
PHYSICAL REVIEW E 91, 052915 (2015)

Impact of symmetry breaking in networks of globally coupled oscillators
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We analyze the consequences of symmetry breaking in the coupling in a network of globally coupled identical
Stuart-Landau oscillators. We observe that symmetry breaking leads to increased disorderliness in the dynamical
behavior of oscillatory states and consequently results in a rich variety of dynamical states. Depending on
the strength of the nonisochronicity parameter, we find various dynamical states such as amplitude chimera,
amplitude cluster, frequency chimera, and frequency cluster states. In addition we also find disparate transition
routes to recently observed chimera death states in the presence of symmetry breaking even with global coupling.
We also analytically verify the chimera death region, which corroborates the numerical results. These results are
compared with that of the symmetry-preserving case as well.
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I. INTRODUCTION

The study of complex networks has attracted much attention
in the fields of physics, chemistry, social sciences, and
others under various coupling topologies [1–6]. For instance,
collective phenomena in complex networks studied intensively
in the past decade depend on both the peculiarity of the
oscillators and the nature of the coupling and its strength.
In particular many of the recent studies in nonlinear dynamics
have been devoted to understanding the dynamics of globally
coupled oscillators due to its applicability in real world
networks [7–11].

Out of the various dynamical behaviors in identical nonlin-
ear coupled systems, the existence of hybrid states (chimera
states) of combining both synchronized and desynchronized
behaviors [12–18], has received wide attention because of
its connection with many real world applications such as
unihemispheric sleep [19] and neural networks [20]. Moreover,
chimera states have also been observed in maps [21], complex
networks [22], and time-discrete and continuous chaotic
systems [23]. The emergence of chimera states in ensembles
of oscillators has been studied theoretically [24–31] for more
than a decade and experimentally [32–34] reported recently
under nonlocal interactions.

A few years ago Daido and Nakanishi [6] observed a new
interesting phenomenon called swing of synchronized states
while studying the inhomogeneity induced by the introduction
of diffusive coupling in globally coupled Stuart-Landau
oscillators without symmetry breaking in the coupling. They
found that the synchronized state which has been destabilized
because of the increase in the coupling strength is found to be
restabilized for further raising of it. The diffusion in globally
coupled systems induces the synchronized state mediated by
the so-called cluster states.

However, recent studies suggest that coexistence behavior
of chimera states is also observed in globally coupled networks
as in the case of systems with nonlocal coupling. Sethia and
Sen have pointed out the emergence of amplitude-mediated
chimera states (AMCs) even in globally coupled oscillators
without symmetry breaking in the coupling [35] in a system of
Ginzburg-Landau oscillators as the specific example (note that

the Stuart-Landau oscillators correspond to a special choice
of a control parameter of this system). A question to ask is
whether the AMC (also known as a frequency chimera) can
exist for global coupling with symmetry breaking. We analyze
this question in the present work and report the existence of
AMCs in the case of symmetry breaking in the coupling also,
which further leads to a richer variety of dynamical states than
the case where the coupling is of a symmetry-preserving type.

On the other hand, symmetry-breaking instability in a
network of coupled oscillators with nonlocal coupling also
leads to the existence of stable inhomogeneous steady states.
Interplay of nonlocality with symmetry breaking leads to new a
dynamical state, namely, chimera death, which was reported by
Zakharova et al. [36]. In the chimera death state, the oscillators
in the network partition into two coexisting domains, where
in one domain neighboring nodes occupy the same branch of
the inhomogeneous steady state [spatially coherent oscillation
death (OD)] whereas in the other domain neighboring nodes
are randomly distributed among the different branches of the
inhomogeneous steady state (spatially incoherent OD). In the
present study, we will also investigate whether such chimera
death states can exist in the globally coupled system with
symmetry breaking as well. Indeed, we show that such states
do exist in this case.

In this article, we are motivated to study the detailed
dynamical behavior of the globally coupled Stuart-Landau
oscillators in the presence of symmetry breaking in the
coupling and compare it with the case when the symmetry is
preserved. We show that the influence of symmetry breaking
in the coupling leads to increased disorder in the nature of
dynamical states, and we observe that their regions also get
widened. In Ref. [35], Sethia and Sen observed that in the
case of symmetry-preserved coupling the synchronized state
is mediated through the frequency chimera state. In addition to
this we observe that the synchronized state is mediated through
the amplitude chimera state (different from AMC) as well in
both the cases of symmetry breaking and symmetry-preserving
couplings. We illustrate the above results with the help of
characteristic measures such as standard deviation and strength
of incoherence. Moreover, we present the results for different
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transition routes to chimera death and also analytically verify
the chimera death regions, results which nearly match the
numerical results.

