solve (4.8)
and obtain vi in a frame {x} on the one hand, and also solve

dvã

dt
− αã[v] = 1

ρ
σ ãb̃

;b̃ + f ã

and obtain vã in another frame {x̃} on the other hand. As long
as the instantaneous flow is physically objective, the above
two solutions vi and vã must satisfy its proper transformation
rule (2.8). Since we have shown (4.5) from (2.8), we have
(2.8) ⇒ (4.5); namely, (4.5) must hold for the above two
solutions vi and vã , otherwise these two represent different
flows. This can be confirmed by using the transformation rule
of σ and f as follows:

dvã

dt
− αã[v] = 1

ρ
σ ãb̃

;b̃ + f ã = xã
,i

(
1

ρ
σ ij

;j + f i

)

= xã
,i

(
dvi

dt
− αi[v]

)
.

Namely, (4.5), a necessary condition for the objectivity, can
be reproduced as long as σ and f transform as a tensor
and vector. As the contraposition of this logic, we reach the
following statement: if the constitutive model for either σ or
f breaks the general covariance, the velocities calculated in
different coordinate frames represent different flows, where the
objectivity of the flow breaks down.

Due to the v-V correspondence, the objectivity of the
mean flow can be discussed in the same manner. If (3.3)
holds, namely, V ã = xã

,i V i + xã
,t , V i and V ã observed in

the different frames {x} and {x̃} represent the very same
state of the mean flow, which may be termed as the physical
objectivity of the mean flow. Besides, we have (3.3) ⇒ (4.10),
so that (4.10) is necessary for the objectivity of the mean
flow. The Reynolds stress need transform in covariant manner
for (4.10). On the contrary, if one constructs a model of the
Reynolds stress, say, M R, which breaks the general covariance,
i.e., M Rãb̃ �= xã

,i xb̃
,j

M Rij , we have

DV ã

Dt
− αã[V] = 1

ρ
〈σ ãb̃〉;b̃ − M Rãb̃

;b̃

�= xã
,i

(
1

ρ
〈σ ij 〉;j − M Rij

;j

)

= xã
,i

(
DV i

Dt
− αi[V]

)
, (5.6)

which contradicts the identity (4.10), and (3.3) breaks down,
namely, V ã �= xã

,i V
i + xã

,t , which means that the mean-
velocity fields calculated in {x} and {x̃} represent different
mean flows. Thus the general covariance of the Reynolds stress
is very needed in the physical objectivity of the mean flow.

VI. CONCLUSIONS

Covariance of turbulence quantities and equations has been
discussed on the basis of the general coordinate transfor-
mations, which form a far wider transformation group than
the Euclidean-transformation group. The author obtained the
following as our conclusions:

(1) The velocity fluctuation, the most fundamental quantity
in turbulence physics, is a vector (one-rank tensor) under
the general-coordinate-transformation group. In addition, its
governing equation is generally covariant. Thus the general
covariance should be considered as one of the most fundamen-
tal features of turbulence. As natural consequences, various
correlations and their dynamical equations are formulated in a
generally covariant manner.

(2) The governing equations for the instantaneous and
mean flows can be rewritten in generally covariant forms,
which can illustrate how the objectivity of the instantaneous
and mean flows under the change of frames are guaranteed.
Due to the v-V correspondence, the objectivity of the mean
flow can be discussed as well as the instantaneous flow. In the
same manner that the instantaneous-flow objectivity requires
the constitutive equations for stress and external force to be
generally covariant, the general covariance of the Reynolds
stress is needed for the physical objectivity of the mean flow.
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APPENDIX A: TRANSFORMATION RULE OF THE
VELOCITY FIELD

Let an element of continuum be P whose position at time t

is given by P xi(t) in a coordinate system {x}. The velocity of
P in this coordinate representation is given by

P vi(t) = d

dt
P xi(t).

We introduce another coordinate system {x̃} whose relation
with {x} is given by xã = xã (x,t). In the new coordinate
system, the position of P is given by

P xã(t) = xã(P x(t),t).

Thus the velocity in the coordinate system {x̃} is given by

P xã(t) = d

dt
P xã(t) = d

dt
xã(P x(t),t)

= ∂xã

∂xi
(P x(t),t)P vi(t) + ∂xã

∂t
(P x(t),t).

