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In this paper we consider the motion of point particles in a particular type of one-degree-of-freedom, slowly
changing, temporally periodic Hamiltonian. Through most of the time cycle, the particles conserve their action,
but when a separatrix is approached and crossed, the conservation of action breaks down, as shown in previous
theoretical studies. These crossings have the effect that the numerical solution shows an apparent contradiction.
Specifically we consider two initial constant energy phase space curves H = EA and H = EB at time t = 0,
where H is the Hamiltonian and EA and EB are the two initial energies. The curve H = EA encircles the curve
H = EB . We then sprinkle many initial conditions (particles) on these curves and numerically follow their orbits
from t = 0 forward in time by one cycle period. At the end of the cycle the vast majority of points initially on
the curves H = EA and H = EB now appear to lie on two new constant energy curves H = E′

A and H = E′
B ,

where the B ′ curve now encircles the A′ curve (as opposed to the initial case where the A curve encircles
the B curve). Due to the uniqueness of Hamilton dynamics, curves evolved under the dynamics cannot cross
each other. Thus the apparent curves H = E′

A and H = E′
B must be only approximate representations of the

true situation that respects the topological exclusion of curve crossing. In this paper we resolve this apparent
paradox and study its consequences. For this purpose we introduce a “robust” numerical simulation technique
for studying the complex time evolution of a phase space curve in a Hamiltonian system. We also consider how a
very tiny amount of friction can have a major consequence, as well as what happens when a very large number of
cycles is followed. We also discuss how this phenomenon might extend to chaotic motion in higher dimensional
Hamiltonian systems.
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I. INTRODUCTION

A. Background

The principle of adiabatic invariance is a key concept
for Hamiltonian systems with one degree of freedom that
depend slowly on time. According to this principle, under
suitable circumstances, a system’s energy will continually
change so as to approximately maintain a constant action,
J = ∮

p · dq, in the current temporally frozen Hamiltonian.
This approximation applies when the time scale for change in
the Hamiltonian sufficiently exceeds the orbital period of the
particle in the current frozen Hamiltonian.

Recently a particular protocol for the slow, cyclic variation
of a Hamiltonian with one degree of freedom was proposed [1],
which appears to have counterintuitive behavior. Reference [1]
was originally motivated by earlier work on microcanonical
“Szilard engines” [2] which exhibit the same counterintuitive
behavior and which have been explored further in Ref. [3].
The proposed Hamiltonian was of the form

H (q,p; �λ) = 1
2p2 + V (q,�λ), (1)

with the time variation of �λ(t) slow, and the parameter vector
�λ returning to its initial value after one cycle, as specified in
detail in Sec. I B. At the beginning of the cycle, imagine that
a large number NA of initial conditions are spread uniformly
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on the energy curve, H (q,p; �λ(0)) = EA, and a second large
number NB are spread uniformly on another energy curve,
H (q,p; �λ(0)) = EB , where EA > EB , and therefore the curve
H = EA encircles the curve H = EB . Numerically, following
the Hamiltonian dynamics of all these points through one cycle
�λ(0) = �λ(4τ ) (for later notational convenience we denote the
cycle duration as 4τ ), it is found [1] that at the end of the
cycle, to a very good approximation, the vast majority of
A points have the same final energy E′

A, which is smaller
than the corresponding approximate energy E′

B of the vast
majority of B points. Thus E′

A < E′
B and the curve H = E′

B

encircles the curve H = E′
A (see Fig. 1). Neglecting a very

small fraction of points (which gets smaller as τ increases), it
appears that the A and B points approximately lie on constant
energy curves that have interchanged; that is, at t = 0 the curve
of A points encloses the curve of B points, while at t = 4τ

the curve of B points appears to enclose the curve of A points
(see Fig. 1).

The situation described above shows that the action, which
is adiabatically invariant under appropriate conditions, is
changed through one cycle of the protocol (J (E′

A) �= J (EA),
J (E′

B) �= J (EB)). As discussed in Sec. I B and Refs. [4–15],
the explanation for this change of action is that the cyclic
protocol for �λ(t) drives the system through separatrix-
associated orbits with arbitrarily long time scales, thereby
violating a necessary condition for action being adiabatically
invariant.

The main significant feature that we wish to emphasize is
that the A and B action curves appear to have interchanged.
This point will be the focus of our paper. In particular,
this result should be surprising because the uniqueness of
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t = 0 t = 4τ

FIG. 1. (Color online) Apparent (not real) interchange of energy
surfaces.

Hamiltonian orbits implies that orbits cannot cross one another
in phase space. Thus a change such as that depicted in Fig. 1
is topologically forbidden. Hence, while Fig. 1 may apply in
some approximate sense, the true situation must be different.
Our question is: What is the nature of this difference and its
dynamical origin?

B. Dynamics of the Hamiltonian

To realize the scenario described in Sec. I A, we consider
a particle with one degree of freedom, described by the
parameter-dependent Hamiltonian,

H (q,p; �λ) = p2

2
+ V (q; �λ)

= p2

2
+ q4 −

{
λLq2 if q � 0

λRq2 if q � 0
, (2)

where q is position, p is momentum, and �λ = (λR,λL) are
parameters that modulate the shape of the potential function
V (q; �λ). As shown in Fig. 2, the time-dependent parameter
vector �λ(t) proceeds from (0,0) to (1,0) to (1,1) to (0,1) and
back to (0,0), while the potential function deforms as shown in

λR

λL

(0, 0)

1

1

(1, 1)

FIG. 2. The parameter vector �λ = (λR,λL) starts from (0,0) when
t = 0 and reaches (1,0) when t = τ , (1,1) when t = 2τ , (0,1) when
t = 3τ , and returns back to (0,0) when t = 4τ . Each of the four
phases of the full cycle has duration τ , and �λ changes linearly with
time during each of the four phases [Eq. (3)].
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FIG. 3. (Color online) Snapshots at t = 0, tB
0 , τ , tA−

x , tA+
x , 2τ ,

tB−
x , tB+

x , 3τ , tA
0 , and 4τ . The green (light gray) and red (dark gray)

horizontal lines represent set A and set B. Initially, set A is above set
B, where the height represent the energy of the ensemble. At t = 4τ ,
set B is above set A.

