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Exceptional points in coupled dissipative dynamical systems
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We study the transient behavior in coupled dissipative dynamical systems based on the linear analysis around
the steady state. We find that the transient time is minimized at a specific set of system parameters and show that
at this parameter set, two eigenvalues and two eigenvectors of the Jacobian matrix coalesce at the same time; this
degenerate point is called the exceptional point. For the case of coupled limit-cycle oscillators, we investigate
the transient behavior into the amplitude death state, and clarify that the exceptional point is associated with a
critical point of frequency locking, as well as the transition of the envelope oscillation.
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I. INTRODUCTION

In the eigenvalue problem of a non-Hermitian matrix, an
exceptional point (EP) is a square-root branch point on a two-
dimensional parameter space, at which not only eigenvalues
but also the associated eigenvectors coalesce [1,2]. The
peculiar feature related to the EP is the exchange of eigenvalues
and eigenvectors after a parameter variation encircling the EP
once, of which the topological structure is the same as that of a
Möbius strip [3]. The EPs and relating interesting phenomena
have mainly been studied in open quantum systems described
by non-Hermitian Hamiltonians, such as atomic spectra in
fields [4,5], microwave cavity experiments [6,7], chaotic
optical microcavities [8], PT-symmetric quantum systems
[9–11], and so on. Besides the open quantum systems, the EPs
are also observed in coupled driven damped oscillators realized
by electric circuits, which are purely classical systems [12,13].

The amplitude death (AD) is the complete suppression of
oscillations of the entire system when the nonlinear dynamical
systems are coupled [14]. The AD has been observed in many
coupled dynamical systems and the AD is achieved by various
types of coupling interactions, i.e., the diffusive coupling in
mismatched oscillators [15–18], delayed coupling [19–23],
conjugate coupling [24], dynamical coupling [25], nonlinear
coupling [26,27], etc. The AD has also been studied in
networks of coupled oscillators [17,28] and a variety of
topologies such as a ring [29,30], small world [31], and scale-
free networks [32]. Recently, the suppressions of oscillations
are strictly classified into amplitude death and oscillation
death, where the asymptotic steady state is homogeneous and
inhomogeneous, respectively [14,33].

In this paper, we study the transient behaviors of coupled
dissipative dynamical systems based on the linear analysis
around the steady state. We find that the systems show
the largest damping rate at an EP, which comes from the
intrinsic feature of a square-root branch point. For the case
of coupled limit-cycle oscillators, the transient behavior into
the amplitude death state is studied. We demonstrate that the
EP is associated with a critical point of frequency locking, as
well as the transition of the envelope oscillation.
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This paper is organized as follows. In Sec. II, we show the
occurrence of EP in coupled damped oscillators and discuss
the damping behavior around the EP in a pedagogical way. In
Sec. III, we present the transient behavior into the AD in cou-
pled limit-cycle oscillators, and it is explained based on the ex-
istence of an EP. Finally, we summarize our results in Sec. IV.

II. EXCEPTIONAL POINT IN COUPLED
DAMPED OSCILLATORS

We consider the coupled damped oscillators,

ẍ1 + γ1ẋ1 + ω2
1x1 = −kx2,

(1)
ẍ2 + γ2ẋ2 + ω2

2x2 = −kx1,

where γi and ωi (i = 1,2) are the damping ratio and undamped
angular frequency of the ith oscillator, and k is the coupling
constant. Figure 1 shows the time series of x1 and x2 of
Eq. (1) in the logarithmic scale when ω1 = ω2 = 1.0 and
γ1 = 0. First, we consider the uncoupled case, k = 0. As we set
γ1 = 0 and γ2 = 0.1, the time series of x1 exhibits a stationary
oscillation without damping, while an exponential damping
appears in the time series of x2, as shown in Fig. 1(a). Next,
we consider a finite coupling strength of k = 0.1. In Fig. 1(b)
with γ1 = 0 and γ2 = 0.1, both time series of x1 and x2 exhibit
decays with envelope oscillations. Their decay rates, given
by the slope of time series of x1 and x2 in the logarithmic
plot, are equal. As γ2 increases from 0.1, the period of the
envelope oscillation and the decay rate increase. At γ2 ∼ 0.2,
the envelope oscillation disappears and the decay rate reaches a
maximum [see Fig. 1(c)]. When γ2 increases further, the decay
rate decreases again. For example, the time series of the case
with γ2 = 0.3 is shown in Fig. 1(d). Although the amplitudes
of two oscillators are different, as shown in the inset, their
decay rates are equal. In our work, we concentrate on the case
where each uncoupled oscillator has a zero or weak damping
ratio so that their dampings are underdamped.

