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Stochastic sensitivity analysis of noise-induced suppression of firing and giant variability
of spiking in a Hodgkin-Huxley neuron model
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We study the stochastic dynamics of a Hodgkin-Huxley neuron model in a regime of coexistent stable
equilibrium and a limit cycle. In this regime, noise may suppress periodic firing by switching the neuron
randomly to a quiescent state. We show that at a critical value of the injected current, the mean firing rate depends
weakly on noise intensity, while the neuron exhibits giant variability of the interspike intervals and spike count.
To reveal the dynamical origin of this noise-induced effect, we develop the stochastic sensitivity analysis and use
the Mahalanobis metric for this four-dimensional stochastic dynamical system. We show that the critical point
of giant variability corresponds to the matching of the Mahalanobis distances from attractors (stable equilibrium
and limit cycle) to a three-dimensional surface separating their basins of attraction.
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I. INTRODUCTION

The phenomenon of multistability, i.e., the coexistence of
several admissible stable states, is often observed in excitable
neuronal systems. Coexistent stable states are represented by
different types of attractors in the phase space of a system. For
example, spiking neurons may possess coexistent quiescent
(equilibrium) and tonic spiking states (limit cycle) [1], distinct
periodic and chaotic spiking states [2], and tonic spiking and
bursting states [3,4]. A given state can be reached if a system
starts from a set of initial conditions within the state’s basin of
attraction. Otherwise, an external perturbation can be used to
switch the system from one stable attractor to another.

With noise taken into account, phase trajectories of a
system will likely hop between multiple stable states. In
particular, Gaussian white noise may lead to global stability of
a multistable system [5]. Important and challenging problems
are to find the residence times that the system spends in
each of its multistable states and its statistics, a critical
value of noise intensity and control parameters at which
noise-induced hopping becomes significant, and the overall
statistics of noisy dynamics. Analytical treatment of such
problems based on forward or backward Kolmogorov-Fokker-
Planck equations becomes complicated for multidimensional
systems, n � 2, and various approximations are commonly
used [6–8]. For weak noise, asymptotic analyses based on
the concept of quasipotential were developed [8,9], including
the noise-perturbed limit cycle [10,11], stochastic excitable
systems [12], escape problems [13–17], and nonlinear stabil-
ity [18]. However, direct application of these approaches, e.g.,
to escape problems for systems with dimension n > 2, is made
more difficult by complicated geometry and the structure of
manifolds of saddle equilibrium and limit cycles separating
basins of attraction [19].

The quasipotential gives exponential asymptotics for
the stationary probability density. In the vicinity of the
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deterministic attractor, the first approximation of the quasipo-
tential is a quadratic form [20], leading to a Gaussian approxi-
mation of the stationary probability density. The corresponding
covariance matrix characterizes a stochastic sensitivity of the
deterministic attractor: its eigenvalues and eigenvectors define
the geometry of bundles of stochastic trajectories around
the deterministic attractors. Gaussian distribution centered
on an attractor can be viewed as a confidence ellipsoid,
while a minimal distance from this ellipsoid to the boundary
separating basins of attraction is proportional to the escape
probability [21–24]. The appropriate measure for this distance
is the so-called Mahalanobis distance [25], i.e., the distance
from a point to a distribution.

Here we extend the method of the stochastic sensitivity
function and Mahalanobis metrics to high-dimensional (n �
3) noise-perturbed systems for which a surface separating
basins of attraction is unknown. In particular, we analyze the
effect of noise-induced suppression of firing in the standard
four-dimensional (n = 4) Hodgkin-Huxley model [26]. This
effect occurs when the model is poised in a regime where
a stable limit cycle, corresponding to a periodic sequence
of action potentials, coexists with a stable equilibrium. This
phenomenon was observed in an experiment [1] and was
analyzed in several modeling studies [27–29]. An interesting
observation is that at a critical value of injected current
within the parameter range of bistability, the Hodgkin-Huxley
neuron exhibits spiking with a giant variability of interspike
intervals [27]. We apply the stochastic sensitivity analysis and
the Mahalanobis metric to reveal the dynamical origin of this
phenomenon.

This paper is organized as follows. In the next section,
we describe the effect of noise-induced suppression of peri-
odic firing and giant variability in the Hodgkin-Huxley and
FitzHugh-Nagumo models by direct numerical simulations
of corresponding stochastic differential equations. In Sec. III
we introduce the method of statistical Mahalanobis distance
and demonstrate its application to a two-dimensional (2D)
FitzHigh-Nagumo system. We extend and apply our approach
to the higher-dimensional 4D Hodgkin-Huxley model in
Sec. IV.
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II. SUPPRESSION OF FIRING AND NOISE-INDUCED
GIANT VARIABILITY

We use standard Hodgkin-Huxley (HH) equations (for
details, see the Appendix),

CV̇ = −INa − IK − IL + Iext +
√

2D ξ (t), (1)

with the control parameter being the injected (external) current,
Iext. The additive Gaussian white source ξ (t) with intensity D

mimics synaptic or extrinsic noise. Bifurcations of the deter-
ministic model (D = 0) were studied in detail (see, e.g., [30]).
For Iext < Isn ≈ 6.264 81 μA/cm2, the HH system possesses
a single stable equilibrium, which undergoes a subcritical Hopf
bifurcation at Iext = Ihp ≈ 9.770 53 μA/cm2, and so for Iext >

