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Elastic enhancement factor: From mesoscopic systems to macroscopic analogous devices
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Excess of probabilities of elastic processes over inelastic ones is a characteristic feature of the chaotic resonance
scattering predicted by the random matrix theory (RMT). Quantitatively, this phenomenon is characterized by
the elastic enhancement factor F (β) that is, essentially, a typical ratio of elastic and inelastic cross sections. Being
measured experimentally, this quantity can provide important information on the character of dynamics of the
complicated intermediate open system formed on the intermediate stage of various resonance scattering processes.
We discuss properties of the enhancement factor in a wide scope from mesoscopoic systems as, for example,
heavy nuclei to macroscopic electromagnetic analogous devices imitating two-dimensional quantum billiards.
We demonstrate a substantial qualitative distinction between the elastic enhancement factor’s peculiarities in
these two cases. A complete analytical solution is found for the case of systems without time-reversal symmetry
and only a few equivalent open scattering channels.
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I. INTRODUCTION

The elastic enhancement effect shows up in different
kinds of resonance processes in nuclear and atomic physics,
electron transport through quantum dots, or transmission of
electromagnetic waves through microwave cavities. Starting
with Moldauer’s pioneering papers [1], various aspects of
this phenomenon have repeatedly attracted the attention of
theorists as well as experimentalists [2–6].

The subject-matter considered has gained, finally, a solid
theoretical foundation in the random matrix approach to the
problem of the chaotic resonance scattering that has been
worked out in the fundamental paper [7]. This approach
had made analytical calculations possible of the two-point
scattering matrix correlation function that is a quantity of
primary importance. In particular, the components relevant
to the elastic enhancement problem are found to be
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where the indexes a and b indicate the scattering channels
with the transmission coefficients Ta and Tb and ω is a
dimensionless energy displacement. At last, the superscript β

specifies the symmetry class β = 1 in the case of systems with
preserved time-reversal symmetry and β = 2 if this symmetry
is broken. The functions J

(β)
aa (ω) and P

(β)
ab (ω) are represented

by the famous three- or twofold integrals that can be found in
Ref. [7] (β = 1) and in the very instructive paper [5] (for both
symmetry classes).

Finally, the elastic enhancement factor is defined as

F =
√

var Saa × var Sbb

var Sab
, (2)
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where the variances are equal to

var Sab = 〈|Sab|2〉 − |〈Sab〉|2 = Cabab(ω = 0). (3)

Basically, the enhancement factor F could depend on the
channel indexes through the transmission coefficients Ta . Such
a possibility is excluded if all channels are statistically equiv-
alent: Ta = Tb... = T , which is what we suggest throughout
this paper. Then Eqs. (1) and (2) reduce to

F
(β)
M (T ) = 1 + δβ1 + (1 − T )

J
(β)
M (T )

P
(β)
M (T )

. (4)

II. VERBAARSCHOT’S REGIME

In the mesoscopic resonance collisions that involve inter-
mediate highly exited heavy nuclei or many-electron atoms
with chaotic internal dynamics, a very large number M � 1
of very weak, T � 1, channels are typically open. In that case,
the elastic enhancement factor depends on the only parameter
η = MT (Verbaarschot’s regime [6]) and can be expressed [8]
as

F (β)(η) = 1 + δβ1 + η var Q(η)

= 2 + δβ1 − η

∫ ∞

0
ds e−ηs B

(β)
2 (s), (5)

where

var Q(η) = 〈Q2〉
〈Q〉2

− 1 =
∫ ∞

0
ds e−ηs

[
1 − B(β)

2 (s)
]

(6)

is the variance of the time delays [9], whereas B
(β)
2 (s) stands

for the Dyson’s spectral binary form factor [10] belonging to
the symmetry class β.

The dimensionless “openness” parameter η = MT has [8]
a clear physical meaning being the ratio η = tH /tW of the
two characteristic times: the Heisenberg time tH = 2π�

d
and

the dwell (or Weisskopf) time tW = �/�W = 〈Q〉/T . The
first of them, tH , is defined by the mean level spacing d of
the discrete energy spectrum of the Hermitian part H of the
total non-Hermitian effective Hamiltonian H. It is the time
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that a spatially small wave packet of the incoming particle
penetrating into the internal region needs to distinguish the
discreteness of its spectrum. On the other hand, the dwell
time is the time the incoming wave packet spends inside the
internal region before escaping through a certain reaction
channel. The enhancement factor is more sensitive to the
spectral fluctuations the longer, tW � tH ; η � 1, the wave
packet remains inside the interaction domain. Otherwise, tW �
tH ; η � 1, the enhancement factor carries no information on
them at all.