In order to understand the variation of decay rate with γ2 and
its maximum at γ2 ∼ 0.2, we analyze the eigenvalues of a sta-
bility matrix around the origin. Equation (1) can be rewritten as

ẋ1 = y1, ẏ1 = −γ1y1 − ω2
1x1 − kx2,

ẋ2 = y2, ẏ2 = −γ2y2 − ω2
2x2 − kx1. (2)
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FIG. 1. (Color online) Time series of x1 (black) and x2 (red) when
ω1 = ω2 = 1.0 and γ1 = 0.0. (a) No coupling case of k = 0.0 with
γ2 = 0.1. Coupling cases of k = 0.1 with (b) γ2 = 0.1, (c) γ2 = 0.2,
and (d) γ2 = 0.3. The insets show linearly scaled time series.

This set of equations is represented by a vector equation,
�̇z(t) = M�z(t), where �z(t) = [x1(t),y1(t),x2(t),y2(t)]T . The
stability matrix M is then given by

M =

⎛
⎜⎜⎝

0 1 0 0
−ω2

1 −γ1 −k 0
0 0 0 1

−k 0 −ω2
2 −γ2

⎞
⎟⎟⎠ . (3)

The eigenvalues λl of M are complex numbers, because the
matrix M is non-Hermitian. Since the time evolution of an
eigenvector êl is given as el(t) = êl exp(λlt), the real and
imaginary parts of the eigenvalues correspond to the decay
rates and the angular frequency of the corresponding time
series, respectively.

The complex eigenvalues with positive imaginary parts are
shown as a function of γ2 in Figs. 2(a) and 2(b). When γ2 <

0.2, the real parts of the two eigenvalues are very close but
their imaginary parts are quite different, which means that the
dynamics of the eigenvectors would show almost the same
decay rate and different angular frequencies. In this range, the
time series of x1 and x2 would show a constant overall slope
given by the close real parts, but they would have an oscillatory
envelope whose frequency is determined by the difference of
the imaginary parts of eigenvalues. This behavior has been
shown in Fig. 1(b). As γ2 approaches a value of 0.2, the real
parts of two eigenvalues decrease and the imaginary parts
become closer to each other, which corresponds to the time
series with a faster decay and a longer period of envelope
oscillation, respectively.

FIG. 2. (Color online) (a) Real and (b) imaginary parts of two
eigenvalues of which the imaginary parts are positive as a function
of γ2 when ω2 = 1.0 (black) and ω2 = 1.005 (red) with γ1 = 0.0 and
ω1 = 1.0. (c) Real and (d) imaginary parts of the eigenvalues near
EP as functions of ω2 and γ2 when ω1 = 1.0 and γ1 = 0.0. The black
circle, red dotted line, and blue dotted line represent the EP, real value
crossing line, and imaginary value crossing line, respectively.

As γ2 goes further beyond 0.2, two real parts start to split
but the difference of the two imaginary parts become small.
The splitting of two real parts indicates that the time series can
be characterized by a combination of fast and slow decays. The
fast decay might be seen only in the short-time behavior, and
the slow decay, corresponding to the larger real part, dominates
the long-time behavior of the time series. Thus, although
two imaginary parts are still different, there is no envelope
oscillation due to the fast suppression of one eigencomponent
with the lower real part [see Fig. 1(d)]. Note that the larger
real part, governing long-time behavior, has a minimum value
around at γ2 ∼ 0.2, which explains the maximum decay rate
observed in Fig. 1(c).