Ihp the only attractor is a stable limit cycle (SLC). The SLC
and stable equilibrium, separated by unstable limit cycle(s),
coexist in the bistability region, Isn < Iext < Ihp. The SLC
undergoes a saddle-node bifurcation at Iext = Isn. Additional
bifurcations of saddle limit cycles occur within the bistability
region: for 7.846 47 < Iext < 7.921 81, the stable equilibrium
and SLC are separated apparently by three unstable cycles [30].
Furthermore, near Iext = 7.921 98, a chaotic regime has been
documented in the narrow parameter interval of length less
than 10−5 [30]. We focus on weak noise effects on the
spiking dynamics of the HH system in the bistability region,
Isn < Iext < Ihp.

Sequences of spike times, tk , of the stochastic HH model
were recorded as moments of crossing a threshold of 20 mV
by the rising phase of the action potential. The correspond-
ing sequence of interspike intervals (ISIs) is τk = tk − tk−1.
Stochastic dynamics was quantified by statistics of the ISIs,
such as the probability density function (pdf) of ISIs, the mean
ISI, 〈τ 〉, and the coefficient of variation (CV), CV , defined
as the ratio of the ISIs’ standard deviation to the mean ISI.
For a noiseless periodic spike train, CV = 0, while CV = 1
for a Poisson spike train. The CV values greater than 1 thus
correspond to a point process that is more variable than a
Poisson process. The mean firing rate is reciprocal to the
mean ISI, 〈f 〉 = 1/〈τ 〉. In addition, we calculated the power
spectral density S(f ) (PSD) of the corresponding spike train,
y(t) = ∑N(t)

k=1 δ(t − tk), where N (t) is the number of spikes in
(0 ,t]. The power at zero frequency is related to the effective
diffusion constant of the spike counts, N (t) [31,32],

S(f = 0) = lim
t→∞

〈N2(t)〉 − 〈N (t)〉2

t
,

which serves as a measure of spike count variability. For a
renewal point process, such as spiking of the HH model with
white noise, the effective diffusion constant is related to the
CV and the mean firing rate as [32]

Deff = (CV )2〈f 〉. (2)

In numerical simulations, we collected at least 106 ISIs, and
at least 102 transitions between quiescent and spiking states
of the neuron model, which required very lengthy simulations
for small values of noise intensity.

Figure 1 shows voltage traces of the HH model for three
distinct regimes: (i) the excitable regime, Iext = 6 μA/cm2,
in which the deterministic system possesses a single stable
equilibrium state; (ii) the bistable regime, Iext = 8 μA/cm2,

FIG. 1. Voltage traces of the stochastic HH model for three
distinct regimes: (a) excitable, Iext = 6 μA/cm2; (b) bistable, Iext =
8 μA/cm2; and (c) single limit cycle, Iext = 11 μA/cm2; D = 0.3
[kHz(μA/cm2)2] . In panel (b), Ts and Tq indicate the durations of
spiking and quiescence epochs, respectively.

characterized by the coexistence of stable equilibrium and the
stable limit cycle oscillations separated by an unstable limit cy-
cle; and (iii) the single oscillatory regime, Iext = 11 μA/cm2,
whereby the system possesses a single stable limit cycle and
unstable equilibrium. Figure 2 shows the probability density
functions (pdfs) of ISIs (a) and PSDs (b) for these regimes. In
the excitable regime, weak noise induces extremely sparse and
short bursts of action potentials, Fig. 1(a). The corresponding
pdf of ISIs, Fig. 2(a1), shows multiple peaks and a very long
tail that extends for ISI longer than 105 ms. Note that these long
ISIs correspond to intervals between the last spike in a burst
and the next noise-elicited spike. The main peak corresponds to
the ISIs within an oscillatory burst, and smaller peaks represent
spike skipping by subthreshold oscillations of the membrane
potential [27,33]. The corresponding PSD [black line in
Fig. 2(b)] shows a broad peak corresponding to the main peak
in the ISI distribution and its higher harmonics. The bistability
regime is characterized by intermittent patterns of trains of
periodic firing and quiescence [Fig. 1(b)], which can be
characterized by the average durations of oscillating spiking,
Ts , and quiescent, Tq , epochs. This presumably corresponds
to noise-induced switching between limit cycle oscillations
and a random walk around stable equilibrium [1,27,29], and it
is reflected by a significantly smaller tail for long ISIs in the
corresponding pdf, Fig. 2(a2). A higher degree of periodicity is
reflected by a sharp peak in the PSD [Fig. 2(b)] at a frequency
close to the mean firing rate of the neuron. A sharp peak at
zero frequency reflects the intermittent nature of oscillating
and quiescent epochs. Finally, the single oscillatory regime is
characterized by a sharp unimodal ISI distribution, Fig. 2(a3),
and sharply peaked PSD with no significant power at low
frequencies.