Here we should notice that the last term on the right-hand
side is obtained by substituting x = P x(t) into the derivative
function ∂x̃a/∂t (x,t). The element velocity P v(t) is given by
v (P x(t),t), so that the above is reduced to

vã(P x̃(t),t) = ∂xã

∂xi
(P x(t),t)vi(P x(t),t) + ∂xã

∂t
(P x(t),t).

This relation holds for arbitrary element of continuum. Thus,
by replacing (P x(t),t) and (P x̃(t),t) with (x,t) and (x̃,t), we
obtain

vã(x̃,t) = ∂xã

∂xi
(x,t) vi (x,t) + ∂xã

∂t
(x,t) ,

which is rewritten as vã = xã
,i v

i + xã
,t in our abbreviated

notation.

APPENDIX B: GROUP STRUCTURES OF
Ge, A f , Eu, AND Ga

In our general-coordinate transformation (2.3), we do not
treat the transformation of the time parameter, which may be
written as

t̃ = t̃(x1 ,x2 ,x3 ,t) = t. (B1)

Let us introduce the four-dimensional representation to make
later discussions simple: X1 = x1 , X2 = x2 , X3 = x3 , and
X4 = t . In this notation (2.3) and (B1) may be combined as
follows:

ge : {X1 ,X2 ,X3 ,X4} → {X̃1 ,X̃2 ,X̃3 ,X̃4}, (B2)

where X̃4 = X4 . Thus Ge is the set of mappings such as ge.
Using the nondegenerateness condition, we obtain

∂X̃
∂X

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂X̃1

∂X1
∂X̃1

∂X2
∂X̃1

∂X3
∂X̃1

∂X4

∂X̃2

∂X1
∂X̃2

∂X2
∂X̃2

∂X3
∂X̃2

∂X4

∂X̃3

∂X1
∂X̃3

∂X2
∂X̃3

∂X3
∂X̃3

∂X4

∂X̃4

∂X1
∂X̃4

∂X2
∂X̃4

∂X3
∂X̃4

∂X4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x̃1

∂x1
∂x̃1

∂x2
∂x̃1

∂x3
∂x̃1

∂t

∂x̃2

∂x1
∂x̃2

∂x2
∂x̃2

∂x3
∂x̃2

∂t

∂x̃3

∂x1
∂x̃3

∂x2
∂x̃3

∂x3
∂x̃3

∂t

∂t̃
∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ∂ x̃

∂x
∂t̃

∂t
= ∂ x̃

∂x
× 1 �= 0. (B3)

Thus the inverse mapping g−1
e exists (Existence of the inverse

element). The identity element is obtained as an identity
mapping (Existence of the identity element):

1 : {X1 ,X2 ,X3 ,X4} → {X1 ,X2 ,X3 ,X4}.
The group operation is defined as the composition of two
mappings. Let us think of multiple mappings such as

{X} g′
e→ {X′} g′′

e→ {X′′} g′′′
e→ {X′′′}. (B4)

We define an operation μ between two elements g′
e and g′′

e as
a composite mapping from X to X′′, which may be written as

μ(g′′
e,g

′
e) : X′′ = X′′ (X′(X)

) = X′′ ◦ X′ (X). (B5)

Note that μ(g′′
e,g

′
e) ∈ Ge (Requirement for the closure). Gener-

ally speaking, compositions of one-to-one mappings are asso-
ciative. Thus the operation μ is also associative (Requirement
for the associativity). Indeed, we have

(X′′′ ◦ X′′) ◦ X′(X) = X′′′ ◦ (X′′ ◦ X′)(X), (B6)

which reduces to

μ(μ(g′′′
e ,g′′

e),g′
e) = μ(g′′′

e ,μ(g′′
e,g

′
e)). (B7)

Thus the set and operation (Ge,μ) satisfies the requirements for
identity element, inverse element, closure, and associativity,
which offer the proof that Ge has a group structure.