Note that two complex eigenvalues are very close at
γ2 ∼ 0.2, as shown by the black lines in Figs. 2(a) and 2(b). We
can expect that there should be a degenerate point, called the
exceptional point (EP) [1,2], where two complex eigenvalues
coalesce, in the system parameter space. By slightly adjusting
ω2 as ω2 = 1.005, we find an EP at (ω2,γ2) ∼ (1.005,0.2),
which is shown by the red lines in Figs. 2(a) and 2(b). It is
well known that two eigenvectors also coalesce at the EP and
mathematically the EP is the square-root branch point. The
EP can be characterized by a peculiar eigenvalue surfaces in
a parameter plane. In Figs. 2(c) and 2(d), the surfaces of the
two eigenvalues are plotted in the (ω2,γ2) plane. The topology
of the surface explains the exchange of two eigenvalues for a
parameter variation encircling the EP [3]. It is emphasized that
the larger real part becomes a local minimum at the EP, indi-
cating the local maximum decay rate in the parameter plane.

III. EXCEPTIONAL POINT AND AMPLITUDE DEATH IN
COUPLED LIMIT-CYCLE OSCILLATORS

In this section, we study the role of the EP when the
amplitude death (AD) occurs in coupled limit-cycle oscillators.
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Let us start with the following system of two Stuart-Landau
limit-cycle oscillators with diffusive coupling,

ż1 = (R1 + iω1 − |z1|2)z1 + k(z2 − z1),
(4)

ż2 = (R2 + iω2 − |z2|2)z2 + k(z1 − z2),

where zj are complex variables, ωj are the intrinsic angular
frequencies of uncoupled j th limit-cycle oscillators, and k is
the coupling strength. Without coupling (k = 0), two limit-
cycle oscillators are attracted to the limit cycle with radii√

Rj for Rj > 0 and the origin for Rj < 0. The Stuart-Landau
limit-cycle oscillator is renowned as a paradigmatic model
for studying the AD in coupled nonlinear oscillators because
it is a prototypical system exhibiting a Hopf bifurcation
that can reveal universal features of many practical systems.
For instance, a variety of spatiotemporal periodic patterns
can be created in two-dimensional lattice of delay-coupled
Stuart-Landau oscillators [34].

A. The amplitude death in coupled limit-cycle oscillators

It has been well known that the AD occurs in coupled limit-
cycle oscillators at proper k if the �ω = ω2 − ω1 is sufficiently
large when R1 = R2 = 1.0 [16–18]. In order to obtain the
AD region in the parameter space (�ω,k), we calculate the
Jacobian matrix J at the origin, which is given by

J =

⎛
⎜⎝

R1 − k −ω1 k 0
ω1 R1 − k 0 k

k 0 R2 − k −ω2

0 k ω2 R2 − k

⎞
⎟⎠ . (5)

The eigenvalues λ of J are complex numbers because the
Jacobian matrix J is a non-Hermitian matrix. That is, the real
and imaginary parts are the decay (or growing) rates and the
angular frequency of the orbit near the origin, respectively.

The occurrence of AD is determined by the stability of
the origin, which is related to the maximal value of the real
parts of complex eigenvalues. If the maximal value is negative,
the origin is a stable fixed point and therefore the system
exhibits the AD. The colored region in Figs. 3(a)–3(c) where
the maximal value is negative represents the AD regions when
R2 = 1.0, 0.0, and −1.0, respectively, with R1 = 1.0. As R2

decreases from 1.0 to −1.0, the AD region becomes larger.
Figure 3(d) clearly shows the transition between positive and
negative values of the maximal real parts as a function of k

when �ω is fixed.