Figure 3 displays the statistics of firing of a noisy HH neuron
versus injected current. The mean firing rate, 〈f 〉 [Fig. 3(a)],
shows a crossover point at Iext = Icr ≈ 8 μA/cm2, where 〈f 〉
depends weakly on noise intensity. For Iext < 8, the mean firing
rate increases with D, while it does the opposite for Iext > 8.
The average duration of the oscillatory spiking epochs, 〈Ts〉,
increases with Iext, and the average duration of the quiescent
epochs, 〈Tq〉, decreases with Iext, as Fig. 3(b) indicates. The
average residences of the system in oscillatory spiking and
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FIG. 2. (Color online) Statistics of spike trains generated by the stochastic HH model for the indicated values of the injected current, Iext.
(a1)–(a3) Probability density function (pdf) of ISIs. (b) PSD normalized to the mean firing rate of the neuron. Mean firing rates are indicated in
the figure legend. The noise intensity was D = 0.05 for Iext = 8 and Iext = 11 μA/cm2 and D = 0.1 for Iext = 6 μA/cm2. The units of noise
intensity, D, are [kHz(μA/cm2)2] .

FIG. 3. (Color online) Statistics of the HH neuron firing vs injected current, Iext. (a) Mean firing rate, 〈f 〉, vs Iext for the indicated values
of noise intensity D. (b) Mean durations of spiking (〈Ts〉, solid line) and quiescent (〈Tq〉, dashed line) epochs vs Iext for D = 0.04. (c) and (d)
Coefficient of variation, CV, and effective diffusion constant Deff (2), vs Iext for the indicated values of D. Panels (e) and (f) show the same
data as (c) and (d), except that CV and Deff are plotted vs the relative average duration of the HH neuron in its oscillatory spiking and quiescent
states, 〈Ts〉/〈Tq〉. The units of noise intensity, D, are [kHz(μA/cm2)2].
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FIG. 4. (Color online) Mean firing rate (a) and the CV (b) of the stochastic FHN model vs injected current Iext for the indicated values of
noise intensity.

quiescent regimes match at Iext ≈ 7.86 for D = 0.04. The
CV versus injected current [Fig. 3(b)] shows a maximum
whose position is close to the crossover point in Fig. 3(a):
a giant ISI variability with CV close to 24 occurs for weak
noise, D = 0.04, and Iext ≈ 7.8. The variability of spike count
quantified by the effective diffusion constant, Deff (2), shows
a similar dependence, reaching its maximum at Iext ≈ 7.85
for D = 0.04. The above observations indicate that spiking
variability is maximal when the neuron resides equally in its
spiking and quiescent states. This is further demonstrated in
Figs. 3(e) and 3(f) showing variability measures versus the
relative average duration of the system in oscillatory spiking
and quiescent states. In particular, Fig. 3(f) indicates that
the spike count variability, Deff, peaks at 〈Ts〉/〈Tq〉 ≈ 1, i.e.,
when the system resides on average equally in its spiking
and quiescent states. We note that the observed effect of
giant spiking variability and especially the behavior of the
diffusion constant in Figs. 3(d) and 3(e) is akin to the
phenomenon of giant diffusion of active Brownian particles
whose velocities are subjected to a force drawn from an
effective double-well potential [34]. The giant diffusion occurs
for a critical asymmetry of the effective potential, and the
effective diffusion constant of particles is maximal for the
symmetric effective potential, which refers to equal average
residence of particles’ velocities within the effective potential
wells. Similarly, giant spike count variability in the stochastic
HH model occurs when the residence of the system in its
quiescent and oscillatory spiking states become comparable,
attaining its maximum value when the average durations of
quiescent and oscillatory spiking epochs are equal.

Similar stochastic dynamics with giant ISI variability was
observed for the 2D Morris-Lecar system [27] and also for
the FitzHugh-Nagumo (FHN) model, which we demonstrate
in Fig. 4. The FHN model is given by

V̇ = V − V 3

3
− w + Iext +

√
2D ξ (t),

ẇ = 0.1(V + 0.7 − 0.8w). (3)

For the deterministic FHN model, D = 0, a saddle-node
bifurcation of the limit cycle occurs at Iext = Isn = 0.332 322 8
and a subcritical Hopf bifurcation occurs at Ihp = 0.341 067 2.
For Isn < Iext < Ihp, the FHN model is bistable with coexisting
stable equilibrium and the stable limit cycle. With noise added,
the FHN model shows crossover behavior of the mean firing

rate similar to that of the Hodgkin-Huxley system, i.e., for
Iext = Icr ≈ 0.337 the mean firing rate depends weakly on
noise intensity, and the resulting sequences of ISIs show giant
variability with CV > 15 for weak noise (Fig. 4).

III. STOCHASTIC SENSITIVITY ANALYSIS AND
GEOMETRICAL ARRANGEMENT OF ATTRACTORS

The fact that the stochastic dynamics of both models is
almost invariant with respect to variation of noise intensity at
the critical crossover point in Figs. 3 and 4(a) means that it
is related to the geometrical arrangements of stable attractors
and separatrices in the phase space of deterministic systems.
The point of giant variability corresponds approximately to
equal residency of phase trajectories in the basins of attraction
of stable equilibrium and the stable limit cycle. The residence
time of phase trajectories in the basin of attraction depends
on two factors. First, there is a geometrical arrangement of an
attractor and its basin of attraction, e.g., the larger the distance
is between an attractor and the separatrix isolating its basin of
attraction, the longer is the residence time of phase trajectories
in the basin. Second, there is a sensitivity of attractors to
random perturbations: the higher this stochastic sensitivity
is, the higher is the probability to escape from the basin of
attraction, and thus the shorter is the residence time [8,15].