The spectral form factor B
(β)
2 (s) looks very simple in the

case of systems with broken T symmetry [10]:

B
(2)
2 (s) = (1 − s)	(1 − s). (7)

No problem arises also with the subsequent s integration,

F (2)(η) = 1 + 1 − e−η

η
. (8)

The task becomes appreciably more complicated in the
presence of T invariance. The spectral form factor reads now:

B
(1)
2 (s) = [1 − 2s + s ln(1 + 2s)]	(1 − s)

+
[
s ln

(
2s + 1

2s − 1

)
− 1

]
	(s − 1). (9)

so the s integration seems to be quite a problem. Surprisingly,
it can be carried out in this case as well and results finally in
the following remarkable relation:

F (1)(η) = F (2)(η) + 1 −
(

1 + η/2

η
e−η − 1 − η/2

η

)

× eη/2Ei(−η/2). (10)

To the best of our knowledge, this relation illustrated in Fig. 1
has remained unknown until now.

In both cases β = 1, 2, the enhancement factor monotoni-
cally decreases from F (β)(0) = 2 + δβ1 to F (β)(∞) = 1 + δβ1

when the parameter η increases. Being rather fast at the
beginning, the descent of the factors F (β)(η) slows gradually
down approaching their minimal values. At last, for both values
of β the slopes at the origin are identical:

dF (β)(η)

dη

∣∣∣∣
η=0

= −1

2
. (11)
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FIG. 1. (Color online) F (β) versus η. Top curve, β = 1; bottom
curve, β = 2.
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FIG. 2. The ratio F (1)

F (2)+1
.

In spite of the obvious distinction of the expressions (8)
and (10) their behavior is quite similar not only qualitatively
but also quantitatively. The difference remains within a few
percentages at most (see Fig. 2).

III. FEW CHANNELS

Many aspects of the theory of quantum chaotic scattering
can be analyzed and checked experimentally with the aid of
macroscopic analogous devices. This method took on a wide
dissemination after pioneering experiments [11,12] with open
irregularly shaped two-dimensional (2D) electromagnetic res-
onators (see, for example, Ref. [13] and references therein).
In particular, the elastic enhancement factor has thoroughly
been measured for both symmetry classes as well as in the
transient regime between them [14]. However, in contrast
with the Verbaarschot’s regime of very large number of very
weak channels, the number M of them is restricted in such
experiments to only a few, as a rule even to two. The ruling
parameter η becomes irrelevant under such conditions and the
enhancement factor depends on T and M separately.

A. Broken time-reversal symmetry

According to Ref. [5], the function J
(2)
M (T ) [see (4)] has the

following twofold integral representation (M � 2):

J
(2)
M (T ) =

∫ ∞

0

dλ1

(1 + λ1T )M+2

∫ 1

0
(1 − λT )M−2 dλ

= 1

T 2

∫ ∞

0

dx

(1 + x)M+2

∫ T

0
(1 − z)M−2dz

= 1

T 2

1 − (1 − T )(M−1)

M2 − 1
. (12)

New variables x = λ1T and z = λT have been introduced in
the second line. In a similar way we then obtain

P
(2)
M (T ) = 1

T 2

∫ ∞

0

dx

(1 + x)M+2

×
∫ T

0
(1 − z)M−2 T + x − z (1 + (2 − T ) x)

x + z
dz.

(13)

Unlike Eq. (12), no general explicit formula exists in this case
that would be valid for arbitrary number of channels M and
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FIG. 3. (Color online) F
(2)
M versus T . From top to bottom: M =

2,3,4,9,10.

arbitrary value of the transmission coefficient T . Nonetheless,
at any fixed value of M , the double integration (13) can be
fulfilled analytically. For instance,

P
(2)
2 (T ) = 1

6
+ 1

3T
, P

(2)
3 (T ) = 1

8
+ 1

4T
− T

24
, . . . . (14)

Correspondingly, taking into account Eqs. (12) and (4), we
arrive at

F
(2)
2 (T ) = 4 − T

2 + T
, F

(2)
3 (T ) = 2(6 − 3T + T 2)

6 + 3T − T 2
(15)

and so on. In such a manner, one can convince oneself that at
any given number of channels M the enhancement factor can
be expressed, as a function of T , in the form of a ratio of two
(M − 1)-order polynomials. This statement is illustrated in
Fig. 3. It is clearly seen that the larger the number of channels
the faster enhancement factor decays when T increases.