This paper is organized as follows. In Sec. II we introduce
the model of globally coupled Stuart-Landau oscillators with
two different couplings that we have considered for our
simulation and present the results obtained from the analysis
of the various dynamical states. In Sec. III we give the
phase diagrams to illustrate the different transition routes. We
summarize our findings in Sec. IV.

II. DYNAMICS OF GLOBALLY COUPLED
STUART-LANDAU OSCILLATORS IN THE PRESENCE

OF SYMMETRY PRESERVING AND SYMMETRY
BREAKING COUPLINGS

A. Model

In order to exemplify our results, we consider an array of
globally coupled identical Stuart-Landau oscillators with two
types of couplings:

(i) Symmetry-preserving coupling:

ẇj = wj − (1 − ic)|wj |2wj + ε(w − wj ), (1)

(ii) Symmetry-broken coupling:

ẇj = wj − (1 − ic)|wj |2wj + ε[Re(w) − Re(wj )], (2)

where j = 1,2,3, . . . ,N , N being the number of os-
cillators, wj = xj + iyj , w = (1/N )

∑N
j=1 wj , Re(w) =

(1/N )
∑N

j=1 xj is the mean field through the real part of
the amplitude, ε is the coupling constant, and c is the
nonisochronicity parameter. In our simulations, we choose the
number of oscillators N to be equal to 100, and in order to
solve Eqs. (1) and (2), we use the fourth order Runge-Kutta
method with time step 0.01. Note that Eq. (1) preserves the
gauge symmetry wj → w′

j = wje
iθ , θ ∈ R, or equivalently

the rotational symmetry in the (x,y) plane, while it is broken
in Eq. (2).

In Ref. [6] Daido and Nakanishi have identified the
phenomenon of swing in synchronized states in Eq. (1), which
is mediated through cluster states. In our study we intensely
study this phenomenon and clearly distinguish the dynamical
regions in the following sections. We also compare the results
with the system of oscillators with symmetry breaking in the
coupling. It may also be noted that Eq. (1) is the special case
of the Ginzburg-Landau equation

ẇj = wj − (1 − ic)|wj |2wj + ε(1 + iC1)(w − wj ) (3)

with the parameter chosen as C1 = 0. Occurrence of AMC
in Eq. (3) in the (C1,ε) phase space is discussed in detail in
Ref. [35].

B. Quantification of various dynamical states

We study the characteristic nature of the dynamical states
including desynchronized, chimera or cluster, and synchro-
nized states in Eqs. (1) and (2) with the help of quantitative
measures such as standard deviation [6] and strength of
incoherence [37,38], which are explained in the following
subsections.
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FIG. 1. (Color online) Standard deviation (σ ) of system (1) with
symmetry-preserving coupling for different values of c (a) for c =
3.0, (b) c = 5.0, (c) c = 7.0, and (d)–(f) their corresponding strength
of incoherence S [red (gray) diamonds] and S0 (black dots). Regions
I and I′ correspond to synchronized states, regions II and II′ show the
cluster states, and region III represents chimera states.

1. Characterization with respect to standard deviation

In this section, we use the measure standard deviation for
the real part of the amplitudes as used in Ref. [6] defined by

σ = 〈(|xj − xj |2)1/2〉, (4)

where the bar denotes average over 1 � j � N and the angular
bracket stands for the time average. It is clear that the standard
deviation of the system that is calculated from (4) is zero for
the synchronized state and nonzero for the desynchronized
state.

Depending on the strength of the nonisochronicity param-
eter c and coupling strength ε, the system of oscillators attains
different dynamical states. In order to identify the dynamical
behavior of these states, to start we make use of the above
mentioned standard deviation measure for various strengths of
c and ε. With this intention, we demonstrate the behavior of
standard deviation σ as a function of ε in Figs. 1(a)–1(c) for
symmetry-preserved coupling [system (1)] and in Figs. 2(a)–
2(c) for symmetry-broken coupling [system (2)] for three
different choices of c.