Figure 5 shows the attractors of the deterministic FHN
system, and it also indicates the positions of minimal Euclidean
distances from stable attractors to an unstable limit cycle,
which plays the role of the separatrix. The unstable limit cycle
for the FHN and HH models can be calculated and continued
numerically using parameter-continuation software, such as
MATCONT (used in this study) and AUTO [35,36]. With the
increase of the control parameter, Iext, the Euclidean distance,
dE , from the stable to unstable cycles grows, while dE from
the equilibrium to unstable cycle decreases, as Fig. 6 shows.
Both these Euclidean distances coincide at Iext ≈ 0.34, which
is far off from the crossover point of Iext ≈ 0.337 in Fig. 4(a),
obtained by direct numerical simulation of the stochastic FHN
model. This indicates that the mere geometrical arrangement
of attractors and the separatrix (the unstable limit cycle in
the case of the FHN model) does not explain the stochastic
dynamics at Iext = Icr, and thus the second factor mentioned
above, i.e., the stochastic sensitivity of attractors, should be
taken into account.

052920-4



STOCHASTIC SENSITIVITY ANALYSIS OF NOISE- . . . PHYSICAL REVIEW E 91, 052920 (2015)

-2 -1 0 1 2
-0.4

0

0.4

0.8

1.2

-1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7

-0.38

-0.36

-0.34

-0.32

-0.3

2

1

0

-2

V

w

V

w

SE

SLC

ULC

SLC

ULC

(a) (b)

1

2 3

4

log   (SSF)10

FIG. 5. (Color online) Geometry of attractors of the Fitzhugh-Nagumo model for Iext = 0.335. The stable limit cycle (SLC) is color-coded
according to its stochastic sensitivity function (SSF). The unstable (saddle) limit cycle (USL) is shown by the dashed line, and stable equilibrium
(SE) is shown by the black circle. Panel (b) shows an expanded region of panel (a). Yellow circle 1 on the stable limit cycle indicates the
minimal Euclidean distance from the stable to the unstable limit cycle; green circle 2 on the unstable limit cycle marks the minimal Euclidean
distance from stable equilibrium to the unstable limit cycle; red circle 4 indicates the minimal Mahalanobis distance from the stable to the
unstable limit cycle; and blue circle 3 on the unstable limit cycle corresponds to the minimal Mahalanobis distance from stable equilibrium to
the unstable limit cycle.

The stochastic sensitivity function (SSF) is an asymptotic
characteristics of noisy attractors of a dynamical system.
For weak noise, it allows us to approximate a spread of
random states around these attractors. The SSF technique
was elaborated on for systems with equilibria and limit cycles
in [21–23]. A brief review of this technique is presented in the
Appendix. In essence, for weak noise the probability density-
of-states variable, x, is approximated by a Gaussian distribu-
tion centered on the stable attractor of the system, x = x̄,

ρG(x,ε; x̄) = N exp

[
− (x − x̄)�Q−1(x − x̄)

2ε2

]
, (4)

where ε is a small parameter corresponding to noise intensity
and N is a normalization constant. In Eq. (4), Q is the stochastic
sensitivity matrix or function (SSF) of the attractor x̄, and
it is determined by an algebraic equation (A5) for a stable
equilibrium or by the differential Lyapunov equation (A6) for
a stable limit cycle. Eigenvalues, λi , and eigenvectors, vi, of
the SSF define a geometric configuration of the confidence
ellipsoids, i.e., the variance of random states around the stable

attractor. For a stable limit cycle, the SSF depends on time
along the limit cycle and thus its eigenvalues and eigenvectors.
They form a family of confidence ellipsoids around the stable
limit cycle [21–23]. For a slow-fast dynamical system, such as
the FHN and HH neuron models, the eigenvalues of SFF may
vary nonuniformly along the limit cycle. This is demonstrated
for the FHN model in Fig. 7(a), which shows that the SSF
of the stable limit cycle is large on the rising phase of the
voltage, takes its maximum at the maximum of V , and then
rapidly drops (compare with Fig. 5). This strikingly wide
dynamical range of stochastic sensitivity reflects nonuniform
motion in the phase space of this slow-fast dynamical system.
The stochastic sensitivity diverges at the bifurcation points as
Fig. 7(b) indicates: the SSF of the stable equilibrium diverges at
Iext = Ihp = 0.341 067 2, i.e., at subcritical Hopf bifurcation;
the SSF of the limit cycle diverges at the saddle-node bifurca-
tion, Iext = Isn = 0.332 322 8. Furthermore, the largest eigen-
value of the SSF of stable equilibrium and the maximal value
of the largest eigenvalue of the SSF of the stable limit cycle
match at Iext ≈ 0.337, indicating that at this parameter value,
both attractors are equally sensitive to noise perturbations.
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FIG. 6. (Color online) Minimal (a) Euclidean, dE , and (b) Mahalanobis, dM , distances from the attractors to the unstable limit cycle vs Iext