Fig. 3. More precisely, we take �λ to vary with time as follows:

(λR,λL)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
t
τ
,0

)
if 0 < t � τ (phase 1)(

1, t
τ

− 1
)

if τ < t � 2τ (phase 2)(
3 − t

τ
,1

)
if 2τ < t � 3τ (phase 3)(

0,4 − t
τ

)
if 3τ < t � 4τ (phase 4)

. (3)

Since the Hamiltonian system is time dependent, the energy
of the particle changes with time as

dE

dt
= ∂H

∂q
q̇ + ∂H

∂p
ṗ + ∂H

∂�λ
�̇λ = ∂H

∂�λ · d�λ
dt

. (4)
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Thus, during phase 1 of the protocol (0 < t � τ ), the particle
loses energy (dE/dt = −q2τ−1) when it is traveling in the
region q � 0, but it conserves its energy when q < 0. During
phase 2 it loses energy when q < 0 and conserves energy when
q � 0. During phase 3, the particle gains energy (dE/dt =
q2τ−1) when q > 0 and conserves energy when q � 0. During
phase 4, it gains energy when q < 0 and conserves energy
when q � 0. Upon completing the protocol, the energy of a
particle is typically substantially changed from its initial value.

We choose two initial (t = 0) curves in (q,p) phase space:
curve A and curve B defined as Hamiltonian level sets H =
EA, and H = EB [Figs. 3(a) and 4(a)], where, corresponding
to these energies, the curves enclose areas in (q,p) phase space
(actions) JA and JB that satisfy

0 < JB < Jx < JA < 2Jx. (5)

Here Jx is the action enclosed by one lobe of the figure-
8-shaped separatrix curve H (q,p,�λ = (1,1)) = 0, or p2/2 +
q4 − q2 = 0. Thus

Jx = 2
√

2
∫ 1

0

√
q2 − q4 dq = 2

√
2/3. (6)

Considering a cycle of our protocol (Fig. 2), we now define a
hypothetical adiabatic evolution for these phase space curves.
This defined evolution is illustrated in Figs. 3 and 4. At all
times curves A and B are curves of constant H . During
phase 1 of our protocol [Figs. 3(a) to 3(c) and 4(a) to 4(c)],
the energies corresponding to both curves decrease so as to
conserve their enclosed actions (the adiabatic invariant). As
shown in Figs. 3(b) and 4(b) there will be some time tB0 ∈ (0,τ )
when the energy of curve B changes sign, EB(t = tB0 ) = 0.
When t = τ , under the condition given by Eq. (5), curve B

is trapped in the q > 0 well of the potential function, while
curve A is not [Figs. 3(c) and 4(c)].

During phase 2 of our protocol, the energy of curve B

is constant, because the potential V remains fixed in the
region q � 0. For τ < t < tAx < 2τ , the energy of curve A

decreases to conserve its enclosed action. The time tAx (which
corresponds to the pseudocrossing time defined in Ref. [8]) is
defined as the time at which constancy of the action enclosed
by curve A implies that the energy of curve A becomes
V (q = 0) = 0, which corresponds to the dashed separatrix
curve in Fig. 5. Motivated by the fact that particles lose energy
when q < 0 (but not when q > 0) during phase 2, we define
our hypothetical evolution to be such that curve A is located in
q < 0 for tAx < t < 2τ . This is illustrated in Figs. 4(e) and 4(f),
and by the blue (dark gray) curve in Fig. 5. By this definition
the energy of particles on curve A evolves continuously in time,
but there is a discontinuity in the action enclosed by curve A,
by the amount Jx = 2

√
2/3 as t crosses tAx [8]. Specifically, the

action associated with curve A decreases discontinuously by
the area of the right lobe of the H (q,p; �λ(tAx )) = 0 separatrix
depicted as the gray-shaded area in Fig. 5 [see also Figs. 3(d),
3(e), 4(d), and 4(e) where tA−

x and tA+
x denote time instants just

before and just after tAx ]. For tAx < t � 2τ , the enclosed action
area of curve A is conserved. At the end of phase 2 (t = 2τ ), the
two curves are trapped in different wells [Figs. 3(f) and 4(f)].
Curve B is trapped in the right well (q > 0) with action JB ,
and curve A is trapped in the left well with action JA − Jx .
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Curve A

(b) t = tB0

Curve B
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(c) t = τ

Curve B
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(e) t = tA+
x
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(f) t = 2τ
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(h) t = tB+
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Curve B

(i) t = 3τ

Curve A
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(j) t = tA0

Curve B

Curve A
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FIG. 4. (Color online) Assumed evolution of curve A and curve
B when t = 0, tB

0 , τ , tA−
x , tA+

x , 2τ , tB−
x , tB+

x , 3τ , tA
0 , and 4τ .