Next let us see Af : a set of transformations between
coordinate systems defined by (2.1). A transformation af (∈
Af ) between {∗z} and {∗∗z}, namely,

af : {∗z} → {∗∗z},
is in general given by the following linear transformation:

zB∗∗ = QB∗∗
A∗ (t) zA∗ + ZB∗∗

(t), (B8)

where Q is again an arbitrary time-dependent regular matrix.
Obviously, (B8) is a branch of (2.3) so that Af is a subset of
Ge. For multiple transformations

{∗z} a′
f→ {∗∗z} a′′

f→ {∗∗∗z},
the operation μ of two affine transformations is given by the
following composition:

zC∗∗∗ = QC∗∗∗
B∗∗ (t)

[
QB∗∗

A∗ (t) zA∗ + ZB∗∗
(t)

] + ZC∗∗∗
(t)

= QC∗∗∗
A∗ (t) zA∗ + QC∗∗∗

B∗∗ (t) ZB∗∗
(t) + ZC∗∗∗

(t), (B9)

which is obviously a branch of (B8); thus we have μ(a′
f
◦

a′′
f
) ∈ Af , namely, the closure condition μ : Af × Af → Af
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is obtained. Af fulfills the identity and inverse requirements
sinceAf ⊂ Ge. The group operation μ is of course associative.
Considering the consistency with the four requirements, we
notice that (Af ,μ) has also a group structure.

By imposing the orthogonality to QB∗∗
A∗ (t), we obtain the

Euclidean transformation whose subset is Eu (⊂ Af ):

QC∗∗∗
A∗ (t) = QC∗∗∗

B∗∗ (t) QB∗∗
A∗ (t),

in the second line in (B9) and is again a time-dependent
orthogonal matrix, so the composition of any two Euclidean
transformations is again another Euclidean transformation;
namely, the closure condition μ : Eu × Eu → Eu is obtained.
The other three requirements are obviously satisfied. Thus
(Eu,μ) has again a group structure.

By imposing the time independence of QB∗∗
A∗ and linear time

dependence of ZB∗∗
(t) in (B8), we obtain a Galilean transfor-

mation whose set is Ga . The composition of two Galilean
transformations becomes another Galilean transformation for
the time independence of QC∗∗∗

A∗ and the linear time dependence
of QC∗∗∗

B∗∗ ZB∗∗
(t) + ZC∗∗∗

(t) in the second line of (B9); namely,
the closure condition μ : Ga × Ga → Ga is obtained. The other
three requirements are again obviously satisfied. Thus (Ga,μ)
has also a group structure.

As is seen above, all the transformation groups Ge, Af ,
Eu and Ga (Ge ⊃ Af ⊃ Eu ⊃ Ga) have the group structures
through the same group operation μ.

APPENDIX C: ANGULAR VELOCITY OF
THE ROTATING FRAME

Here we review the Euclidean transformation in detail. Let
us introduce a coordinate system {∗z} rotating and translating
against an orthonormal inertial frame {z} by the following
relation:

zI = QI
A∗ (t) zA∗ + ZI (t). (C1)

Here we use indices such as A∗ as the signs for
the orthonormal-coordinate representations. Q is a time-
dependent orthogonal matrix, and Z is the origin of {∗z}. Note
that QI

A∗ = zI
,A∗ . Its inverse matrix is given by QA∗

I = zA∗
,I .

The transformation rule of a metric tensor reduces to

gIJ = gA∗B∗ QA∗
I QB∗

J = const, (C2)

where we still write metric as g for retaining the tensor notation
despite its being represented as a unit matrix; i.e., (C2) provides
the orthogonality condition of Q. By differentiating both sides
of (C2), we obtain

0 = ġIJ = gA∗B∗ Q̇A∗
I QB∗

J + gA∗B∗ QA∗
I Q̇B∗

J ,

which yields

gA∗B∗ Q̇A∗
I QB∗

J = −gA∗B∗ Q̇A∗
J QB∗

I ,

where we used the symmetry of the metric tensor under
the exchange of its indices. This means that the matrix
gA∗B∗ Q̇A∗

I QB∗
J is antisymmetric under the exchange of indices

I and J . Thus we define an antisymmetric matrix A as

AIJ = gA∗B∗ Q̇A∗
I QB∗

J .