(a) Symmetry-preserved global coupling. In Fig. 1(a), we
fix the nonisochronicity parameter at c = 3.0, and one can
observe that σ takes nonzero values for ε < 0.275 which
implies the desynchronization of oscillators in this region.
For the values of ε in the region 0.275 < ε < 0.675 the
oscillators are synchronized where σ decreases to zero value.
As ε increases σ takes again nonzero values in the range
0.675 < ε < 0.925 which indicates desynchronization among
the oscillators. By increasing ε beyond 0.950, again σ

decreases to zero showing that the states correspond to a
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FIG. 2. (Color online) Standard deviation (σ ) of system (2) with
symmetry-broken coupling for different values of c (a) for c = 2.5,
(b) c = 4.0, (c) c = 7.0, and (d–f) their corresponding strength of
incoherence S [red (gray) diamonds] and S0 (black dots). Regions I
and I′ correspond to synchronized states, regions II and II′ show the
cluster states, and region III represents chimera states.

synchronized region. Thus we can observe the recurrence
of synchronized state for lower values of nonisochronicity
parameter c. We can also observe the same behavior for higher
values of nonisochronicity parameter. We illustrate this fact
for c = 5.0 and c = 7.0 in Figs. 1(b) and 1(c), respectively.
This also confirms the existence of recurrence of synchronized
states for higher values of the nonisochronicity parameter as
well.

(b) Symmetry-broken global coupling. To illustrate the dy-
namical behavior of system (2), we choose the nonisochronic-
ity parameter as c = 2.5, which results in the dynamical states
as depicted in Fig. 2(a). For the values ε < 0.27 the oscillators
are in a synchronized state. By increasing the strength of
coupling interaction (0.28 < ε < 0.94), σ decreases to zero
so that the system of oscillators becomes synchronized. For
the values of ε in the region 0.95 < ε < 2.48, σ takes nonzero
values, implying that the oscillators in the system have again
become desynchronized. By increasing ε beyond 2.48, we can
observe synchronized states where σ takes the value zero.
Thus we can observe the recurrence of synchronized states
for smaller values of nonisochronicity parameter c. We also
confirm the existence of recurrence of synchronized states
for higher values of nonisochronicity parameter c = 4.0 and
c = 7.0, which is illustrated in Figs. 2(b) and 2(c), respectively.
Thus we can conclude that the system of oscillators that are
coupled under symmetry-broken coupling follow the same
transition as that of the system of oscillators with symmetry-
preserved coupling on the basis of the measure standard
deviation σ .

However, we also note an important difference in the
distribution of σ as a function of ε between systems (1)
and (2). While σ varies smoothly as a function of the coupling
strength ε [Figs. 1(a)–1(c)] in the case of symmetry-preserving
global coupling corresponding to (1) (see also Ref. [6]), it
varies quite randomly with the symmetry-broken case (2) as
depicted in Figs. 2(a)–2(c). Thus we conclude that the presence
of symmetry breaking in the system leads to an increase of
disorder in the dynamical states.

2. Characterization with respect to strength of incoherence

By using the above notion of standard deviation introduced
in Ref. [6], one cannot differentiate the chimera or cluster
states and desynchronized states. In order to know the nature
of dynamical states in more detail, we look at the strength of
incoherence of the system of notion introduced recently by
Gopal, Venkatesan, and two of the present authors [37] that
will help us to detect interesting collective dynamical states
such as the chimera state. For this purpose we introduce a
transformation zj = xj − xj+1 [37], where j = 1,2,3, . . . ,N .
We divide the oscillators into M bins of equal length n =
N/M , and the local standard deviation σ (m) is defined as

σ (m) =
〈(

1

n

mn∑
j=n(m−1)+1

|zj − zj |2
)1/2〉

t

, m = 1,2, . . . ,M.

(5)
From this we can find the local standard deviation for

every M bin of oscillators that helps to find the strength of
incoherence [37] through the expression

S = 1 −
∑M

m=1 sm

M
, sm = �[δ − σ (m)], (6)

where δ is the threshold value which is small and � is the
Heaviside step function. When σ (m) is less than δ, sm takes
the value 1, otherwise it is 0. Thus the strength of incoherence
measures the amount of spatial incoherence present in the
system, which is zero for the spatially coherent synchronized
state. It has the maximum value, S = 1, for the completely
incoherent desynchronized state and has intermediate values
between 0 and 1 for chimera states and cluster states. Further
to distinguish the chimera and cluster states, we make use
of the quantitative measure S0 [38], which is the strength of
incoherence before the removal of discontinuity points while
S is calculated in this region after removal of such points.
Here the value of S0 is the same as S for desynchronized,
synchronized, and chimera states, but for the cluster states S0

takes nonzero values between zero and one while S takes the
value zero. For more details see Ref. [37].

