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Propagation of spiral waves pinned to circular and rectangular obstacles
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We present an investigation of spiral waves pinned to circular and rectangular obstacles with different
circumferences in both thin layers of the Belousov-Zhabotinsky reaction and numerical simulations with the
Oregonator model. For circular objects, the area always increases with the circumference. In contrast, we varied
the circumference of rectangles with equal areas by adjusting their width w and height h. For both obstacle
forms, the propagating parameters (i.e., wavelength, wave period, and velocity of pinned spiral waves) increase
with the circumference, regardless of the obstacle area. Despite these common features of the parameters, the
forms of pinned spiral waves depend on the obstacle shapes. The structures of spiral waves pinned to circles as
well as rectangles with the ratio w/h ∼ 1 are similar to Archimedean spirals. When w/h increases, deformations
of the spiral shapes are observed. For extremely thin rectangles with w/h � 1 , these shapes can be constructed by
employing semicircles with different radii which relate to the obstacle width and the core diameter of free spirals.
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I. INTRODUCTION

Propagating spiral waves have been discovered in various
reaction-diffusion systems such as CO oxidation on platinum
surfaces [1], cell aggregation in slime mold colonies [2],
electrical wave propagation in cardiac tissues [3], and concen-
tration waves in the Belousov-Zhabotinsky (BZ) reaction [4,5].
In the heart, electrical spiral waves are connected with cardiac
tachycardia and life-threatening fibrillations [6,7]. Such spiral
waves may cease when their tip hits the boundary of the
medium. However, they will survive much longer if they are
pinned to anatomical inhomogeneities or obstacles, e.g., veins
or scars [3].

Unexcitable disks have been widely taken as model obsta-
cles to study the effects of obstacle size on the properties of
spiral waves pinned to them. Tyson and Keener’s theoretical
work [8] predicted that a spiral wave rotating around a circular
hole has period and velocity that increase when the hole is
enlarged. Tanaka et al. [9] proposed a formula which showed
that the spiral wave velocity at the periphery of the circular
obstacle increases with the obstacle radius. Simulations by
Fu et al. [10] revealed that both unexcitable and partially
excitable circles cause the period of spiral waves to increase
with their radii. Similarly, Cherubini et al. [11] showed that
the wavelength and the period also increase linearly with
the obstacle radius in cardiac model systems, regardless of
whether the elasticity of the medium was included in the
simulations. For spiral waves in cardiomyocytes, their velocity
and wavelength were found to increase linearly with the
circumference of the circular obstacle [12].

Experiments using thin layers of the photosensitive
ruthenium-catalyzed BZ reaction [13] have demonstrated that
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wave period, wavelength, and velocity of a spiral wave
increased from 26 s, 1.3 mm, and 49.6 µm s−1 to 49 s,
3.4 mm, and 74.3 µm s−1, respectively, after an artificial
circular core was created by a laser spot of 1.2 mm in
diameter. A scroll ring (i.e., a spiral structure in three
dimensions) has been often observed to contract and even-
tually self-annihilate [14,15]. However, the contraction was
suppressed when the scroll ring was pinned to spherical plastic
beads [16,17].

In this article, we present an investigation of the dynamics
of pinned spiral waves in BZ media. We chose two different
simple forms of obstacles: circles and rectangles. Circles
are symmetric objects which were used in many studies of
pinned spiral waves in experiments and simulations, whereas
rectangles have the advantage that their width and height
are adjustable to obtain different circumferences while the
area can be fixed to a constant value. We confirmed our
experimental results by numerical simulations using the
Oregonator model [18,19].

II. EXPERIMENTS

A. Experimental methods

We prepared the Belousov-Zhabotinsky (BZ) solutions
from NaBrO3, H2SO4, malonic acid (MA), and ferroin, all
purchased from Merck. Stock solutions of NaBrO3 (1 M)
and MA (1 M) were freshly produced by dissolving powder
in deionized water (conductivity ∼ 0.056 µS cm−1), whereas
stock solutions of H2SO4 (2.5 M) and ferroin (25 mM)
were commercially available. To prevent any hydrodynamic
perturbation, the reaction was embedded in a 1.0% w/w
agarose gel (Sigma). Appropriate volumes of the stock
solutions were mixed and diluted in deionized water to form
BZ solutions with initial concentrations: [H2SO4] = 160 mM,
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FIG. 1. (Color online) Spiral waves in the BZ reaction: (a) A free
spiral wave (no obstacle) with a spiral core of 1.0 mm diameter (black
circle), and spiral waves pinned to (b) a circle with diameter 2.8 mm
and to rectangles with dimensions (c) 2.3 mm × 2.6 mm and (d) 6.5
mm × 0.9 mm.