for the FitzHugh-Nagumo model. On both panels the blue dashed line shows the minimal distance between stable and unstable limit cycles;
the red solid line corresponds to the minimal distance from stable equilibrium to the unstable limit cycle.
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The color-coded stable cycle in Fig. 5 indicates that the
highest stochastic sensitivity does not correspond to the
smallest Euclidean distances to the separatrix. On the contrary,
the SSF of the stable limit cycle is small in the region of the
smallest Euclidean distance to the separatrix. Thus, two factors
contributing to the probability to escape from the basin of
attraction of the stable limit cycle are in competition. Here we
propose to use the Mahalanobis distance, a metric widely used
in cluster and discriminant analyses [37]. The Mahalanobis
distance measures the distance between a point x and a
distribution. In stochastic sensitivity analysis, we approximate
the probability density by a Gaussian distribution (4) centered
at a stable attractor, x̄, and the Mahalanobis distance from a
point x to the distribution of phase trajectories around a noisy
perturbed attractor is given by

dM (x; x̄) =
√

(x − x̄)�Q−1(x − x̄), (5)

where Q is the stochastic sensitivity matrix, and so the
Gaussian approximation (4) can be written in terms of dM (x; x̄)
as

ρ(x) = N exp

[
−d2

M (x; x̄)

2ε2

]
. (6)

The Mahalanobis distance combines both the geometric
distance from the attractor and its sensitivity to noise, which
makes this metric a natural tool for the quantitative analysis
of noise-induced transitions. In a multistable case, such as
the one shown in Fig. 5, the Mahalanobis metrics allows
us to estimate a “preference” of attractors in the stochastic
dynamics of the system, when the random trajectory passes
from one attractor to another. For any basin of attraction and
weak noise, the Mahalanobis distance from the corresponding
attractor to the separatrix is related to the residence time of the
system in the basin: the larger the Mahalanobis distance is, the
longer is the residence time in the basin. For the example of
bistability in the FHN model, we calculate the Mahalanobis
distances from stable attractors (x̄ is taken at equilibrium or on
the limit cycle) to the separatrix (x is taken at the unstable
limit cycle), and then we compute their minimal values.
Figure 6(b) shows the dependence of Mahalanobis distances

from coexisting equilibrium and the stable limit cycle to the
separatrix for the FHN model for various values of Iext. The
Mahalanobis distances match for Iext = Icr ≈ 0.337, which
corresponds well to the crossover point in Fig. 4(a). At this
point, the average residence time of the system in the basin of
attraction of equilibrium and the stable limit cycle are equal.
This leads to a weak dependence of the mean firing rate on the
noise intensity and to large values of CV (giant variability),
Fig. 4(b). We stress that the use of stochastic sensitivity
analysis and Mahalanobis metrics requires analysis of an
essentially deterministic system, thus allowing predictions of
noise-induced transitions without direct and lengthy numerical
simulation of stochastic dynamics.

IV. STOCHASTIC SENSITIVITY ANALYSIS OF THE
NOISY HODGKIN-HUXLEY MODEL

Stochastic sensitivity analysis can be extended to a higher-
dimensional (n = 4) Hodgkin-Huxley model. However, the
use of the Mahalanobis distances from stable attractors to the
separatrix is complicated by the fact that the separatrix between
the stable equilibrium and the stable limit cycle is a 3D surface
that is hard to compute [30]. An unstable limit cycle (that can
be computed using continuation software) is embedded into
the separatrix surface.

Figure 8 shows a 2D projection of HH attractors and an
unstable limit cycle for Iext = 8 μA/cm2. We start with SSF
analysis of stochastic dynamics near the stable equilibrium.
Eigenvalues λi (i = 1,2,3,4) of the SSF, Q, are simple scalar
characteristics of the distribution of random states around the
equilibrium. For a fixed noise strength and fiducial probability,
a difference in λi reflects a spatial nonuniformity of the
dispersion of these states in the direction of the eigenvectors
vi, as the sizes of the semiaxes of confidence ellipsoids are
proportional to

√
λi . The dependence of λi vs injected current,

Iext, is shown in Fig. 9(a). The main feature is the dominance
of the largest eigenvalues λ1 (shown by a solid black line),
which is two orders of magnitudes larger than the rest of the
eigenvalues and diverges at the Andronov-Hopf bifurcation,
Iext = Ihp [solid red line in Fig. 11(a)]. This means that the
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confidence ellipsoid is elongated in the direction of the eigen-
vector v1 and extremely narrow in all other directions. Thus,
the eigenvector v1 localizes the main direction for deviations
of random trajectories from the equilibrium, providing the
direction in which the intersection with the separatrix surface is
to be expected. In these circumstances, the minimum distance
from the equilibrium to all points on the separatrix, S, can be
approximated by the Mahalanobis distance to the separatrix S

along the eigenvector v1,

dM = min
x∈S

dM (x; x̄), (7)

where x̄ are coordinates of the stable equilibrium, x̄ =
{V̄ ,m̄,h̄,n̄}.

A similar approach is applied to the analysis of a noisy
perturbed limit cycle. In this case, the SSF matrix is periodic
in time, Q(t) = Q(t + T ), where T is the period of a stable
limit cycle. The Mahalanobis distance dM (x; x̄) is also a
periodic function of time. Eigenvalues λi(t) (i = 1,2,3,4) of
Q(t) characterize the distribution of random states in the
Poincaré section �t near the point x̄(t) of the cycle. It
follows from the singularity of Q(t) that λ4(t) = 0. Other
eigenvalues, λ1(t) > λ2(t) > λ3(t) > 0, are shown in Fig. 9(b).