In order to understand the different dynamical states and
their transitions more clearly, we analyze the strength of
incoherence corresponding to the cases discussed in terms
of σ in the above subsection for the symmetry-preserving
case [Figs. 1(d)–1(f)] and symmetry-breaking case [Figs. 2(d)–
2(f)].

(a) Symmetry-preserving global coupling. Figure 1(d) is
plotted for the strength of incoherence (S as well as S0) with
respect to the coupling strength ε for c = 2.5. Initially the
oscillators are desynchronized in the region ε < 0.27 where S

(and also S0) takes the value unity. By increasing the coupling
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strength ε, S (and also S0) reaches the value zero where
the oscillators are in synchronization (region I). Further for
the values of ε between 0.675 and 0.98, S0 takes a nonzero
value (less than one) while S takes the value zero (region
II) indicating the presence of cluster states. Interestingly, on
further increasing ε again we can observe the synchronized
state where the value of (S,S0) is zero (region I′). Thus
we can conclude that the synchronized state is mediated
through cluster states for lower values of the nonisochronicity
parameter c.

Further we address the question whether the synchronized
state is mediated through cluster states for higher values of
nonisochronicity parameters also. This is analyzed by the be-
havior of S and S0 for the values c = 4.0 and c = 7.0, depicted
in Figs. 1(e) and 1(f), respectively. When c = 4.0 [Fig. 1(e)],
we can observe that for small values of ε (ε < 0.27) S and
S0 take the value unity, which shows the desynchronization
of oscillators in this region, and by increasing ε to 0.28,
the oscillators are synchronized where the value of S and S0

decreases to zero. We can observe the presence of cluster states
(where S = 0 and 0 < S0 < 1, region II) in the range 0.96 <

ε < 1.23. Interestingly, further increase in ε leads to the
occurrence of chimera states where S (and also S0) oscillates
between zero and one (region III). Again beyond ε = 1.23
we can observe that the value of S = 0 and S0 takes the value
between zero and one, confirming the presence of cluster states

(region II′). Further increase of ε leads to synchronization of
oscillators with S = 0 (and also S0 = 0) in region I′.

Next, a study of the strength of incoherence for c = 7.0
confirms a similar transition behavior, which is depicted in
Fig. 1(f). Hence we conclude that the synchronized state is
mediated through chimera states in addition to the cluster states
for higher values of nonisochronicity parameter c.

(b) Symmetry broken global coupling. Next, Figs. 2(d)–2(f)
depict the behavior of S (and S0) for system (2) with symmetry
breaking in the coupling for three values of the nonisochronic-
ity parameter. For c = 3.0, the oscillators follow the transition
route [Fig. 2(d)] as desynchronization → synchronization →
cluster states → synchronization. When c = 4.0 [Fig. 2(e)]
and c = 7.0 [Fig. 2(f)] the transition route is represented
as desynchronization → synchronization → cluster states
→ chimera states → cluster states → synchronization. We
also note here that the region of chimera states is much
wider in the present case, Figs. 2(d)–2(f), compared to the
symmetry-preserving case as seen in Figs. 1(d)–1(f). Hence
the characterization with respect to S also confirms that the
symmetry breaking in the coupling leads to an increase in
disorder in the dynamical states and the regions are widened,
while both systems (1) and (2) follow the same transition route.
In addition symmetry breaking in system (2) ultimately leads to
a specific feature called chimera death, which is demonstrated
in the following subsection.
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FIG. 3. (Color online) Snapshots for the variables xj of system (1) (with symmetry-preserving coupling) and the corresponding frequencies
f for various dynamical states. (a) and (b) Amplitude cluster state for c = 5.0 and ε = 0.60. (c) and (d) Amplitude chimera state for c = 5.0
and ε = 0.75. (e) and (f) Frequency cluster state for c = 7.0 and ε = 0.50. (g) and (h) Frequency chimera states for c = 7.0 and ε = 1.0.
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3. Characterization of cluster, chimera, and chimera death states

To identify the nature of the cluster and chimera states
(and also the chimera death state) in more detail, we look
into the snapshots for the variables xj and the corresponding
frequencies of the oscillators. The frequency of each of the
oscillators is calculated from the expression fj = 2π�j/	T ,
where j = 1,2,3, . . . ,N , �j is the number of maxima in the
time series xj of the j th oscillator with time interval 	T .