[MA] = 50 mM, [NaBrO3] = 50 mM, and [ferroin] = 0.625
mM. At a temperature of 15 °C, the BZ solutions supported
spiral waves with wavelength, period, and velocity of 7.5 mm,
11.4 min, and 0.66 mm min−1, respectively.

The influence of unexcitable obstacles on the propagation
of spiral waves (shown, e.g., in Fig. 1) was investigated in
a uniform thin layer of the BZ reaction using a flat reactor
(volume 100 × 100 × 1.0 mm3) constructed from transparent
Plexiglas [20]. Eight circles with different diameters of 1.5,
1.9, 2.5, 2.8, 3.1, 3.5, 3.9, and 4.5 mm and four rectangles with
width and height of 2.3 × 2.6, 4.6 × 1.3, 4.9 × 1.2, and
6.5 × 0.9 mm2 were created also from Plexiglas plates
(thickness 1.0 mm, the same as for the BZ layers) using a
computerized laser cutting machine [see Figs. 1(b)–1(d) for
examples of the obstacles]. The area A and the circumference
l of circular and rectangular obstacles are summarized in
Fig. 2(a). In each experiment, one obstacle was attached in
the reactor before filling in the BZ solution.

A spiral wave pinned to an obstacle was initiated by
a two-layer method as demonstrated earlier (cf. Fig. 1 in
Ref. [21]). During the observations, the reactor was placed
in a transparent thermostatting bath to control the temperature
at 15 ± 0.1 °C. The bath was set between a white light source
and a color charge-coupled-device camera (Super-HAD, Sony)
to record the images of the spiral wave every second with a
resolution of 0.10 mm pixel−1. The wavelength, the period,
and the velocity of spiral fronts were measured at locations at
least one wavelength away from the tip of free spirals or from
the obstacle edges to which the spirals were pinned to avoid
the curvature effect as described in an earlier work [22].

It is worth noting that a difficulty of this experimental
investigation comes from the long period of pinned spiral
waves and emergences of undesired circular waves and
free spirals that are often generated by some sources, like
dust particles, in the BZ reaction. Due to their shorter
period, these waves, especially the free spirals, interact
and subsequently overcome the pinned spiral waves after
some time, as mentioned earlier by Steinbock and Müller
in Ref. [13]. If such undesired waves occur, by chance,

near the obstacles and the structure of pinned spiral wave is
perturbed, the measurement criterion described above cannot
be fulfilled. In this case, the experiments were repeated with
new preparations of the BZ reaction. Therefore, carefully
cleaning of the reactor as well as the obstacles before the
experiments should be done to minimize the undesired waves.

B. Experimental results

Figure 1 illustrates examples of spiral waves with different
wavelengths observed in our experiments. In the absence
of obstacles, the BZ solutions supported spiral waves with
wavelength λ = 7.5 mm and the spiral tip (measured location
as in Ref. [20]) traced a circular area of 1.0 mm in diameter, as
in Fig. 1(a). Spiral waves pinned to obstacles having a similar
area of about 6 mm2 but differing in shape and circumference l

are shown in Figs. 1(b)–1(d). The wavelength λ was enlarged
to 14.3 mm for the case of a circle with diameter 2.8 mm
[l = 8.8 mm, Fig. 1(b)]. A similar wavelength (λ = 14.4 mm)
was observed for the rectangle with dimensions 2.3 mm ×
2.6 mm [l = 9.8 mm, Fig. 1(c)]. The longer rectangle with
dimensions 6.5 mm × 0.9 mm [l = 14.8 mm, Fig. 1(d)]
resulted in a much larger wavelength of 20.3 mm.