Here, similar to the FHN model, we observe a significant
overfall of values along the cycle. The maximal stochastic
sensitivity (maximal value of the largest eigenvalue, λ1) occurs
at the peak value of the membrane potential, corresponding
to the maximal open probability of the sodium ion channels
[Fig. 9(b), upper panel]. This peak is followed by a rapid
decrease of λ1, and stochastic sensitivity of the stable limit
cycle is small in a region close to the unstable limit cycle
and stable equilibrium (Fig. 8). Figure 10 shows the excellent
correspondence between the variance of the phase trajectories
around the stable limit cycle estimated with the SSF matrix and
by direct numerical simulation. The theoretical value of this
variance is given by the trace of the SSF matrix on the stable
limit cycle, var(t) = 2D tr[Q(t)]. In numerical simulations,
we constructed a set of Poincaré sections along the stable
limit cycle (22 in Fig. 10), collected 104 intersections of phase
trajectories in each section, and calculated the variance of the
resulting points.

The dependence of the largest eigenvalues of SSF for the
stable equilibrium and the maximum value of the largest
eigenvalue of SSF for the stable limit cycle versus injected
current is shown in Fig. 11(a). Closely akin to the FHN
model, the largest eigenvalues diverge at the bifurcation
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FIG. 9. (Color online) Stochastic sensitivity of stable attractors of the Hodgkin-Huxley system. (a) Eigenvalues of the SSF matrix for the
stable equilibrium vs Iext. (b) Stochastic sensitivity of a stable limit cycle for Iext = 8 μA/cm2. Upper panel: membrane potential, V (t) (solid
black line, left vertical axis), and open probability of sodium, PNa = m3h (dashed blue line, right y axis), and potassium, PK = n4 (dotted red
line, right y axis), ion channels during one period of the stable limit cycle. Lower panel: eigenvalues of the SSF matrix along the limit cycle.
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FIG. 10. (Color online) Comparison of the variance of phase
trajectories of a stochastic HH neuron around its stable limit cycle
obtained using the SSF analysis (solid line) and by direct numerical
simulation (circles). The parameters are Iext = 8 μA/cm2, D = 10−5

[kHz(μA/cm2)2] .

points: at Andronov-Hopf bifurcation, Iext = Ihp, for the stable
equilibrium, and at saddle-node bifurcation, Iext = Isn, for
the stable limit cycle. Furthermore, the largest eigenvalues
coincide at Iext ≈ 7.8 μA/cm2.

The minimal Mahalanobis distance between the stable limit
cycle and the separatrix can be approximated in a manner
similar to the case of stable equilibrium. Due to the domination
of the largest eigenvalue, λ1(t), the corresponding eigenvector
v1(t) localizes the main direction for deviations of random
trajectories from the stable limit cycle. Consequently, the
minimal Mahalanobis distance, dM , from the stable cycle to
all points on the separatrix surface, S, is approximated by the
distance from the stable cycle to the separatrix surface, S, in
the direction of the leading eigenvector v1(t),

dM = min
t∈[0,T ), x∈S

dM [x,x̄(t)], (8)

where x̄ is taken on the stable limit cycle, x̄(t) =
{V̄ (t),m̄(t),h̄(t),n̄(t)}.

The dependences of the minimal Mahalanobis distances
from stable attractors to the separatrix on injected current
are shown in Fig. 11(b). The Mahalanobis distance from the
stable limit cycle to the separatrix vanishes at Iext = Isn, i.e., at

saddle-node bifurcation of the limit cycle, and then increases
with Iext. The Mahalanobis distance from the equilibrium to the
separatrix vanishes at subcritical Andronov-Hopf bifurcation,
Iext = Ihp, and increases for decreasing values of Iext. Both
distances match at Iext = 8.0 μA/cm2, i.e., at the critical value
of injected current, which corresponds to the crossover point
of the mean firing rate and giant variability observed in direct
numerical simulations of the stochastic HH model (Fig. 3).
For Iext < Icr, the Mahalanobis distance for the equilibrium
is larger than that for the stable limit cycle. Hence, random
trajectories reside longer in the basin of attraction of the
equilibrium. For Iext > Icr, the Mahalanobis distance for the
limit cycle is larger, and so random trajectories “prefer” the
basin of attraction of the stable limit cycle. For Iext = Icr, both
basins are equiprobable.

V. CONCLUSION

We have developed an approach for analysis of the
dynamics of multidimensional multistable excitable systems
perturbed by weak noise. This method uses the stochastic
sensitivity functions technique and the Mahalanobis metric to
study noise-induced transitions between coexisting attractors.
We addressed an issue of estimation of the Mahalanobis
distance from a distribution on the attractor to an unknown
separatrix surface that isolates its basin of attraction. In
essence, we measured the Mahalanobis distance along the di-
rection prescribed by the leading eigenvector of the stochastic
sensitivity matrix.