(a) Symmetry-preserving coupling. At first we consider
system (1) for the three different values of the nonisochronicity
parameter c (similar to the above discussed cases), which
are illustrated in Fig. 3. Snapshots of the variables xj and
their corresponding frequencies fj [Figs. 3(a) and 3(b)] are
plotted for c = 5.0 and ε = 0.60 confirming the presence of
cluster states. In this case, the oscillators within the each
distinct cluster have identical amplitudes and phases. However,
the frequencies of the oscillators in different groups are the
same [Fig. 3(b)]. This type of cluster states is designated as
amplitude cluster states. By increasing ε to 0.75, we can also
observe the amplitude chimera state (the fluctuations exist only
in the amplitudes while the frequencies of all the oscillators
are the same), which is shown in Figs. 3(c) and 3(d).

Interestingly, a further increase in the nonisochronicity
parameter leads to an increase in disorder in the frequency
of the dynamical states as well. For c = 7.0, we can observe
the frequency cluster states. This means that the oscillators

within each cluster have identical amplitudes and phases
and the same frequencies. These are different for different
groups as shown in Figs. 3(e) and 3(f) for ε = 0.50. This
type of cluster states is designated frequency cluster states.
Figures 3(g) and 3(h) are the snapshot and frequencies of
the oscillators corresponding to a frequency chimera state for
ε = 1.0. Here the frequencies of the oscillators in the coherent
region are the same, while they are randomly distributed in
the region corresponding to incoherent behavior [Fig. 3(h)].
Apart from the above described states, no other dynamical
state (chimera death state) has been identified in this case of
symmetry-preserving coupling.

(b) Symmetry-broken coupling. Next we discuss the nature
of cluster and chimera states for system (2) in the case of
symmetry-broken coupling. The snapshots for the variables
xj and the frequencies of the oscillators which are shown
in Figs. 4(a) and 4(b), respectively, show the presence of
amplitude cluster states for c = 4.0 and ε = 1.0. On further
increasing ε to ε = 1.30, one finds the existence of amplitude
chimera states [Figs. 4(c) and 4(d)]. For higher values of
the nonisochronicity parameter (c = 7.0), we can observe the
frequency cluster states for ε = 0.6 [Figs. 4(e) and 4(f)] and
frequency chimera states for ε = 1.0 [Figs. 4(g) and 4(h)].

Finally, while varying the coupling strength, the symmetry
breaking present in the coupling leads to chimera death state
for larger values of ε. It has the combined properties of
chimera and oscillation death. The population of identical
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FIG. 5. (Color online) (a) Space-time plot and (b) snapshot of the
variables xj for N = 100 oscillators which confirm the existence of
chimera death state for coupling strength ε = 3.5 and nonisochronic-
ity parameter c = 2.5.

oscillators splits into two coexisting domains: (1) spatially
coherent oscillation death (neighboring oscillators populate
in the same branch of inhomogeneous steady state either
as x(1) or x(2)) and (2) spatially incoherent oscillation death
(population of neighboring oscillators are completely random
between x(1) and x(2)) as shown in Fig. 5 for c = 2.5 and
ε = 3.5, where x(1) and x(2) represent the amplitudes of the
oscillators corresponding to the upper and lower branches of
the inhomogeneous steady state, respectively. Here the total
number of oscillators (100) splits into two equal groups of
inhomogeneous steady state. Finally the diverse transition
routes to chimera death state is identified with a two-parameter
phase diagram in the next section.

III. DIFFERENT TRANSITIONS
IN THE PARAMETRIC SPACE (ε,c)

We now present a comprehensive analysis of the different
dynamical states and transition routes between them in the
(ε,c) two-parameter space under both symmetry-preserved and
symmetry-broken couplings.

A. Global coupling under symmetry preservation

In order to study the appearance of the swing of synchro-
nized state in globally coupled oscillators intensely, we plotted
the two-parameter phase diagram in the parametric space (ε,c)
in terms of the strength of incoherence S, as shown in Fig. 6.
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FIG. 6. (Color online) Phase diagram for system (1) (symmetry-
preserved coupling). SY (green), DS (yellow), AC (blue), FC (violet),
ACS (brown), and FCS (brown) regions represent synchronized state,
desynchronized state, amplitude chimera state, frequency chimera
state, amplitude cluster state, and frequency cluster state, respectively.
Region A: DS → ACS → SY; region B’: DS → ACS → AC → ACS
→ SY; and region C : DS → FCS → FC → FCS → SY.