B. The exceptional point in coupled limit-cycle oscillators

Similarly as for the case of coupled damped oscillators,
there also exists an EP in the coupled limit-cycle oscillators.
The EP occurs at k = 2.0 when �ω = 4.0 and R1 = R2 =
1.0, which is the double root position in Figs. 3(d) and 3(e).
Considering R1 = R2 = R, four eigenvalues of Eq. (5) are
given by

− k + R ±
√

− (�ω)2

2
+ k2 − �,

(6)

−k + R ±
√

− (�ω)2

2
+ k2 + �,

FIG. 3. (Color online) Maximal values of the real parts of eigen-
values with (a) R2 = 1.0, (b) R2 = 0.0, and (c) R2 = −1.0 when
R1 = 1.0. The colored and white regions represent negative and
positive values, respectively. The blue dotted line represents the
EP. (d) Real and (e) imaginary parts of two eigenvalues of which
imaginary parts are positive as a function of k when �ω = 4.0
and R1 = 1.0. Black, red, and green curves represent the cases of
R2 = 1.0, 0.0, and −1.0, respectively.

where � = �ω
2 (

√
�ω2 − 4k2 + 2ω1) + ω1(

√
�ω2 − 4k2 +

ω1) and � = �ω
2 (

√
�ω2 − 4k2 − 2ω1) + ω1(

√
�ω2 − 4k2 −

ω1), respectively. From the condition for EP, i.e., � = −�, the
analytic condition for the existence of EP is given by

R1 = R2, k = �ω/2. (7)

The eigenvectors also coalesce at this condition. According to
the Eq. (7), the EP occurs on the line in the parameter space
(�ω,k) when �R = R2 − R1 = 0.0, as shown in Fig. 3(a).
If �ω is fixed, it is expected that a system shows the fastest
attracting to the AD state on the condition of EP, k = �ω/2.
Because the decaying rate to the AD state can be considered as
a maximal value of Re(λ) and the maximal value of Re(λ) has
its minimum at the condition of EP, k = �ω/2 [cf. Fig. 3(d)].
In addition, there is a transition of transient behavior to the
AD state on the EP, which is the transition between decaying
with envelope oscillation due to the effective beat note for
k < �ω/2 and decaying without envelope oscillation for k >

�ω/2. It is noted that as R2 decreases from 1.0, the AD region
becomes larger, while the fastest attracting to the AD state
occurs on the EP when R2 = 1.0.

Figure 4 shows the complex eigenvalues near the EP in
the parameter space (�R,k), which is the singular point.

FIG. 4. (Color online) (a) Real and (b) imaginary parts of two
eigenvalues near the EP at (�R,k) = (0.0,2.0) when �ω = 4.0
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FIG. 5. (Color online) Time series of real parts of z1 (black) and
z2 (red) with (a) k = 0.5, (b) 1.1, (c) 2.0, (d) 2.4, and (e) 3.0 when
�ω = 4.0 and R1 = R2 = 1.0.

We note that there are the same topological structures of
eigenvalues near the EPs in coupled limit-cycle oscillators
with the parameter space (�R,�ω) when k = 2.0, according
to Eq. (7).

C. Numerical results

In order to confirm the role of the EP expected in the
previous subsection, we obtain the time series of z1 and z2 as k

increases. Figure 5 shows the time series of real parts of z1 and
z2 with different k when �ω = 4.0 and R1 = R2 = 1.0. The
coupling is turned on at t = 10.0, i.e., k = 0.0 when t < 10.0.
At k = 0.5, neither AD nor 1:1 frequency locking occurs
because of small coupling strength. Let us remind that the
AD and 1:1 frequency locking occur when the maximal value
of Re(λ) in Fig. 3(d) is lower than zero and the pair of Im(λ)
in Fig. 3(e) are equal to each other, respectively. At k = 1.1,
the AD occurs with transient behavior of envelope oscillation
but there is no frequency locking on the transient behavior. At
k = 2.0, the AD occurs without envelope oscillatory transient
behavior and the decay is fastest because this is the condition
of the EP. The 1:1 frequency locking on the transient behavior
is also shown. At k = 2.4, the AD occurs without envelope
oscillation and there is frequency locking on the transient
behavior. The decay is slower than that in the case of k = 2.0.
At k = 3.0, the AD does not occur, but there is frequency
locking. In the AD region (1.0 < k < 2.5), the EP is the
transition point between decaying with and without envelope
oscillations. Also, in this region, the EP is the transition point

FIG. 6. (Color online) −(1/tAD) as functions of �ω and k with
(a) R2 = 1.0, (b) 0.0, and (c) −1.0 when R1 = 1.0. The colored and
white regions represent the AD and non-AD regions, respectively.
The blue dotted line represents the EP. (d) tAD as a function of k when
R2 = 1.0 (black), 0.0 (red), and −1.0 (green) when �ω = 4.0.

for frequency locking. The imaginary parts of eigenvalues
relating to the frequencies change two different values into one
value via the EP when R2 = 1.0. If R1 �= R2, two different
frequencies are changed into two close frequencies not an
identical frequency and therefore there is no exact frequency
locking of transient.