By multiplying the above by the contravariant metric, we
obtain

AI
J = gILALJ = gILgKL QA∗

J Q̇K
A∗ = δI

KQA∗
J Q̇K

A∗

= QA∗
J Q̇I

A∗,

which yields the dynamical equation of Q as follows:

Q̇I
A∗ = AI

J QJ
A∗ . (C3)

Let us review the physical interpretation of the above by
introducing a point fixed to the rotating coordinate system,
whose coordinate value in {z} is given by

aI = QI
A∗ (t) aA∗ + ZI (t).

The velocity of the point is obtained by taking the time
derivative of the above as follows:

ȧI = Q̇I
A∗(t) aA∗ + ŻI (t) = AI

J (aJ − ZJ ) + ŻI ,

which clearly means that the motion of the fixed point is a su-
perposition of the rotation around Z and its translation. Thus A
can be interpreted as the angular velocity of the frame {∗z}, and
we rewrite this as A = F �. Following this we rewrite (C3) as

Q̇I
A∗ = F 	I

J QJ
A∗ . (C4)

The rotational transformation is completely prescribed
by (C1), (C4), and the trajectory of the origin Z(t). On the
other hand, the equation for the inverse matrix QA∗

I is obtained
by taking the time derivative of the identity δA∗

B∗ = QA∗
I QI

B∗ ,
namely,

0 = Q̇A∗
J QJ

B∗ + QA∗
I Q̇I

B∗ ,

which reduces to

Q̇A∗
J QJ

B∗ = −QA∗
I Q̇I

B∗ = −QA∗
I

(
F 	I

J QJ
B∗

)
≡ −F 	A∗

B∗

⇔ Q̇A∗
I = −F 	A∗

B∗ QB∗
I , (C5)

where F 	A∗
B∗ represents the frame rotation observed from

the rotating frame {∗z}.
Note that F � does not transform as tensor for its definition,

namely,

F 	I
J = Q̇I

A∗ QA∗
J ,

which clearly depends on the frame {∗z}. Indeed, for another
rotating frame {∗∗z} one may obtain

F̃ 	I
J = Q̇I

B∗∗ QB∗∗
J ,

which is never obtained from the Euclidean transformation of
the previous.

APPENDIX D: PROOF OF EQ. (4.6)

Straight substitution of (2.1) into (4.3) yields

αA∗ = 2zA∗
,tI zI

,B∗ (vB∗ − zB∗
,t ) + zA∗

,t t . (D1)

Note that zI
,A∗ = QI

A∗ , zA∗
,I = QI

A∗ , and zA∗
,tI = Q̇A∗

I . In
addition, zB∗

,t and zA∗
,t t are calculated, respectively, as

zB∗
,t = −F 	B∗

C∗ QC∗
I (zI − ZI ) − QB∗

I ŻI

= −F 	B∗
C∗ zC∗ − QB∗

I ŻI ,
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zA∗
,t t = −F 	̇A∗

B∗ QB∗
I (zI − ZI )

+ F 	A∗
B∗ F 	B∗

C∗ QC∗
I (zI − ZI )

+ 2F 	A∗
B∗ QB∗

I ŻI − QA∗
I Z̈I

= −F 	̇A∗
B∗ zB∗ + F 	A∗

B∗ F 	B∗
C∗ zC∗

+ 2F 	A∗
B∗ QB∗

I ŻI − QA∗
I Z̈I .

Thus (D1) is reduced to

αA∗ = −2F 	A∗
B∗ (vB∗ + F 	B∗

C∗ zC∗ + QB∗
I ŻI )

− F 	̇A∗
B∗ zB∗ + F 	A∗

B∗ F 	B∗
C∗ zC∗

+ 2F 	̇A∗
B∗ QB∗

I ŻI − QA∗
I Z̈I

= −QA∗
I Z̈I − 2F 	A∗

B∗ vB∗

− F 	A∗
B∗ F 	B∗

C∗ zC∗ − F 	̇A∗
B∗ zB∗

, (D2)

which provides the proof for (4.6).

APPENDIX E: TRANSFORMATION RULE OF �

The transformation rule of � can be derived by the
following steps. In an arbitrary coordinate system {x}, its
definition is given by (4.12). Thus, in another coordinate
system {x̃}, � is given by


ã
b̃ = xã

,I zJ
,b̃ V I

;J .