During phase 3 of the protocol, for 2τ < t < tBx , the
potential function increases on the q > 0 side and the energy
of curve B increases maintaining constant action, becoming
larger than the energy of curve A. Again, there is a time
tBx ∈ [2τ,3τ ] at which the energy of curve B reaches the value
V (q = 0) = 0, and there is then a discontinuous increase in
the action enclosed by curve B by the amount Jx = 2

√
2/3,

similar to what is illustrated in Fig. 5 but with q → −q and the
time ordering reversed; see Figs. 3(g), 3(h), 4(g), and 4(h). For
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FIG. 5. (Color online) Discontinuity of the adiabatic action in-
variant of A particles at time tA

x in the hypothetical evolution.

all subsequent time tBx < t < 4τ the enclosed actions of curves
A and B remain constant [Figs. 3(i)–3(k) and 4(i)–4(k)], with
values JA − Jx and JB + Jx .

During phase 4, the left potential well rises, and the potential
returns to its original quartic shape. We use tA0 ∈ (3τ,4τ ) to
denote the time when the energy of curve A changes sign
from negative to positive; see Figs. 3(j) and 4(j). Note that at
t = 4τ , the energy of curve B is higher than that of curve A

[Figs. 3(k) and 4(k)]. Thus, proceeding through one cycle of the
protocol, we have flipped the relative values of the energies
and actions of the two curves. This flip is due to the two
separatrix-crossing-induced action discontinuities: one at tAx
decreasing the action of curve A, and the other at tBx increasing
action for curve B. Specifically,

JA(4τ ) = JA(0) − Jx, (7a)

JB(4τ ) = JB(0) + Jx, (7b)

where Jx = 2
√

2/3 [see Eq. (6)] is the (q,p) area inside
the right (left) separatrix lobe at t = tAx (t = tBx ). As shown
by Eqs. (7), the initial A and B curves exactly interchange
under the hypothetical evolution when JA(0) − JB(0) = Jx .
While we could consider other values of JA(0) − JB(0), for
specificity, we have taken JA(0) − JB(0) = Jx in Figs. 3–5.

As already noted (Sec. I A) and discussed in more detail
in Sec. II, the hypothetical evolution illustrated in Figs. 3–5
cannot be entirely correct, as it violates the uniqueness and
existence theorem of Hamiltonian dynamics. However, the
analysis of Cary, Escande, and Tennyson [8] implies that this
hypothetical evolution is, in a suitable sense, an approximation
to the real dynamics. Specifically, in the limit of a very large
number of initial conditions sprinkled on curves A and B, and
a suitably large value of τ , if we remove from consideration
a small fraction f of the particles, then the energies of the
remaining particles never deviate from the energies resulting
from our defined ideal evolution by more than some small
quantity δ, and we can decrease f and δ with increasing cycle
time so that f → 0, δ → 0 as τ → ∞.

Indeed, the results of Ref. [8] imply that f decreases
exponentially with τ .

These conclusions are supported by numerical evidence.
We simulated 1000 Hamiltonian trajectories with initial
conditions sampled from the energy surface EA = 0.2401 and

another 1000 trajectories with initial conditions sampled from
EB = 0.0531. Figure 6 shows the final conditions of these
trajectories at the end of one cycle t = 4τ for different values
of τ . At low τ [Fig. 6(a) for τ = 20] the hypothetical curve
evolution is seen to very poorly predict the result of the true
dynamics. However, as τ is increased [Figs. 6(b)–6(d) for
τ = 100,500,1000] the hypothetical evolution provides an in-
creasingly accurate description of the dynamics. Specifically,
for Figs. 6(b)–6(d), there is a dense set of A particles colored
in green (light gray) that seem to be tracing out a constant
energy curve of energy E′

A that agrees well with the prediction
of Eq. (7a), as well as a dense set of B particles colored in red
(dark gray) that seem to be tracing out a constant energy curve
of energy E′

B > E′
A, where the value of E′

B is predicted by
Eq. (7b). Furthermore, in agreement with Ref. [8], we see that
the E′

A and E′
B “curves” in Figs. 6(b)–6(d) have a width that

decreases with increased τ implying that δ → 0 as τ → ∞.
Using more sample points, we always see a small number of
green (light gray) and red (dark gray) particles that are far
from the constant energy E′

A and E′
B curves; we call such

particles “delinquents.” For instance, in Figs. 6(a)–6(b) some
red (dark gray) points appear well within the interior of the
region encircled by the H = E′

B curve. In accord with Ref. [8],
we see that the fraction of delinquents in Fig. 6 gets smaller
with increasing τ (i.e., f → 0 as τ → ∞).

C. Outline

The rest of this paper is organized as follows. Section II
discusses the resolution of the topological issue raised above,
that is, the interchange of the A and B curves, and evidence for
the type of asymptotic validity (f → 0, δ → 0 as τ → ∞) of
the curve dynamics illustrated in Fig. 6. This is done partly by
our introduction of a “robust” numerical simulation technique
for studying the complex time evolution of a phase space curve
in a Hamiltonian system. Section III notes that the adiabatic
behavior for τ 	 1 is dramatically changed with a small
amount of friction, and discusses the nature of this change.
Section IV shows numerically the results of repeated cycling
of this Hamiltonian system, which we relate to a theorem
shown in Ref. [15]. Section V discusses how our work might
be extended to chaotic motion in higher dimensional systems
and summarizes our conclusions.

II. RESOLVING THE TOPOLOGY ISSUE

As discussed in Sec. I and illustrated in Fig. 6, for suffi-
ciently large τ numerical simulations appear to be in agreement
with the hypothetical evolution shown in Figs. 3 and 4, in which
the curves A and B evolve through a sequence of action sets
of the Hamiltonian. However, this defined dynamics cannot
exactly correspond to the real dynamics in this slowly varying
Hamiltonian since it violates two topological constraints. For
example, see Ref. [8] for related discussion.