Figure 2 summarizes the properties of pinned spiral waves
as well as obstacles investigated in our experiments. Since
free spiral waves in the BZ solutions rotated around a circular
core with diameter of 1.0 mm, we considered the core as a
circular obstacle and included the properties of the free spirals

FIG. 2. (Color online) Properties of spiral waves as a function of
the obstacle circumference l in the BZ reaction: (a) obstacle area
A, (b) wavelength λ, (c) wave period T, [(d) and (e)] velocities sobs

and s of waves adjacent to and far from the obstacles, respectively,
and (f) percentage difference �s between sobs and s. Filled circles:
no physical obstacles (spiral core diameter 1.0 mm); open circles:
circular obstacles; open rectangles: rectangular obstacles.
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in Fig. 2 (see filled circles) for the purpose of comparison.
Figure 2(a) shows the relation between area and circumference
of the obstacles. As the diameter increases from 1.0 to
4.5 mm, the circumference l and the area A of the circles
increase simultaneously from 3.1 to 14.1 mm and 0.8 to 15.9
mm2, respectively. In contrast, the four rectangles (2.3 × 2.6,
4.6 × 1.3, 4.9 × 1.2, and 6.5 × 0.9 mm2) with a circumference
l ranging between 9.8 and 14.8 mm have almost the same area
size of about 6 mm2.

The spiral waves propagated around the obstacles with
wavelength λ [Fig. 2(b)] and wave period T [Fig. 2(c)]
increasing with the obstacle circumference l in both the cases
of circles and rectangles. Moreover, data points from all
obstacles lay approximately on the same line of each graph.
The growth rate of the wavelength and the period with respect
to the circumference are estimated by linear fits as λ/l = 1.064
± 0.043 and T/l = 0.806 ± 0.047 min mm−1. To investigate the
influence of the obstacles on the velocity of the spiral waves,
we calculated the average velocity of the wave ends attached
to the obstacles sobs as the ratio between the circumference and
the period sobs = l/T as well as that of the spiral fronts far away
from the obstacles s as the ratio between the wavelength and
the period s = λ/T. As shown in Figs. 2(d) and 2(e), both sobs

and s increase with l. Even though sobs is always smaller than
s for a given obstacle, its growth rate of sobs (sobs/l = 0.037 ±
0.002 min−1) is larger than that of s (s/l = 0.024 ± 0.002
min−1). Therefore, their percentage difference [�s(%) =
|sobs − s|/(sobs + s)/2 × 100] becomes smaller, while the
circumference increases, as indicated in Fig. 2(f).

The structure of pinned spiral waves is also affected by
the obstacles, as shown in Fig 3. During their evolution
around circles, the spiral shape remains unchanged all the
time and is well fitted by an Archimedean spiral [Fig. 3(a)].
For a rectangle with the width w similar to the height h

(i.e., w/h = 0.9), the pinned spiral wave still looks similar
to an Archimedean spiral [Fig. 3(b)]. When the ratio w/h of
the rectangle is increased (i.e., to a more asymmetric shape),
the spiral deviates farther from an Archimedean one [e.g., in
Fig. 3(c) with w/h = 7.2]. In fact, the observed structures
differ from any other mathematical spiral known to us (i.e.,
Euler’s, Fermat’s, hyperbolic, logarithmic spirals, etc.). These
unusual spiral shapes also change periodically, while the
waves rotate around the obstacles. As shown in Fig. 3(c),

the wave front near the obstacle has a high curvature when
the wave end turns around the short boundaries on the left
and the right. As the wave end propagates further along the
long edges (the upper and the lower walls), the curvature
of the nearby front continually decreases. A description of
a spiral wave pinned to a rectangle similar to Fig. 3(c), but
with extremely high w/h, is given in the section of simulation
results (see Figs. 7 and 8).

III. SIMULATIONS

A. Simulation methods

Numerical simulations have been performed using the
two-variable Oregonator model, as in Eq. (1), to describe the
dynamics of the activator u and the controller v which account
for the concentrations of HBrO2 and the catalyst in the BZ
reaction, respectively,

∂u

∂t
= 1

ε

(
u − u2 − f v

u − q

u + q

)
+ Du∇2u,

(1)
∂v

∂t
= u − v + Dv∇2v.

As in a study by Jahnke and Winfree [19], the parameters were
chosen as ε = 0.01, q = 0.002, f = 1.4, and the diffusion
coefficients as Du = 1.0 and Dv = 0.6. For this parameter set,
the system supported spiral waves with a circular spiral core
of 0.9 space units (s.u.) in diameter, wavelength = 10.5 s.u.,
period = 1.55 time units (t.u.), and velocity = 6.76 s.u. t.u.−1.