We applied this method to the analysis of noise-induced
hopping between periodic firing and quiescence in the
stochastic Hodgkin-Huxley neuron model. We have shown
the existence of a critical value of the control parameter
(injected current Iext) at which the mean firing rate is invariant
with respect to variation of weak noise intensity, while the
variability of the interspike intervals and spike count becomes
extremely large. This regime is characterized by intermittent
epochs of oscillatory spiking and quiescence with equal
average durations. The observed phenomenon of giant spiking
variability is similar to the effect of giant diffusion of active
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FIG. 11. (Color online) Stochastic sensitivity and minimal Mahalanobis distances for the Hodgkin-Huxley model vs injected current.
(a) Largest eigenvalue of SSF of the stable equilibrium (EQ, red solid line) and the maximum value of the largest eigenvalue of SSF of the
stable limit cycle (LC, blue dashed line) vs Iext. Vertical dashed lines show the locations of subcritical Hopf bifurcation of stable equilibrium
(Ihp) and saddle-node bifurcation of the stable limit cycle (Isn). (b) Minimal Mahalanobis distances, dM , from stable attractors to separatrix
surface vs Iext. The blue line (LC) shows the minimal Mahalanobis distance between stable limit cycles and the separatrix; the red line (EQ)
corresponds to the minimal Mahalanobis distance between stable equilibrium and the separatrix.
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Brownian particles [34,39–41]: the effective diffusion constant
of active Brownian particles is maximal, when their velocities
are subjected to a force drawn from a symmetric effective
potential, so that the particles’ velocities reside on average
equally long in the effective potential wells.

We showed that a mere geometrical arrangement of stable
attractors and separatrices does not provide an adequate
explanation of this phenomenon, and so the sensitivity of
the system to noise perturbations must be taken into account.
The Mahalanobis distance, which combines geometrical and
stochastic sensitivity aspects of the dynamics, allows for a
proper explanation of the critical point, which refers to the
parameter value at which minimal Mahalanobis distances from
stable attractors to the separatrix coincide.

The approached described here can be applied to var-
ious multidimensional neuronal models and various kinds
of multistability perturbed by weak noise, providing that
coexisting attractors are exponentially stable. Furthermore, the
Mahalanobis metric can be used in the analysis of the noise-
induced exits of random trajectories beyond the bounds of the
basin of attraction. The most probable zone where random
trajectories cross the separatrix is located in the region closest
to the attractor in the Mahalanobis metric. Thus, this zone on
the separatrix represents a “transition bridge” for trajectories
escaping from one attractor to another. Likewise, a zone on a
stable limit cycle closest to the separatrix in the Mahalanobis
sense represents a transition bridge for trajectories escaping
from the limit cycle to another attractor.
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APPENDIX

1. Hodgkin-Huxley model

The Hodgkin-Huxley model is given by

CV̇ = Iext − ḡKn4(V − Vk) − ḡNam
3h(V − VNa)

− gL(V − VL) +
√

2Dξ (t),

ṁ = αm(V )(1 − m) − βm(V )m,

ṅ = αn(V )(1 − n) − βn(V )n,

ḣ = αh(V )(1 − h) − βh(V )h. (A1)

Here, C is the membrane capacitance, V is the membrane
potential, Iext is the applied (injected) current, m,n,h are the
gating variables,

αm(V ) = 0.1(V + 40)

1 − exp[−(V + 40)/10]
,

βm(V ) = 4 exp[−(V + 65)/18],

αn(V ) = 0.01(V + 55)

1 − exp[−(V + 55)/10]
,

βn(V ) = 0.125 exp[−(V + 65)/80],

αh(V ) = 0.07 exp[−(V + 65)/20],

βh(V ) = 1

1 + exp[−(V + 35)/10]
.

Parameters of the model are as follows: C = 1 μF/cm2,
VL = −54.4 mV, gL = 0.3 mS/cm2, VK = −77 mV, ḡK =
36 mS/cm2, VNa = 50 mV, ḡNa = 120 mS/cm2.

2. Stochastic sensitivity and the Mahalanobis distance

Consider a nonlinear stochastic dynamical system governed
by the following stochastic differential equation:

ẋ = f(x) + εg(x)ξ (t), (A2)

where x is an n-dimensional vector, f(x) is a smooth n-
dimensional vector function, ξ (t) is an n-dimensional Gaus-
sian white noise with 〈ξ (t)ξ�(t + τ )〉 = δ(τ )I, I is an n × n

identity matrix, and g(x) is an n × n matrix function of noise
intensity.

At first, let us assume that the system (A2) without
noise (ε = 0) possesses an exponentially stable equilibrium,
x ≡ x̄. Random trajectories of the noisy forced system (A2)
leave its equilibrium x̄ and, according to the stability of
x̄, form some probabilistic distribution around x̄. The time
evolution of this distribution is described by the corresponding
Kolmogorov-Fokker-Planck equation [38]. We assume that a
stationary (steady-state) solution exists, ρ(x,ε). Generally, for
systems with n � 2 it is hard or nearly impossible to find
such stationary probability density analytically [7,38]. In the
case of small noise, ε � 1, the constructive asymptotics and
approximations based on a quasipotential function,

�(x) = − lim
ε→0

ε2 log ρ(x,ε), (A3)

are commonly used [8].
A quadratic form of the quasipotential gives a Gaussian

approximation of ρ(x,ε) in a neighborhood of the equilibrium
x̄,

ρG(x,ε; x̄) = N exp

[
− (x − x̄)� Q−1 (x − x̄)

2ε2

]
, (A4)

with the mean x̄, the covariance matrix C = ε2Q, and the
normalization constant, N . Here, the matrix Q is a solution of
the following equation:

JQ + QJ� + S = 0, (A5)

where J is the Jacobian of the deterministic system at x = x̄
and S = g(x̄) g�(x̄). For the exponentially stable equilibrium,
x̄, the eigenvalues of the Jacobian matrix, J, have negative real
parts, and the matrix equation (A5) has a unique solution being
the stochastic sensitivity matrix of the equilibrium [22].