Most obviously, curve A encloses curve B at the beginning,
yet curve A is enclosed by curve B at the end of the protocol. If
this reflected the true dynamics, then every phase space orbit
on the A curve would at some time have to cross an orbit
on the B curve, which contradicts the uniqueness of solutions
of Hamiltonians. [If there were an orbit crossing time, then
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FIG. 6. (Color online) Final result at t = 4τ from regular simulation with different slowness parameters τ .

at this time an A particle and a B particle would have the
same (q,p) value; then by evolving Hamiltonian’s equations
forward in time or backward in time from this crossing point,
we would infer that the two orbits were identical for all time,
thus contradicting the supposed existence of a crossing.] This
violation of topology is visually evident in Fig. 4, as one
proceeds from Figs. 4(c) to 4(i).

A less obvious topological violation occurs between t = 0
[Fig. 4(a)] and t = τ [Fig. 4(c)] and again between t = 3τ

[Fig. 4(i)] and t = 4τ [Fig. 4(k)]. This violation arises because
the origin (q,p) = (0,0) is a fixed point; since ∂V (q,t)/∂q = 0
at q = 0 for all time, a particle positioned exactly at (p,q) =
(0,0) at t = 0 would remain there throughout the cycle. Thus,
under the true Hamiltonian dynamics, neither curve A nor
curve B could pass through (q,p) = (0,0), as they do several
times during the hypothetical dynamics indicated in Figs. 4
and 5. The basic discrepancy between the hypothetical and the
real evolution can be traced to the instants when curve A or B

seemingly “crosses” the origin, as the condition of adiabaticity
is then violated due to the fact that the orbit period in the frozen
Hamiltonian approaches infinity.

In order to study the apparent “crossing” of (q,p) ≡ (0,0),
we consider the true dynamics when t approaches tA0 or tB0 .
The part of the curve that is nearer to the origin moves slower
than the part that is farther from the origin, since the origin is a
fixed point of the dynamics. As a result, instead of crossing the
origin, this curve is stretched and wound around the separatrix
as it approaches the origin [see subsequent discussion of the
blue (dark gray) curves in Figs. 7, 8, and inset to Fig. 8(f)].

The situation is somewhat similar when t approaches tAx or tBx ,
the difference being that the curve will be stretched and wound
around, not the origin, but the separatrix lobe on the side where
the potential function is stationary. In the simulations shown in
Fig. 6, we uniformly put a finite number of sample particles on
the initial curves and evolve them in the Hamiltonian system.
The sample particles on the stretched portions of the curve
eventually become sparse, and, if τ is too long, for any fixed
numbers of points placed on the initial curves, some of them
become too far separated to form a good approximation to the
evolved “true” curve. Thus the true curves are eventually not
resolved by these points, which are shown as red (light gray)
dots in Figs. 7 and 8. This is why it appears that the evolved
curves cross the origin and each other in the simulation. We
will refer to a simulation employing a fixed number of sample
points as a regular simulation.

In order to better reveal the true curve dynamics and show
how a curve is wound around the origin or a separatrix lobe,
we use a simulation method that we call “robust.” In contrast
to the regular simulation, the robust simulation monitors the
distance between each pair of points that occur consecutively
along the initial curve. When their separation d becomes larger
than a critical value ε we add a new phase point halfway
between them. The thin blue (dark gray) curves in Figs. 7
and 8 were obtained in this manner. Note that when part of the
curve approaches the origin, it will experience greater curve
stretching, and more phase points will be added to that part
of the curve. Thus, in the robust simulations the curve made
by joining consecutive phase points will always give a good
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(a) t = 0 (b) t = 0.65τ

(c) t = 0.7τ (d) t = 0.77τ

(e) t = 0.86τ (f) t = τ

FIG. 7. (Color online) Six figures are snapshots in phase space showing the evolution of sample points along a positive energy curve at
t = 0 to the resulting curve at t = τ = 20, from both the regular and the robust simulations. The regular simulation evolves only those 2000
initial phase points. Its result is shown by the thick red (light gray) “curve,” which is made up of 2000 red (light gray) points. The thin blue
(dark gray) curve is the result from the robust simulation starting initially with 2000 points.

approximation to the true curve. The smaller the value of ε, the
less sparse the curve. However, with too small ε, the simulation
will require a large population of phase points. Thus, ε should
be small enough that the curve is well resolved but allow
reasonable computational cost. We also note that the number
of phase points that are required by the robust simulations in-
creases with increasing τ due to increase in the number of curve
folds (compare Fig. 7 for τ = 20 with Fig. 8 for τ = 200).

During the first phase of the protocol, curve B approaches
the origin when t = tB0 . Figures 7 and 8 are snapshots of regular

and robust evolution of energy curve B for t ∈ [0,τ ] with τ =
20 and τ = 200, respectively. The red (light gray) dots from
the regular simulation do not maintain a continuous curve,
while the blue (dark gray) plots from the robust simulation do.
It is clear that the true curve does not cross the origin, but is
wound around it, as shown by the blue (dark gray) curve in
Fig. 7 with τ = 20 and the inset to Fig. 8(f). The same multifoil
structure as in Fig. 7, but with more layers, appears in Fig. 8
where τ = 200. We conclude that (i) the area enclosed by the
true deformed curve is conserved (by Liouville’s theorem),
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(a) t = 0 (b) t = 0.6τ

(c) t = 0.68τ (d) t = 0.75τ

(e) t = 0.84τ (f) t = τ

FIG. 8. (Color online) Snapshots for 0 < t < τ with a larger τ = 200. Red (light gray) points are results from regular simulation, and the
blue (dark gray) thin curve is of robust simulation with ε = 0.0531. The inset in panel (f) shows a magnification of the small rectangular near
the origin, verifying that the origin (q,p) = (0,0) is still enclosed by the true time-evolved curve at time t = τ .