The variables u and v in Eq. (1) were calculated using
an explicit Euler method with a nine-point approximation
of the two-dimensional Laplacian operator on a discrete
system of a dimensionless size = 160 × 160 s.u. with a
uniform grid space of �x = �y = 0.1 s.u. and a time step
�t = 3.0 × 10−3 t.u., as required for numerical stability [�t <

(3/8)(�x)]2 [23]). A single unexcitable circle or rectangle was
defined as the obstacle in each simulation. The boundaries of
both the medium and the obstacle had no-flux conditions. The
implementation of a circular obstacle with no-flux boundary
was described in a recent publication [24]. We tested totally
10 circles with different diameters of 1.5, 2.0, 3.0, 4.0, 5.0,
6.0, 7.0, 8.0, 9.0, and 10.0 s.u. and six rectangles with widths

FIG. 3. (Color online) Image overlays of counterclockwise rotating spiral waves pinned to (a) a circle with diameter 2.8 mm and to
rectangles with dimensions (b) 2.3 mm × 2.6 mm and (c) 6.5 mm × 0.9 mm in the BZ reaction. Dashed curves in (a) and (b) are Archimedean
spirals with origins located at the obstacle centers.
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FIG. 4. Spiral waves in the Oregonator model: (a) a free spiral
wave (no obstacle, spiral core diameter 0.9 s.u.) and spiral waves
pinned to (b) a circle with diameter of 1.5 s.u., (c) a rectangle with
dimensions 8.5 s.u. × 0.2 s.u. and (d) a circle with diameter of
5.0 s.u.

and heights of 1.3 × 1.3, 1.7 × 1.0, 3.4 × 0.5, 5.4 × 0.3,
8.5 × 0.2, and 17.0 × 0.1 s.u.2.

To create a spiral wave pinned to an obstacle, a planar wave
was triggered by setting a five-grid-point strip at the left edge
of the medium to an excited state (e.g., u = 1.0 and v = 0
for 0.0 � x � 0.5). When the wave front reached the obstacle
(around the middle of the medium), half of the medium was
reset to an excitable state (e.g., u = 0 and v = 0 for 80.0 � y �
160.0), leading to a planar wave with two ends attached to the
edges of the obstacle and the system. Subsequently, the wave
front curled to form a pinned spiral wave rotating around the
obstacle (cf. Fig. 1 in Ref. [21]).

B. Simulation results

Examples of spiral waves with wavelengths depending on
the obstacle circumference in the Oregonator model are shown
in Fig. 4. A free spiral wave, as in Fig. 4(a), has a wavelength
λ = 10.5 s.u. and its tip rotates around a circular core (diameter
0.9 s.u.). Spiral waves pinned to three different obstacles are
shown in Figs. 4(b)–4(d). A small circle with a diameter of
1.5 s.u. (area A = 1.77 s.u.2, circumference l = 4.7 s.u.), in
Fig. 4(b), caused a small expansion of the wavelength to 10.7
s.u., while a rectangle with dimensions 8.5 s.u. × 0.2 s.u. with
a smaller area A = 1.70 s.u.2, but a much longer l = 17.4 s.u.,
in Fig. 4(c), resulted in a spiral wave with a wavelength λ =
20.7 s.u. In Fig. 4(d), a pinned spiral wave with a wavelength
λ = 20.2 s.u., similar to that in Fig. 4(c), was obtained from
a circular obstacle with a diameter of 5.0 s.u. having a similar
circumference (l = 15.7 s.u.) but much larger area (A =
19.64 s.u.2) in comparison to the rectangle in Fig. 4(c).