Different dynamical states for a given pair of values of ε and
c are identified by making use of the strength of incoherence
(S). For this purpose we scan the(ε,c) plane with increments of
0.015 in ε and 0.045 in c. We choose random initial conditions
between −1 and + 1 for every choice of ε and c values and
observe the dynamics in the two-parameter space in terms of
S. For sufficiently small values of c, the system of oscillators
attains a synchronized state directly from the desynchronized
state. By increasing c, for c = 2.5 the synchronized state
is mediated through amplitude cluster states, and it follows
the transition route as desynchronization → synchronization
→ amplitude cluster states → synchronization. This route is
illustrated in region A. We can observe that the synchronized
state is mediated through amplitude chimera states along
with amplitude cluster states in the range 3.0 � c � 6.0, and
the corresponding transition route is represented in region
B. This transition is the one reported in Ref. [6]. They
also identified that the cluster states exist as periodic and
nonperiodic (quasiperiodic) desynchronized states. In addition
we distinguish the cluster states as amplitude cluster states
and amplitude chimera states, and the transition route is repre-
sented as desynchronization → synchronization → amplitude
cluster states → amplitude chimera → amplitude cluster
states→ synchronization. Interestingly, on further increasing
the value of c to 7.0, the synchronized states of the oscillators
are mediated through the frequency chimera states in addition
to the frequency cluster states, which is represented by region C
as desynchronization → synchronization → frequency cluster
states → frequency chimera → frequency cluster states→
synchronization. A summary of different transition routes is
presented in Table I.

B. Global coupling under symmetry breaking

Next, for the case of globally coupled oscillators with
symmetry-broken coupling over a wide range of coupling
strength, we plot the two-parameter phase diagram in the
parametric space (ε,c) in terms of the strength of incoherence
S, which is shown in Fig. 7(a). One of the major distinguishing
features in the present case is that the chimera death states
occur for all values of the nonisochronicity parameter c for
suitable values of ε. Further the range of chimera states gets
widened as a function of ε. Specifically we can observe that for
sufficiently small values of c (c � 1.5) the system of oscillators
attains the chimera death state through a synchronized state
from the desynchronized state. By increasing c to c = 2.5,
the synchronized state gets mediated through the amplitude
cluster state and attains the chimera death state. This route is
represented in region A [Fig. 7(a)], and it follows the transition
route as desynchronization → synchronization → amplitude
cluster → synchronization → chimera death. On increasing
the value of the nonisochronicity parameter to the range
2.5 � c � 5, we can observe the swing of thesynchronized
state via the amplitude chimera state (the oscillators in the
coherent and incoherent regions having the same frequency)
in addition to the amplitude cluster state, but ultimately
ending up in the chimera death state [beyond the region
of ε shown in Fig. 7(a)]. We can observe the appearance
of amplitude chimera states between the regions of the
amplitude cluster states. Here it follows the transition route as
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TABLE I. Different coupling schemes and corresponding transition routes. DS = desynchronized states, SY = synchronized states,
AC = amplitude chimera states, FC = frequency chimera states, CD = chimera death states, ACS = amplitude cluster states, FCS = frequency
cluster states.

S. No Coupling schemes Transition routes

1 Global coupling without symmetry breaking (i) DS → SY
(ii) DS → ACS → SY
(iii) DS → ACS → AC → ACS → SY
(iv) DS → FCS → FC → FCS → SY

2 Global coupling with symmetry breaking (i) DS → SY → CD
(ii) DS → ACS → SY → CD
(iii) DS → ACS → AC → ACS → SY → CD
(iv) DS → FCS → FC → FCS → SY → CD

desynchronization → synchronization → amplitude cluster →
amplitude chimera → amplitude cluster→ synchronization →
chimera death [region B in Fig. 7(a)]. Interestingly, on further
increasing c beyond c ≈ 5, the nonisochronicity parameter
induces a disorder in the frequencies of the dynamical
states and causes the system to pass through a different
set of dynamical states. It follows the transition route as
desynchronization → synchronization → frequency cluster →
frequency chimera → frequency cluster→ synchronization →
chimera death, which is shown in region C.