(ii) the multifoil structure has more layers with larger τ , and
(iii) delinquents of the regular simulation are a small portion
of phase points lying on the stretched foils [Fig. 8(f)]. For
larger τ , the curve experiences greater stretching, while the
proportion of delinquents becomes smaller, and most of the
phase points stay near the curve predicted by the hypothetical
evolution.

During the second phase (t ∈ [τ,2τ ]) in the hypothetical
evolution, curve A “crosses” the separatrix orbit lobe on the
q > 0 side together with the fixed point (q,p) = (0,0) when

t = tAx . This appears to happen in the regular simulation for
the same reason we discussed for the first phase. A curve made
of numerical sample particles from the regular simulation
will appear to be broken when consecutive points move far
apart as the true curve is stretched and wound around the
separatrix lobe. To illustrate the real dynamics, we use the
robust simulation for t ∈ [τ,2τ ] and prepare an initial (t = τ )
curve A as specified in the hypothetical evolution [Fig. 4(c)].
In Fig. 9(a) the closed curve encloses area JA that satisfies
Jx < JA < 2Jx . At the end of the second phase, the curve,
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(a) t = τ

(b) t = 2τ

FIG. 9. (Color online) Energy curve dynamics from a robust
simulation illustrate the real dynamics of the separatrix “crossing”
in the second phase. The insert shows a magnification about the
origin for (b). The “X” and “I” symbols label regions that are exterior
and interior to the closed curve; these designations are also used
for Figs. 10–11.

as shown in Fig. 9(b), deforms into a curve enclosing both
the right lobe of the separatrix orbit with an area Jx and a
region on the left side. For tAx < t � 2τ , the area on the left
side that is enclosed by the true curve is well approximated
by the area enclosed by the hypothetical curve. The fraction
of particles in q > 0 from a regular simulation becomes very
small for large τ , and the q > 0 lobe of area Jx eventually
appears not to be encircled in a regular simulation. However,
by Liouville’s theorem the area enclosed by the deformed true
curve is conserved. We obtain JA = J ′

A + Jx where J ′
A is the

A action for the hypothetical evolution for t > tAx .
During the third phase in the hypothetical evolution

[Figs. 4(f)–4(i)], curve B “swallows” the left separatrix
orbit lobe and the separatrix point (origin) at time t = tBx
[Figs. 4(g)–4(h)]. During this phase of the evolution curve
B gains energy, passing from negative to positive energies
at t = tBx . To investigate the real dynamics, we initialized
trajectories on the level surface H = JB(0) at time t = 2τ ,
which corresponds to the red (dark gray) curve in Fig. 4(f). We
then evolved this curve under the robust dynamics from t = 2τ

to t = 3τ . The results are shown in Fig. 10. The envelope of
the curve in Fig. 10(b) has the same shape as the hypothetical

(a) t = 2τ

(b) t = 3τ

FIG. 10. (Color online) Energy curve dynamics from robust sim-
ulation illustrates the real dynamics of the separatrix “crossing” in
the third phase. A schematic illustration of a magnification around
the origin is shown as the inset in panel (b).

red (dark gray) curve in Fig. 4(i). Most of the sample points
from the regular simulation are near the envelope of the curve
in Fig. 10(b), and there are a small number of delinquents,
which we expect will disappear if τ is large enough. Although
it is not obvious in the figure, the curve does not enclose the
area confined by the left lobe of the separatrix orbit. Instead,
it encloses the area confined within the multifoiled structure
that has numerous layers.

During the fourth phase, curve A gains energy and seems
to cross the origin in the regular simulation. This situation is
similar that of curve B’s “crossing” in the first phase, with the
direction of the crossing being opposite. Curve A starts from
inside the potential well on the right side and moves out at the
end (t = 4τ ). Figure 11 shows how the curve in Fig. 11(a) at
t = 3τ evolves by the end of the fourth phase, t = 4τ . Notice
that the curve becomes stretched and thus very thin. The curve
that appears to terminate at the origin in Fig. 11(b) is not a
single line but a folded curve enclosing the origin [see inset to
Fig. 11(b)]. In the regular simulation, most of the particles lie
close to the outer envelop of the structure shown in Fig. 11(b),
while a small number of particles, the delinquents, can be
found along the highly stretched foils.

Over the entire protocol, curves A and B experience the
four deformations described above. Each deformation involves
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(a) t = 3τ

(b) t = 4τ

FIG. 11. (Color online) Energy curve dynamics from robust sim-
ulation illustrates the real dynamics of the separatrix “crossing” in
the fourth phase, starting with a Hamiltonian level curve of action
JA(0) − Jx at time t = 3τ . The inset shows a schematic illustration
of a magnification around the origin of the robust curve calculation
result at time t = 4τ .

stretching a curve, A or B, as its energy approaches zero from
above or below. The multifoil structures produced by these
stretching deformations satisfy the topological constraints
imposed by Hamilton’s equations, while simultaneously ex-
plaining the apparent success of the hypothetical dynamics
defined in Sec. I (Figs. 3 and 4). We have illustrated each
deformation separately (Figs. 8–11), but when the system is
subjected to the full protocol the four deformations occur in
sequence, giving rise to a convoluted mixing of the curves A

and B. When using robust simulations to study the evolution
of both curves, we have found that for large τ (e.g., τ = 200)
the proliferation of phase points soon becomes excessive,
and it is numerically infeasible to follow the full evolution
through an entire cycle [0,4τ ]. However, for small enough
τ we are able to simulate the cycle robustly. We show the
results for τ = 20 in Fig. 12. Although it is not evident to
the eye, the evolving green (light gray) curve A encloses
the red (dark gray) curve B at all times, and each curve
remains topologically equivalent to a simple, closed loop
enclosing the origin (0,0). A regular simulation is incapable
of resolving the stretched, thin structure created by these
dynamics.