The properties of pinned spiral waves and obstacles in our
simulations are presented in Fig. 5. As in the experimental
part, the free spiral waves were taken as if they were pinned to
a circular obstacle with diameter of 0.9 s.u. and their properties

FIG. 5. (Color online) Properties of spiral waves as a function of
the obstacle circumference l in the Oregonator model: (a) obstacle
area A, (b) wavelength λ, (c) wave period T, [(d) and (e)] velocities sobs

and s of waves adjacent to and far from the obstacles, respectively,
and (f) percentage difference �s of sobs and s. Filled circles: no
physical obstacles (spiral core diameter 0.9 s.u.); open circles: circular
obstacles; open rectangles: rectangular obstacles.

were included in this figure (see the filled circles). The obstacle
areas A with different circumferences l are shown in Fig. 5(a).
For the circular obstacles, the circumference l and the area
A increase simultaneously from 3.0 to 31.4 s.u. and 0.71 to
78.55 s.u.2, respectively, when the diameter increases from 0.9
to 10.0 s.u. In contrast, the six rectangles with circumferences
l between 5.2 and 34.2 s.u. have similar area sizes of 1.62–
1.70 s.u.2. As shown in Figs. 5(b)–5(f), both circular and
rectangular obstacles affected the properties of simulated spiral
waves in the same manner as found in the experiments. The
wavelength λ and the period T increase monotonously with
a growth rate of λ/l = 0.921 ± 0.020 and T/l = 0.052 ±
0.001 t.u. s.u.−1. For a given obstacle, the waves adjacent to
the obstacle always propagate slower than the waves far from
the obstacle (sobs < s) but the rate sobs/l = 0.288 ± 0.015
t.u.−1 is larger than s/l = 0.195 ± 0.006 t.u.−1. Thus, the
percentage difference �s of the velocities decreases, while
the circumference increases.

Figure 6 illustrates examples of spiral structures for differ-
ent obstacles. For circles and squares (i.e., the ratio of width
and height w/h = 1.0), the shape of the spiral waves is ap-
proximated by Archimedean spirals, as in Figs. 6(a) and 6(b),
respectively. For other rectangles with w/h > 1, the spiral
waves adapt to unusual shapes, which change periodically as
observed in our experiments. Figure 6(c) depicts a spiral wave
rotating around a rectangle with extremely high w/h of 170.
Shortly after the spiral performs a narrow U turn at the left and
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FIG. 6. (Color online) Image overlays of counterclockwise rotating spiral waves pinned to (a) a circle with diameter 5.0 s.u. mm and to
rectangles with dimensions (b) 1.3 s.u. × 1.3 s.u. and (c) 17.0 s.u. × 0.1 s.u. in the Oregonator model. Dashed curves in (a) and (b) are
Archimedean spirals with origins located at the obstacle centers.

the right ends, the wave front near the obstacle has a very high
curvature. Then its curvature decreases, while the wave front
traces the horizontal upper and lower walls of the obstacle.

In the following, we consider the spiral shapes in Fig. 6(c),
as a first attempt to describe the structures of spiral waves
pinned to rectangular obstacles. The overlaid image in Fig. 6(c)
is separated into two sections: an upper and a lower half as
shown in Figs. 7(a) and 7(b), respectively. Interestingly, they
look like two halves of the well-known target patterns, which
are often observed in excitable media. All wave fronts in both
Figs. 7(a) and 7(b) fit to semicircles, the centers of which are
close to (but do not touch) the right and the left boundary
of the obstacle, respectively. Figures 7(c)–7(e) show a time
series of the segment of a wave front close to the obstacle,
while the spiral turns around the right boundary. When the
segment reaches the lower right corner, it is almost planar
and propagates to the right [Fig. 7(c)]. Shortly afterwards it
passes the corner and an additional semicircular front appears
[Fig. 7(d)]. Subsequently, the semicircular front expands above
the obstacle, as if it is emitted from a point source according
to the Huygens principle. The center of the point source is
located at a distance δ ∼ 0.5 s.u. away from the obstacle wall
[Fig. 7(e)]. Note that the distance δ is approximately half of
the core diameter of a free spiral wave (0.9 s.u.).