Thus we easily reach the following transformation rule:


ã
b̃ = xã

,i x
j
,b̃ xi

,I zJ
,jV

I
;J = xã

,i xj
,b̃ 
i

j ,

which is consistent with the general tensor rule (2.4). Covariant
and contravariant components of � are obtained, respectively,
as follows:


ij ≡gik

k
j = gik xk

,I zJ
,jV

I
;J

=gIK zK
,i z

J
,j V I

;J = zK
,i zJ

,j VK;J ,


ij ≡gjk 
i
k = gjk xi

,I zJ
,k V I

;J

=xi
,I xj

,A gJA V I
;A = xi

,I xj
,A V I ;A,

where we used identities gik xk
,I = gIK zK

,i and gjk zJ
,k =

xj
,A gJA. It is noticeable that we have to identify the inertial

frame of reference for the first place. Since the law of
fluids treated in the present work is based on nonrelativistic
framework, the inertial frame has a special meaning compared
to any other frame of references. In this context, � is not only a
velocity gradient in the inertial frame ∇V, but also an objective
measure of how much the mean flow deviates from the inertial
motion.

APPENDIX F: GENERALIZATION OF THE
ABSOLUTE VORTICITY

In a general coordinate system {x}, the explicit form of 	

defined by (4.15) is written as follows:

�ab = zI
,a zJ

,b(VI ;J − VJ ;I )

= Va;b − Vb;a − (gacz
J

,b − gbcz
J

,a)xc
,J t

+ (zI
,az

J
,b − zI

,bz
J

,a)�I.JKzK
,t

+ (gacz
J

,b − gbcz
J

,a)xc
,IJ zI

,t . (F1)

Although this looks a bit complex, the expression in the
Euclidean coordinate system is reduced to a simpler form
since the second-order derivatives in the third and fourth terms
vanish:

�A∗B∗ = VA∗,B∗ − VB∗,A∗

− (gA∗C∗ zJ
,B∗ − gB∗C∗ zJ

,A∗ )zC∗
,J t ,

where the second term is reduced to

−(gA∗C∗ zJ
,B∗ − gB∗C∗ zJ

,A∗ )zC∗
,J t

= −(
gA∗C∗ QJ

B∗ − gB∗C∗ QJ
A∗

)
Q̇C∗

J

= (
gA∗C∗ Q̇J

B∗ − gB∗C∗ Q̇J
A∗

)
QC∗

J

= (
gA∗C∗ F 	J

K QK
B∗ − gB∗C∗ F 	J

K QK
A∗

)
QC∗

J

= QI
A∗gIJ

F 	J
K QK

B∗ − QI
B∗gIJ

F 	J
K QK

A∗

= QI
A∗ F 	IK QK

B∗ − QI
B∗ F 	IK QK

A∗

= QI
A∗ QK

B∗ F 	IK − QI
B∗ QK

A∗ F 	IK

= 2 F 	A∗B∗ .

Thus the tensor 	, which is defined by (4.15) in general, is
given in more familiar form as follows:

�A∗B∗ = VA∗,B∗ − VB∗,A∗ + 2F 	A∗B∗ , (F2)

which coincides with what is usually called the absolute
vorticity, which is often defined as half of the above in
conventional notation; for instance, Weis and Hutter employed
W̄A∗B∗ = 1

2 (VA∗,B∗ − VB∗,A∗ ) + F 	A∗B∗ [4]. Under the simple
rotational coordinate transformation, we can globally define
the frame rotation F �, and thus the absolute vorticity can be
defined by (F2). Equation (4.15) is exactly the generalization of
the absolute vorticity in the general coordinate system, which
has nonuniform rotation and deformation. The second term
of (F1) corresponds to the nonuniform frame rotation.