III. MODEL WITH DAMPING

Although the regular dynamics approximately follows the
hypothetical evolution when τ is large, adding a small amount
of friction can change the evolution dramatically. In this case
we consider the evolution,

q̇(t) = p, (8a)

ṗ(t) = −∂H (q,p,t)

∂q
− γp, (8b)

where γ is the friction coefficient. Figure 13 show regular
simulation results for τ = 1000. Figure 13(a) has γ = 0, while
Fig. 13(b) has γ = 2 × 10−5 (since 4γ τ = 0.08 the effect
of friction over the cycle time is fairly small). As seen in
Fig. 13(b), by adding friction, γ = 2 × 10−5, the result of a
regular simulation is changed in an interesting way. Particles
now appears to lie on four different energy curves instead of
two. The two densest curves are close to the γ = 0 curves in
Fig. 13(a), but there are additionally two sets of delinquents
that appear to populate two other curves, with approximate
actions Jx and 2Jx . The impact of the friction term is negligible
at all times except when t is close to tAx and tBx , when the
seeming separatrix “crossings” occur. To understand this we
will discuss the formation of the curve of green (light gray)
delinquents that encircle the dense red (dark gray) curve in
Fig. 13(b). [Similar considerations explains the presence of
the curve of red (dark gray) delinquents occurring between
the dense red (dark gray) and green (light gray) curves of
Fig. 13(b).] To start, we notice that in Fig. 5 (for t � tAx ),
when the A curve is about to cross the separatrix, it is very
close to the right lobe of the separatrix, and its energy is
slightly positive. As the trajectories corresponding to this curve
gradually lose energy to friction, some of the trajectories in
the region q > 0 acquire slightly negative energies, causing
them to be trapped in the right well. Let us consider the fate
of these delinquents during the remainder of the cycle. For
tAx < t < 2τ , these points remain in the right well, where
the potential energy is not changing, and they evolve along
approximately closed orbits enclosing an area Jx . At t = 2τ

the potential in q > 0 begins to increase, and these trajectories
now go over the potential hilltop at q = 0 and follow orbits
that approximately encircle both the q < 0 and the q > 0
separatrix lobes. Thus for t slightly greater than 2τ these
orbits now encircle an area corresponding to a total action
of approximately 2Jx . As t continues to increase, these orbits
continually gain energy while at the same time conserving
their action of approximately 2Jx . At the end of the cycle,
these trajectories are located along the curve of green (light
gray) delinquents shown in Fig. 13(b). Similar considerations
explain the “curve” of red (dark gray) delinquents. Thus adding
friction not only increases the number of delinquents but also
changes the distribution of sample particles in phase space.

IV. REPEATED CYCLING OF THE PROTOCOL
GIVEN BY EQS. (2) AND (3)

A. Evolution of the action distribution function

As we have seen, after a single cycle of the protocol given by
Eqs. (2) and (3), the predictions of the hypothetical dynamics
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(a) t = 0 (b) t = τ (c) t = 2τ

(d) t = 3τ (e) t = 4τ (f) t = 4τ zoom in

FIG. 12. (Color online) Snapshots for the full protocol with τ = 20. Panel (f) is a zoom magnification of a small region of panel (e).

for curves A and B acquire some error. Although this error
is small when τ is large, it can be expected to accumulate
if the protocol is repeated over many cycles. The effect of
repeated separatrix crossing on the distribution of action has
also been studied in Refs. [14–17]. One of the important
results is that in the limit of slow cycling, a Hamiltonian
with a pulsating separatrix is chaotic in the region of phase
space swept by the separatrix, and that the repeated separatrix
crossings lead to diffusion of the adiabatic invariant [15].
To numerically investigate these anticipated effects in our
system, we performed slow simulations (4τ = 2000) in which
trajectories were followed over 4000 cycles of the protocol. We
used 20 000 trajectories, with initial conditions sampled from
a curve enclosing J0 = 1.696, and we monitored the evolution
of the probability distribution of the action with time. Figure 14
shows this probability distribution of action after various

numbers of cycles, from 50 to 4000. As shown in Fig. 14(a),
after 50 cycles of repeated protocols, the width of the peak of
the simulated action distribution originally located at the initial
action value J = J0 expands. From Figs. 14(a)–14(d), we also
notice two other smaller peaks forming at J = 0 and J = Jx .
This corresponds to the fact that each time a fixed point cross-
ing (separatrix crossing) occurs, the “closed curve” formed by
particles winds around the fixed point (separatrix lobe). Most
of particles approximately follow the hypothetical dynamics so
that they form a closed curve which seemingly crosses the fixed
point (separatrix lobe), but a portion of particles remain close to
the fixed point where J = 0 (the separatrix lobe where J = Jx)
after this crossing. This is also seen in Fig. 8(f). After the fixed
point crossing in the first phase, a red (light gray) particle still
remains close to the fixed point. More generally [8], we expect
that the number of particles that end up close to the fixed point

(a) γ = 0 (b) γ = 2.0 × 10−5

FIG. 13. (Color online) Result of two energy curves after going through the whole protocol with (b) and without (a) friction, 4τ = 4000
and N = 2000.
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(a) t = 50 × 4τ (b) t = 100 × 4τ (c) t = 150 × 4τ

(d) t = 200 × 4τ (e) t = 2000 × 4τ (f) t = 2500 × 4τ

(g) t = 3000 × 4τ (h) t = 3500 × 4τ (i) t = 4000 × 4τ

FIG. 14. Simulated histograms of action J after evolving the system different numbers of cycles.

or the separatrix lobe becomes smaller with larger τ . Since
adiabaticity is spoiled by separatrix crossing and by the limited
slowness of the simulation, the argument that a particle with
initial action J ∈ [0,2Jx] should continue to have its action
in [0,2Jx] is only true for most of particles, but not all. The
simulated results show that with more and more cycles, an
increasing number of particles end up with action exceeding
2Jx . We see from Figs. 14(g), 14(h), and 14(i) that after 3000
cycles, the distribution becomes flat in [0,2Jx] by the end of
the simulation, while the tail in J > 2Jx keeps growing.