In our study, we analyzed the dynamical system (2) over
a wide range of nonisochronicity parameter, and the main
points are as follows. We identified the presence of amplitude
chimera states. We have also observed that the synchronized
states are mediated through the amplitude chimera states in
addition to the cluster states in Eq. (2). Further we identified
that the chimera regions get widened due to the presence of
symmetry breaking in the coupling. The chimera death states
occur for sufficiently large ε values for all values of c. We have
also characterized the cluster states which appeared in regions

c
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FIG. 7. (Color online) (a) Phase diagram for the globally coupled
system (2) with symmetry breaking by varying the values of c and
ε for N = 100 oscillators. SY (green), DS (yellow), AC (blue), FC
(violet), ACS (brown), FCS (brown), and CD (red) regions represent
synchronized state, desynchronized state, amplitude chimera state,
frequency chimera state, amplitude cluster state, frequency cluster
state, and chimera death state, respectively. Region A: DS → ACS
→ SY → CD; region B: DS → ACS → AC → ACS → SY → CD;
and region C : DS → FCS → FC → FCS → SY → CD. (b) The
analytical plot for global coupling with symmetry breaking. Regions
I and IV correspond to synchronized state, regions II and III are for
chimera and cluster states, and region V shows the chimera death
state. The red dot represents the Takens-Bogdanov point.

A, B, and C as amplitude and frequency clusters. The various
transition routes are again summarized in Table I.

C. Analytical results

To understand the existence of the various states discussed
earlier analytically, we first consider system (2) and then (1).

1. Symmetry broken case

We start by assuming the chimera states correspond to the
coexistence of synchronized and desynchronized identical
groups of oscillators so that system (2) can be written as

dzs

dt
= zs − (1 − ic)|zs |2zs

+ε[pRe(Zs) + (1 − p)Re(Zd ) − Re(zs)], (7)

dzd

dt
= zd − (1 − ic)|zd |2zd

+ε[pRe(Zs) + (1 − p)Re(Zd ) − Re(zd )], (8)

where s = 1,2,3 . . . ,l, d = 1,2,3, . . . ,k, l + k = N , N being
the number of oscillators, p = l/N , q = k/N , p + q = 1,
Zs = (1/l)

∑l
s=1 zs , Zd = (1/k)

∑k
k=1 zd . Here zs and zd are

the states of the oscillators corresponding to synchronized and
desynchronized states, respectively. Following Refs. [6,38,39],
considering the p ≈ 1 limit, we can see that the chimera state
appears from the synchronized state by varying the coupling
strength, and we obtain zs = eict and

dzd

dt
= zd − (1 − ic)|zd |2zd − ε[Re(eict ) − Re(zd )].

The above equation has a solution zd = eict that implies the
completely synchronized manifold of the system which is
always stable. In order to find the stability of the chimera
or cluster state we apply a multitime scale perturbation to the
solution of zd so that zd = w(τ )eict , where w(τ ) represents the
amplitude of the desynchronized oscillators and t = t0 + τ

with t0 and τ representing the fast and slow time scales,
respectively. Thus the dynamics of each of the desynchronized
oscillators is represented by

dw

dτ
= (1 − ic)w − (1 − ic)|w|2w + ε

2
(1 − w)

+ε

2
(1 − w̄))e−2ict . (9)
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Averaging over the fast time scale t0 between 0 and 2π
c

we
obtain

dw

dτ
= (1 − ic)w − (1 − ic)|w|2w + ε

2
(1 − w). (10)

Equation (10) has one stable fixed point at w = 1, which
corresponds to complete synchronization manifold. The other
two fixed points

|w2,3|2 = −ε − (1 + c2) ±
√

−(1 + c2)ε2 + (1 + c2 − ε)2

2(1 + c2)

(11)

exist for

ε < εSN = −1 + c2 −
√

(1 + c2)3

c2
. (12)

From the linear stability analysis of Eq. (10) about the fixed
points (11) we get the Hopf bifurcation curve,

εH = 2(−2 + √
5 + 2c2 + c4)

1 + c2
. (13)

The curves for saddle node and Hopf bifurcations are
plotted by using Eqs. (12) and (13), which are shown by solid
red and dotted red lines in Fig. 7(b). The saddle connection
boundary is obtained by solving (10) numerically, and its
boundary is given by the dashed pink line. Takens-Bogdanov
point is denoted by εT B = 2(−1 + √

2) at |c| = 1. Thus, it
turns out that for |c| > 1, the original system has a stable
chimera or cluster state solution in the range εSC < ε < εSN .
In Fig. 7(b) regions I and IV correspond to synchronized states,
regions II and III represent cluster and chimera states, and
region V corresponds to the chimera death states as discussed
below.