APPENDIX G: GALILEAN TRANSFORMATION OF THE
BASIC-INERTIAL FRAME

Replacing x̃ in (4.2) with z̃ yields

dvÃ

dt
= zÃ

,I

dvI

dt
. (G1)

Replacing {z} in (4.2) with {z̃} yields

dvi

dt
− αi[v; {z̃}] = xi

,Ã

dvÃ

dt
. (G2)

Using (G1), (G2), and (4.2) yields

dvi

dt
− αi[v; {z̃}] = xi

,Ã zÃ
,I

dvI

dt
= xi

,I

dvI

dt

= dvi

dt
− αi[v; {z}],

which reduces to

αi[v; {z}] = αi[v; {z̃}].
Thus the inertial force α is invariant under the Galilean
transformation of its basic-inertial frame.
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APPENDIX H: SIMPLE EXAMPLE OF A
CLOSURE MODEL

Let us see here a simple example of the Reynolds-stress
model based on our covariant equation (5.3). The natural
generalization of the model proposed by Launder et al. [9]
can be given by the following modeled terms:

εij = 2

3
εgij ,

φij = −CR

(
Rij − 2

3
Kgij

)
+ CIP

{(
Si

kR
jk + S

j

k Rik
)

+ (
�i

kR
jk + �j

kR
ik
) − 2

3
S · Rgij

}
,

t ijk = −CT R

K

ε

(
Rij ;aRk

a + Rki;aRj
a + Rjk;aRi

a

) − νRij ;k,

which yield a model equation for the Reynolds stress as
follows:

D

Dt
Rij = −(1 − CIP )

(
Si

kR
jk + S

j

k Rik
)

− (1 − CIP )
(
�i

kR
jk + �j

kR
ik
)

− 2

3
εgij − CIP

2

3
S · Rgij − CR

ε

K

(
Rij − 2

3
Kgij

)

+
{
CT R

K

ε

(
Rij ;aRk

a + Rki;aRj
a + Rjk;aRi

a

)}
;k

+ ν�Rij , (H1)

where CR , CIP , and CT R are constants. Note that due to the
covariance of both K and ε (H1) is consistent with general
covariance. In order to construct the total closure model, we
have to model Eq. (5.5), namely, the equation for ε which is
apparently covariant. Covariant modeling of (5.5) is needed
for the covariance of the Reynolds stress through (H1).

Let us see an analogy of covariant model (H1) with a visco-
elastic model. Substituting R = 2

3 g − P into (H1) yields

2

3

DK

Dt
gij − 2

3
KSij − D

Dt
P ij

= (1 − CIP )
(
Si

kP
jk + S

j

k P ik
)

+ (1 − CIP )
(
�i

kP
jk + �j

kP
ik
)

− 2

3
εgij + CIP

2

3
S · P

+CR

ε

K
P ij + divergence term, (H2)

where P ≡ 2
3Kg − R can be understood as the deviatoric

stress. In the derivation of the second term of the left-hand
side we used Dgij /Dt = −Sij [8]. By subtracting the terms
proportional to g from both sides of (H2) and transforming it,
we obtain
(

1 + C−1
R

K

ε

D

Dt

)
P ij + C−1

R (1 − CIP )
K

ε

(
Si

kP
jk + S

j

k P ik
)

+C−1
R (1 − CIP )

K

ε
(�i

kP
jk + �j

kP
ik)

= 2

3
(1 − 2CIP )C−1

R

K2

ε
Sij+

(
1 − 2

3
CIP

)
C−1

R

K

ε
S · Pgij

+ divergence term. (H3)

It is interesting to compare (H3) with the model equation for a
nonlinear visco-elastic material introduced by Oldroyd, which
can be rewritten in our notation as

(
1 + γ0

d

dt

)
pij − κ

(
si
kp

jk + s
j

k pik
)

= η

(
1 + ζ0

d

dt

)
sij − 2ηνsi

ks
jk, (H4)

where p is visco-elastic stress, and γ0, ζ0 κ , η, and ν are
all material constants [8]. In particular, γ0 characterizes the
relaxation effect caused by the visco-elasticity, and η is the
molecular viscosity, whose counterparts appear in (H3) as
C−1

R K/ε and 2
3 (1 − 2CIP )C−1

R K2/ε. Equation (H3) may pro-
vide us more clear explanation of the visco-elastic characters
observed in turbulent flow than the conventional formalism.
Not only the forms, but also the general covariance, of both
equations we should note as having an important similarity
between (H3) and (H4). On the other hand, we also see a
remarkable difference between these two; (H3) includes the
absolute vorticity while (H4) does not. This clearly shows the
breaking of the material-frame indifference in a turbulence
constitutive equation.
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