The flat action distribution seen in Fig. 14 at large time
for J < 2Jx is consistent with the result of Refs. [8,15] that
the dynamics is chaotic [15] and diffusive [8] in J in the
phase space region swept by the slowly pulsating separatrix.
Since the dynamics is sensitive to damping, we have used a
fourth order symplectic integrator [18] to avoid the friction
like numerical error from the regular RK4 integrator. A two-
dimensional histogram in phase space at the end of 4000th
cycle is shown in Fig. 15. Most particles are seen to be located
within the energy curve enclosing area J = 2Jx .

B. Repeated cycling of the hypothetical curve dynamics
with unequal well depths

We again consider the Hamiltonian, Eq. (2), but for the
case where the left and right wells are of unequal depth.
That is, the cycle through the square curve shown in Fig. 2,

(λR,λL): (0,0) → (1,0) → (1,1) → (0,1) → (0,0), is re-
placed by a rectangular-shaped cycle, (λR,λL): (0,0) →
(λR0,0) → (λR0,1) → (0,1) → (0,0), where λR0 �= 1. Thus,
at the end of the second phase of the cycle (i.e., at t = 2τ ) the
potential is as shown in Fig. 16.

Hence the separatrix lobes in Fig. 16 have different (q,p)
areas: JxR for the lobe in q > 0 and JxL > JxR for the lobe
in q < 0. We now consider the hypothetical curve dynamics
obeyed by most points for τ large. Let Jn denotes the action

FIG. 15. (Color online) Simulated histogram in phase space af-
ter 4000 repeating cycles. The curve J = 2Jx is shown in blue
(dark gray).
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q

V (q)

FIG. 16. The potential at t = 2τ .

at the end of the nth cycle. Then for 0 < J0 < JxL + JxR

we have that 0 < Jn < JxL + JxR for all subsequent cycles.
Furthermore, following the previous arguments in Sec. I B the
hypothetical curve dynamics yields

Jn+1 =
{
Jn + JxL if 0 � Jn < JxR

Jn − JxR if JxR < Jn < JxR + JxL

. (9)

Define θn = 2πJn/(JxL + JxR), R = JxL/(JxL + JxR). Then
Eq. (9) becomes

θn+1 = [θn + 2πR] modulo 2π. (10)

Equation (10) can be viewed as describing successive rigid
rotation of a circle by the angle 2πR. If the rotation number
R is rational, R = m/l, where m and l < m are integers,
then the orbit in θ is periodic with period l. For example,

for the case JxL = JxR ≡ Jx treated in Sec. IV A, R = 1/2,
and Jn oscillates sequentially between two values separated
by the amount Jx , with one value greater than Jx and one
less than Jx . For R irrational, successive orbit points, θ1,
θ2, θ3, . . . , generated by Eq. (10) ergodically fill the interval
0 < θ < 2π densely and uniformly as n → ∞. (In this case
the orbit is said to be quasiperiodic [19].) Thus, starting
from an initial condition 0 � J < JxL + JxR , many cycles
of the hypothetical curve evolution produce values of J that
densely and uniformly fill the interval 0 < J < JxL + JxR .
Note that, as implied by the results in Sec. IV A, in order for
the hypothetical curve dynamics (as described above) to be a
good representation of the true dynamics, we require that τ be
long and that n not be too large, with the limit on n increasing as
τ becomes longer. In Fig. 17 we show numerical results of the
histogram approximation of the action distribution function at
times corresponding to different numbers of cycles, starting
from an ensemble of 20 000 initial conditions uniformly
distributed on the action curve J0 = 1.17. We choose λL = 1
and λR = (

√
5 − 1)/2 so that their ratio is an irrational number.

As a consequence of the uniformity of the orbit density of
Jn in [0,JL + JR] for irrational R, we expect the action
distribution function to approach uniformity fast in the interval
[0,JL + JR], as shown in Figs. 17(a)–17(e), with a slowly
growing tail in J > Jtot , as shown in Figs. 17(e)–17(i).

(a) t = 50 × 4τ (b) t = 100 × 4τ (c) t = 150 × 4τ

(d) t = 200 × 4τ (e) t = 2000 × 4τ (f) t = 2500 × 4τ

(g) t = 3000 × 4τ (h) t = 3500 × 4τ (i) t = 4000 × 4τ

FIG. 17. Simulated histograms of action J after evolving the system different numbers of cycles with unequal left and right well depths
are shown. We use irrational ratio between well depths (λL,λR) = (1,(

√
5 − 1)/2). J0 is the initial action value and Jtot = JL + JR .
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V = ∞

V = 0
x

y

δ−δ

V = 0

V = −λL

V = −λR

FIG. 18. Billiard system with unchanged potential and changing
potential.