At last, it is worth mentioning that the connection, estab-
lished in Sec. II, between the enhancement factor and delay
time variance (the latter being expressed now as var QM (T ) =

2
T 2

1−(1−T )M+1

M2−1 [15]), does not exist anymore.
Further, we will restrict ourselves to the practically most

interesting case of only two open channels. First, we would
like to examine the significance of the assumption of equivalent
channels. Let us suppose the opposite and define the following
two new variables:

T = 1
2 (T1 + T2), � = 1

2 (T1 − T2)

so

T1 = T +�, T2 = T − � and 0 < T < 1, − 1
2<�< 1

2 .

Though an explicit analytical expression exists, in this case
it also turns out to be extremely lengthy. Therefore we skip
the formula and instead illustrate the result graphically (see
Fig. 4). As long as � is noticeably smaller than T , the result
is the same as in the case of equivalent channels and the latter
approximation works well. Only when � is very close to T

does the enhancement factor become very large. The reason
is quite simple: If either of the two channels is almost closed,
almost everything is going through the only open one.

In the analogous experiments we discuss here the ohmic
losses always play an important role and cannot be neglected.
The simplest way of taking them into account consists iof
introducing the overall decaying factor e−γ τ [5], where γ plays
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FIG. 4. (Color online) F (T + �,T − �) at different values of
�: from bottom to top � = 0, 0.994T , 0.999 85T ,0.999 998 5T

(analytical solution).

the role of the absorption coefficient. In that case an explicit
analytical expression F

(2)
2 (T ,γ ) = 1 + (1 − T )R(T ,γ ) can

still be found whereby the ratio R is expressed as follows:

R(T ,γ ) ≡ J
(2)
2 (T ,γ )

P
(2)
2 (T ,γ )

= N (T ,γ )

D(T ,γ )
, (16)

where the functions D and N are

N (T ,γ ) = T (2T 2 − T γ + γ 2) + γ 3 eγ/T Ei(−γ /T ) ,

D(T ,γ ) = T

{
T 3 + γ 2 − T γ (1 + γ )

+ 2T 2

[
2(γ − 1) + 3γ

eγ − 1

]}

+ γ {(1 − T )γ 2 − 3 T 2[2 − γ coth(γ /T )]}
× eγ/T Ei(−γ /T ).

The derived results are illustrated in the lower pallet of the
Fig. 5. At the point T = 0, the enhancement factor drops
vertically down to the value

F (T = 0,γ ) = 1 + 2

γ
(
1 + Coth

[
γ

2

]) (17)

and, after that, approaches almost horizontally its minimal
value F (T = 1,γ ) = 1. The two lower lines indicate the
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FIG. 5. (Color online) F
(β)
2 (T ,γ ) for β = 1 (up) and β = 2

(down):γ = 0, 5.2, 7.4 (from top to bottom.)
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bounds of the interval 5.2 < γ < 7.4 which we borrowed
from the recent paper [16] reporting the results of experimental
investigation of the properties of the elastic enhancement factor
with the aid of analogous 2D electromagnetic resonators.

B. Preserved time-reversal symmetry

Actually, the above-mentioned experiments [16] have been
executed with a setup that includes preserved time-reversal
symmetry (β = 1). No explicit analytical results can be derived
in this case. Therefore we calculated the factor F

(β=1)
(M=2)(T ,γ )

numerically in the same interval of the absorption coefficient
to be able to compare the influence of the absorption in these
two cases. The results that are presented in Fig. 4 clearly
demonstrate qualitative similarity between the two cases,
though, as it is seen, the T-invariant systems are somewhat
more sensitive to the influence of the absorption.

IV. SUMMARY

In this paper, we have concentrated our attention on the
specific features of the elastic enhancement factor depending
on the peculiarities of the chaotic open system with which one
is dealing. On the whole, this factor depends on the number
M of scattering channels as well as the channel’s transmission
coefficients. However, when the number of channels is very
large, what is typical of, for example, such processes as reso-
nance nuclear reactions, the enhancement factor is controlled
by the only parameter η = MT that changes in very wide

bounds (Verbaarschot’s regime). Quite the opposite situation
takes place in the analogous experiments with 2D irregularly
shaped electromagnetic resonators that imitate quantum chaos.
In these kinds of experiments the number of channels is very
restricted. The enhancement factor depends on the number
of channels and transmission coefficients separately in this
case. We have juxtaposed in detail the two specified regimes.
We have succeeded in finding a complete analytical solution
valid for any fixed number M of equivalent channels with
arbitrary transmission coefficients 0 < T < 1 in the case of
systems without time-reversal symmetry. More than that,
in the practically significant case of only two scattering
channels, M = 2, the influence of absorption is also described
analytically. Finally, we have numerically demonstrated a
close similarity between properties of the enhancement factors
of systems with and without time-reversal symmetry.
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