The important role of EP in AD is that the condition of
EP guarantees the fastest attracting time to the origin, i.e., the
AD state. We investigate the attracting time to the AD state,
denoted by tAD. Here, tAD is calculated as follows: If, at time
t , the radii of two oscillators first become smaller than cAD,
i.e., the criterion for the AD state, and continue to be smaller
than cAD for 200 s, then tAD is equal to t − ton, where ton is the
time when the coupling is turned on. We set cAD = 0.001 and
ton = 10.0. Figures 6(a)–6(c) show −(1/tAD), with various R2

when R1 = 1.0, on the parameter space (�ω,k). Figure 6(d)
shows −(1/tAD) as a function of k when R1 = 1.0 and
�ω = 4.0 and the local minimum appears more clear when
the parameters of system are closer to the EP. Contrary to
the expectation from the maximal real parts of eigenvalues in
Fig. 3, there are many wrinkled patterns when R2 = 1.0. The
wrinkled patterns gradually disappear as R2 decreases and then
there are no patterns when R2 = −1.0. The different ton, which
means the different initial conditions, makes the different
wrinkled patterns. The wrinkled patterns when k < �ω/2
are caused by the oscillatory transient behavior. However,
the reason for the wrinkled patterns when k > �ω/2 is that
the transition from fast decay to slow decay occurs when the
amplitudes of the oscillators are smaller than our critical value
cAD and therefore the patterns disappear if cAD is sufficiently
small.
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FIG. 7. (Color online) (a) Maximum of real parts of eigenvalues
and (b) −(1/tAD) as functions of �R and k with �ω = 4.0. The
colored and white regions represent the AD and non-AD regions,
respectively.

Figure 7 shows the maximal values of real parts of
eigenvalues and −(1/tAD) with the parameter space (�R,k)
when �ω = 4.0. As shown in Fig. 4, the EP exists at
(�R,k) = (0.0,2.0), where the maximal values of real parts
of eigenvalues are local minimum, as shown in Fig. 7(a).
tAD are also local minimum at the EP. In Fig. 7(b), the
wrinkled patterns exist at �R = 0.0 but they disappear as �R

deviates from 0.0. In principle, for the long-time behavior, the
oscillation behavior, such as underdamped case, exists only on
the line, �R = 0 and k < �ω/2, because the real parts of two
eigenvalues are the same on the line in the parameter space
(�R,k). Different real parts of the two eigenvalues mean the
system has two different decay rates and therefore only one
frequency is dominant for a long-time behavior. It is noted
that the EP is not a local minimal point on the parameter
space (�ω,k) because the EP forms the lines as shown in
Figs. 3(a) and 6(a). That is, the maximal values of the real

parts of the eigenvalues decrease as the �ω increases on the
EP line, k = �ω/2.

IV. SUMMARY

We have studied the exceptional point in dynamical systems
and investigated the role of the exceptional point in the
transient behaviors of amplitude death in coupled limit-cycle
oscillators. The exceptional point is associated with a critical
point of frequency locking as well as the transition of the
envelope oscillation, which also gives the fastest decay to the
amplitude death in coupled limit-cycle oscillators. In addition,
for other examples (two Van der Pol oscillators interacting
through mean-field diffusive coupling, and a coupled system
consisting of the Rössler and a linear oscillator), we have
obtained the largest decay rates and transition behaviors at the
exceptional point (not shown here). As a result, the transient
behaviors related to the exceptional point appear commonly
for the coupled dissipative dynamical systems, independent of
the specific properties of systems. We expect the exceptional
point is important in the study of various disciplines, such
as nonequilibrium statistical mechanics [35] and transient
chaos [36,37], because the exceptional point is not related
to the stationary states but to the transient behaviors.
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