V. DISCUSSION OF A GENERALIZATION TO HIGHER
DIMENSIONALITY AND CHAOTIC ORBITS

We can apply the general considerations of Sec. I to chaotic
motion in higher dimensional systems by making use of the
so-called Ergodic Adiabatic Invariant [20–22]. In this context,
we consider Hamiltonian dynamics that is chaotic and ergodic
over the energy surface. If the Hamiltonian evolves sufficiently
slowly in time, at all times maintaining its chaotic and ergodic
behavior, then the volume Ĵ of (�q, �p) space enclosed by the
energy surface is an adiabatic invariant. This applies as an
approximation in the limit that the time it takes a chaotic
orbit to wander over the energy surface in a reasonably dense
manner is much shorter than the characteristic time over which
the Hamiltonian changes.

As an example illustrating the Ergodic Adiabatic Invariant,
consider a chaotic billiard in two spatial dimensions, as in
Fig. 18(a) where there is a region of zero potential in the
area enclosed by energy-conserving, specularly reflecting hard
walls. Due to the concave shape of the walls, the orbit of a
point mass M is typically chaotic and ergodic [e.g., randomly
picking some time instant far past the time at which the
particle orbit was launched, the spatial probability of the orbit
location is typically uniform throughout the billiard area and
the probability density of travel orientation is isotropic in
(0,2π )]. The volume enclosed by the energy surface is

Ĵ = 2πMEAB, (11)

where E is the particle energy and AB is the spatial area of the
billiard. If the walls of billiard change slowly with time so that
AB = AB(t), then the particle energy will change with time
E = E(t) so as to keep Ĵ approximately constant. (The error in
this type of adiabatic invariant is considered in Refs. [20,21].)

To construct an example analogous to that of our one-
dimensional problem, Eqs. (2) and (3) and Fig. 3, we consider
the situation shown in Fig. 18(b) where there are three regions
of spatially constant potential, x > δ with potential,

VR = −λR(t), (12)

|x| < δ with potential zero at all time, and x < −δ with
potential,

VL = −λL(t), (13)

where �λ(t) = (λR(t),λL(t)) goes through the same cycle as
Fig. 2 and Eq. (3). Thus at t = 0 the potential is zero
everywhere; in the first phase (0 < t < τ ) a well of negative

δ −δ

δ−δ

−δ

x

t = 0, 4τ

x

x

x

V (x, y = 0)

V (x, y = 0) V (x, y = 0)

V (x, y = 0)

δ

V = 0

V = ∞

t = 2τ

t = τ

t = 3τ

FIG. 19. Potential function for billiard system when t = 0, τ , 2τ ,
3τ , and 4τ .

potential and depth 1 forms in x > δ; in phase 2 (τ < t < 2τ )
a similar well of depth 1 forms in x < −δ; in phase 3
(2τ < t < 3τ ) the potential in x > δ is raised from −1 to zero
thus removing the well in x > δ; and in phase 4 (3τ < t < 4τ )
the potential in x < −δ is raised so as to return to the
situation at the beginning of the cycle [see Fig. 19, which
shows the potential versus x on the x axis (y = 0)]. Letting
Ĵx = 2πMEAx where Ax is the area of the left (x < −δ) or
right (x > δ) well, and using the same reasoning as in the
one-dimensional case (Sec. I B) we again obtain

ĴA(4τ ) = ĴA(0) − Ĵx, (14a)

ĴB(4τ ) = ĴB(0) + Ĵx, (14b)

for 2Ĵx > ĴA(0) > Ĵx > ĴB(0), which is the same as Eq. (7)
with the (q,p) areas J replaced by the (�q, �p) volumes Ĵ .
Thus this example displays the same type of topologically
forbidden apparent interchange of energy surfaces as in the
one-dimensional example (Sec. I).

It would be interesting to test this numerically. As opposed
to the adiabatic motion associated with closed periodic orbits,
the evolution in the case of ergodic adiabatic invariant has to
be substantially slower (τ has to be longer) both because the
chaotic ergodicity time to sample the whole energy surface can
be long compared to a similar energy particle’s period in a one-
dimensional Hamiltonian, and because in the case of the one-
dimensional adiabatic invariant the error can be exponentially
small in τ , while for the ergodic adiabatic invariant the error
scaling is much less favorable [20,21]. Thus numerical tests in
this case might be challenging.

VI. DISCUSSION AND CONCLUSIONS

In this paper, in order to resolve the seeming paradox
discussed in the Sec. I, we employ a simulation method we
called “robust.” The robust simulation evolves a large number
of particles initially lying on an energy curve under the slowly
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varying Hamiltonian. New particles are added if two originally
neighboring particles become significantly separated during
the evolution. With this simulation technique we demonstrate
the following scenario, many of the main features of which we
have related to previous theoretical work [4–17].

Before the fixed point (separatrix) crossing the curve of
points very accurately approximates an energy curve with
preserved enclosed phase-space area (action). However, upon
the occurrence of the fixed point (separatrix) crossing, the
curve deforms and winds around the fixed point (separatrix
lobe). The part of the curve that winds around the fixed point
(separatrix lobe) is greatly stretched and thus can hardly be
seen in the regular simulation. This effect becomes stronger as
the variation of Hamiltonian is made slower. Although a regu-
lar simulation accurately generates the dynamics of individual
particle, it is unable to resolve the correct topological structure
for the curve dynamics.

Some additional results are that (1) a small amount of
friction can cause a large change in the dynamics; (2) consistent
with Ref. [15], the effect of many repeated cycles of the
protocol is to flatten the distribution of actions within the
“adiabatically allowed” action range (Sec. IV A); (3) when
the two wells have unequal depths, the ideal curve dynamics
become quasiperiodic (Sec. IV); and (4) it appears possible
that analogous phenomena may occur in higher dimensional
system (Sec. V).
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