Figure 8(a) illustrates a construction of the structure of the
spiral wave with its end moving along the upper boundary
of a very thin rectangle (dimensions = 17.0 s.u. × 0.1 s.u.)
by using the upper and lower semicircles shown in Figs. 7(a)
and 7(b). Starting from the wave end attached to the obstacle,
the wave front fits to the upper half of the smallest circle
C0. Then it continues with the lower half of the next circle
C1. Subsequently, the front alternates to the upper half of the
circle C2 and the lower half of the next circle C3, respectively.
In Fig. 8(b), centers and radii of the circles are drawn. The
centers of C0 and C2 are located close to the right boundary
of the obstacle, whereas those of C1 and C3 are at the
left boundary. The centers are far from the boundary at the
same distance (δ ∼ 0.5 s.u.). This description is valid for a
time interval of about half the rotation period, i.e., during the
time that the wave end needs to trace the upper boundary of

the obstacle from the right to the left end. Then the wave end
turns at the left boundary and a new smallest semicircular wave
(new C0) appears at the lower boundary. This spiral shape can

FIG. 7. (Color online) Estimation of the structure of a spiral wave
pinned to a very thin rectangle in the Oregonator model. Some wave
fronts in (a) the upper and (b) the lower sections of the overlaid
image in Fig. 6(c) are compared to semicircles (dashed curves), the
centers of which are located close to the right and the left edges of
the obstacle. [(c)–(e)] When the wave front turns by an angle of 180°
at the right boundary, a semicircular front appears, as if it is produced
from a point source [the center of the dashed circle in (e)].
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FIG. 8. (Color online) Graphical description of the structure of
a spiral wave pinned to a very thin rectangle (black bar) using
semicircles. (a) Three consecutive plots of the counterclockwise
rotating spiral with the end tracing the upper boundary of the obstacle.
The spiral structure at some instant of time can be estimated as a curve
that alternately connects upper and lower semicircles of different sizes
(corresponding halves of the dashed circles C0 to C3). (b) Estimation
of the radii r0 to r3 of the circles C0 to C3 having different centers
(two small filled circles) close to the left and the right boundary of
the obstacle. For the purpose of illustration, the distance δ is enlarged
to a scale different from that of the width w and the radii r0 to r3.
The vertical dashed lines represent the contact positions of semicircle
pairs as indicated by the labels.

be described in the same manner after a reorganization of the
circles C0 to C3 and their centers.

According to the lifetime of the smallest circle C0, which is
limited to about half of the rotation period as described above,
the radius r0 of the growing C0 is also limited by the obstacle
width w and the distance δ of the circle center: 0 < r0 � w +
δ. It can be clearly seen in Fig. 8(b) that the radii of the larger
circles are related to r0, w, and δ as rn = r0 + n(w + 2δ),
where n is an integer.

IV. DISCUSSION AND CONCLUSION

We have presented an investigation of spiral waves pinned
to unexcitable obstacles with different sizes and shapes in thin
layers of the BZ reaction as well as in simulated systems
based on the Oregonator model. Circles with increasing
areas and circumferences and rectangles with equal areas but
different circumferences were chosen as the obstacles. The

results in Figs. 1, 2, 4, and 5 show the common features
of the influence of these obstacles on the spiral waves: The
pinned spirals propagate with their wavelength, period, and
velocity increasing with the obstacle circumference, regardless
of the obstacle area. This implies that for such pinning
phenomena, the obstacle sizes are more influential due to their
circumferences than by their areas.

The time and space units of the simulations are related
to the experiments as t.u. = 1/k5[MA + BrMA] and s.u. =√

D/k5[MA + BrMA], where the rate of reaction k5 and the
diffusion D of HBrO2 are 0.4 M−1s−1 and 1.5 × 10−5cm2s−1,
respectively (cf. Ref. [19]). We used [MA+BrMA] =
0.050 M in the experiments so t.u. = 0.83 min and s.u. =
0.27 mm, which results in the core diameter, wavelength,
period, and velocity of the free spiral waves as 0.25 mm,
2.88 mm, 1.29 min, and 2.22 mm min−1, respectively. These
calculations imply that the excitability in our simulations is
relatively higher than that of the real BZ reaction in our experi-
ments, since the simulated spirals had a smaller core diameter,
shorter wavelength, shorter period, and higher velocity than
for the case of BZ spiral waves. In addition, although our
simulations were performed in the excitable regime of the
local dynamics [19], we conjecture that pinned spiral waves
in oscillatory media would behave in a similar manner. This
would hold at least for cases of long period oscillations,
because the oscillations will be suppressed by rotating spiral
waves with shorter periods, as found in experiments reported
earlier [13] as well as in this study.