For the quantitative geometrical analysis of noise-induced
transitions from the equilibrium x̄ to another attractor across a
separatrix, we propose to use the Mahalanobis distance [25],

r(x; x̄) =
√

(x − x̄)� C−1 (x − x̄),

where C is a covariation matrix of the random states around
the equilibrium. Surfaces on which r(x; x̄) is constant are
confidence ellipsoids that are centered about the mean x̄.
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In the special case in which the coordinates of random
states are uncorrelated and the variances in all directions are
the same, these surfaces are spheres, and the Mahalanobis
distance becomes equivalent to the Euclidean distance. The
basic geometric features of the nonuniformity of the spatial
distribution of random states around the equilibrium are
reflected by the stochastic sensitivity matrix Q. Therefore,
we use the Mahalanobis distance in the following form:

dM (x; x̄) =
√

(x − x̄)�Q−1(x − x̄).

In terms of dM (x; x̄), the Gaussian probability density function
can be presented as

ρG(x,ε; x̄) = N exp

[
−d2

M (x; x̄)

2ε

]
.

Note that the function d2
M (x,x̄)/2 is the quadratic approxima-

tion for the quasipotential �(x). A geometric configuration
of the confidence ellipsoid is defined by the eigenvalues λi

and eigenvectors vi of the stochastic sensitivity matrix Q, and
noise strength ε.

As an illustration, we calculate the stochastic sensitivity
matrix and the Mahalanobis distance for an equilibrium of
the 2D FitzHugh-Nagumo equation. Let (V̄ ,w̄) be a stable
equilibrium of the deterministic FitzHugh-Nagumo system (3).
The stochastic sensitivity matrix Q of this equilibrium is
symmetric for the stochastic system (3) with ε = √

2D, and it
is a solution of Eq. (A5), with

J =
[

a −1
0.1 −0.08

]
, S =

[
1 0
0 0

]
, a = 1 − V̄ 2.

The elements of Q can be found explicitly,

q11 = 13.3 − 10a

20a2 − 26.6a + 2
, q12 = 1

20a2 − 26.6a + 2
,

q22 = 1.25

20a2 − 26.6a + 2
.

Using these elements, the Mahalanobis distance is

dM (V,w; V̄ ,w̄) =
√

(13.3 − 10a)(V − V̄ )2 + 2(V − V̄ )(w − w̄) + 1.25(w − w̄)2

20a2 − 26.6a + 2
.

Now consider the case when the deterministic system (A2),
ε = 0, possesses an exponentially stable limit cycle, �,
defined by a T -periodic solution, x̄(t) = x̄(t + T ). Let �t

be a hyperplane transversal to the cycle. For the Poincaré
section �t in the neighborhood of the point x̄(t), the Gaussian
approximation of the probability density reads [22]

ρG(x,ε; x̄(t)) = N exp

[
− [x − x̄(t)]�Q+(t) [x − x̄(t)]

2ε2

]

with the mean x̄(t) and the covariance matrix C(t) = ε2Q(t)
and t ∈ (0,T ]. Here the matrix function Q(t) is singular,
and the sign “+” means a pseudoinversion. The matrix Q(t)
characterizes the dispersion of the points of intersection of the
random trajectories with �t , and it is the stochastic sensitivity
function of the limit cycle.

For the exponentially stable limit cycle, �, the largest
Lyapunov exponent is 0 and the rest are negative. Conse-
quently, the matrix Q(t) is a unique solution of the Lyapunov
equation [22],

Q̇ = J(t) Q + Q J�(t) + P(t) S(t) P(t), (A6)

with the conditions

Q(0) = Q(T ), Q(t)f[x̄(t)] ≡ 0.

In (A6), J(t) is the Jacobian of the deterministic system
at the limit cycle, S(t) = g[x̄(t)] g�[x̄(t)], and P(t) is a
matrix of the orthogonal projection onto the hyperplane �t .
Eigenvalues, λi(t), and eigenvectors, vi(t), of the stochastic
sensitivity matrix, Q(t), define a spatial arrangement of the
confidence ellipsoid around x̄(t) for the Poincaré section,
�t .

The Mahalanobis distance is then defined as

dM (x; x̄(t)) =
√

[x − x̄(t)]� Q+(t) [x − x̄(t)].

In the 2D case, the stochastic sensitivity matrix can be
written in the form [21] Q(t) = μ(t)P(t), where μ(t) = μ(t +
T ) > 0 is a unique solution of the boundary problem,

μ̇ = α(t)μ + β(t), μ(0) = μ(T ),

with T -periodic coefficients

α(t) = p�(t) [J�(t) + J(t)]p(t), β(t) = p�(t) S(t) p(t),

where p(t) is a normalized vector orthogonal to
f[x̄(t)]. Here, the Mahalanobis distance has a simple
representation:

dM (x; x̄(t)) = ‖x − x̄(t)‖√
μ(t)

.
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