On the other hand, chimera death represents the situation
where the total population is split into two groups of inhomo-
geneous steady states. Equations (7) and (8) can be written as
two populations of oscillators and are specified by

dzh1

dt
= zh1 − (1 − ic)|zh1|2zh1

+ ε[pRe(zh1) + (1 − p)Re(zh2) − Re(zh1)], (14)

dzh2

dt
= zh2 − (1 − ic)|zh2|2zh2

+ ε[pRe(zh1) + (1 − p)Re(zh2) − Re(zh2)], (15)

where zh1 and zh2 are the states of the oscillators corre-
sponding to two groups of inhomogeneous steady states.
Considering our numerical results, the above system has
a trivial equilibrium point (x1,y1,x2,y2) = (0,0,0,0) and a
nontrivial (inhomogeneous) equilibrium point (x1,y1,x2,y2) =
(x∗

1 ,y∗
1 ,−x∗

1 ,−y∗
1 ) for p = 0.5 (as confirmed numerically),

where

x∗
1 = 2

√
2cy∗

1

−ε + α
, (16)

y∗
1 =

(−ε + α)
√

− (−1+ε)(ε+α)+c2(−4+3ε+α)
(1−c)2ε

2
√

2c
, (17)

with α =
√

4c2(−1 + ε) + ε2. We find the above nontrivial
fixed point is linearly stable for ε � εc, where the critical
value of ε is given by

εc = 1
2 (1 + c)2. (18)

By using the above equation, we plotted the curve for the
chimera death region [dashed-dot blue line in Figs. 7(a) and
7(b)] for two populations of oscillators. Fitting this curve
with numerically plotted phase diagram, we can observe that
analytical results closely match with the numerical results [see
Fig. 7(a)].

2. Symmetry-preserving case

Proceeding in a similar way for the symmetry-preserved
global coupling system (1), Eqs. (7) and (8) can be rewritten
as

dzs

dt
= zs − (1 − ic)|zs |2zs + ε[pzs + (1 − p)zd − zs],

(19)

dzd

dt
= zd − (1 − ic)|zd |2zd + ε[pzs + (1 − p)zd − zd ].

(20)

As before, the slow scale dynamics of the each of the
desynchronized oscillators can be represented as [6]

dw

dτ
= (1 − ic)w − (1 − ic)|w|2w + ε(1 − w). (21)

By replacing ε by ε/2 in the above equation, it can be reduced
to Eq. (10), which corresponds to the case of symmetry
breaking in the coupling. This implies that the dynamical
regions in system (2) get widened approximately twice as
much as that of system (1). From (19) and (20), looking
for chimera death states, the two population equations (14)
and (15) can now be written as

dzh1

dt
= zh1 − (1 − ic)|zh1|2zh1

+ ε[pzh1 + (1 − p)zh2 − zh1], (22)

dzh2

dt
= zh2 − (1 − ic)|zh2|2zh2

+ ε[pzh1 + (1 − p)zh2 − zh2]. (23)

We can check that the fixed points of the type (16) and (17)
do not exist for Eqs. (22) and (23) under symmetry-preserved
coupling, and so one cannot identify the existence of chimera
death in system (1).

IV. CONCLUSION

In summary, we have investigated the common and dis-
tinguishing features underlying the collective dynamics of
globally coupled Stuart-Landau oscillators under two different
coupling schemes: (1) symmetry-preserved coupling and
(2) symmetry-broken coupling. We have observed that the
synchronized state is mediated through the amplitude chimera
states in addition to amplitude cluster states for lower values
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of the nonisochronicity parameter. For higher values of this
parameter, the synchronized state gets mediated through the
frequency chimera states in addition to frequency cluster
states. Moreover, the presence of symmetry breaking in the
coupling leads to increased disorder in the dynamical states
and also leads to the widening of the various interesting
dynamical regions. In addition we have also identified the
existence of chimera death states and diverse transitions routes
to the chimera death state in the case of symmetry-broken
coupling.

Through a multitime scale perturbation analysis, we have
also analytically established the various regions of dynamical

states including chimeras and chimera death states. We can
thus conclude that symmetry breaking in global coupling leads
to a rich variety of collective dynamical states.
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