Tyson and Keener described in Ref. [8] that in determining
the angular frequency ω and the asymptotic normal velocity
c (at locations far from the hole) of a spiral wave rotating
around a hole with radius r0 in a given medium, the curvature
relation (ω as a function of c and r0) and the dispersion relation
(c as a function of ω) must be simultaneously satisfied (see
Eq. (24) in Ref. [8]). Both relations are nonlinear and can be
solved graphically. Examples for various choices of r0 in the
Oregonator model are given in Fig. 18 of Ref. [8] (a graph of the
velocity c versus the period T). It is clear from the intersections
of the curves that both the velocity c and the period T of the
spiral wave increase simultaneously with the hole radius r0.
The results also imply that the wavelength λ increases with
r0, since λ = c T. Thus, our measurements of both circular
and rectangular obstacles shown in Figs. 2, 5(b), 5(c), and 5(e)
are consistent with the prediction in Ref. [8], even though it
was derived only for the circular case. The necessity of the
adjustment of the angular frequency ω due to the presence of
a circular hole in the core region of Archimedean spiral waves
has been confirmed in a theoretical study by M. Tsoi [25].
Starting from the curvature effect and the methods employed
in Ref. [8], Tanaka et al. [9] showed that the velocity of a spiral
wave at the periphery of a circular obstacle increases with the
radius of the obstacle (cf. Eq. (8) in Ref. [9]), which agrees
well with our results in Figs. 2(d) and 5(d).

Our present findings show that the proposed theories in
Refs. [8,9], which predict how the properties of a pinned spiral
wave depend on the radius of a circular obstacle, are also valid
for other forms (at least for rectangles) after introducing a
small modification in the formulas, e.g., replacing the radius r

of the circular obstacle by an equivalent quantity l/2π (since
r = l/2π for a circle), where l is the obstacle circumference.
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Circular obstacles have been used in many investigations
of the influence of obstacle size on the release of pinned
spiral waves. A train of electrical stimuli with a sufficiently
high frequency funpin can induce unpinning of spiral waves.
The funpin increases with the obstacle diameter [9,26–28]. An
applied electric field causes reorientation and deformation
of ring-shaped filaments of three-dimensional spiral waves
(so-called scroll rings) that are pinned to a pair of unexcitable
spheres in a BZ solution before the filaments are detached
from these spheres [29]. A recent investigation [21] on the
unpinning of spiral waves by an applied electrical current in
the BZ reaction illustrated that a current with a density higher
than a critical value Junpin can release spiral waves pinned to
circular unexcitable objects. Similarly to the frequency funpin,
the Junpin increases with the obstacle diameter. Further studies
on the unpinning of spiral waves from obstacles with other
forms, e.g., rectangles, are suggested to elucidate whether the
critical value of the forcing (for instance, the frequency funpin

of the wave train and the critical current density Junpin) relates
solely to the obstacle circumference, as in the case for the
properties of pinned spiral waves investigated here.

In contrast to the common features of the parameters of
propagation in Figs. 2 and 5, the circular and rectangular
obstacles result in different shapes of the spiral waves pinned
to them. As shown in Figs. 3 and 6, the spirals are similar to
Archimedean ones when pinned to circles or rectangles with
a width w similar to the height h (w/h � 1), while the ones
pinned to asymmetric rectangles have unusual forms, which
also change with time. The structure of a spiral wave pinned

to a rectangle with extremely high w/h can be described by
using semicircles with radii depending on the width w and the
core diameter (2δ) of free spirals, as illustrated in Figs. 7 and 8.

It has been shown earlier that the shapes of free spiral
waves with circular cores [30] or those pinned to circular
obstacles [31] are comparable to Archimedean spirals.
Actually, meandering spiral waves rotating about noncircular
cores [22 and references therein] have been more often
observed, since they occur in broad ranges of system
parameters of excitable media. The structures of these spirals,
especially for extremely anisotropic cases like Z-shaped and
linear cores [32–35], are complicated and have not yet been
analyzed sufficiently. We assume that the structure of spiral
waves pinned to a very thin rectangular obstacle, as described
in this study, is similar to but simpler than that of free spiral
waves with linear cores. While the thin rectangle remains at
the same location all the time, the orientation of the linear
cores is time dependent (see, e.g., Fig. 6(a) in Ref. [32] and
Fig. 1(f) in Ref. [34]). Therefore, the fixed thin rectangular
obstacle might be taken as a special case of the linear cores
that remain stable or change very slowly in time.
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