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Geometry of the edge of chaos in a low-dimensional turbulent shear flow model
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We investigate the geometry of the edge of chaos for a nine-dimensional sinusoidal shear flow model and show
how the shape of the edge of chaos changes with increasing Reynolds number. Furthermore, we numerically
compute the scaling of the minimum perturbation required to drive the laminar attracting state into the turbulent
region. We find this minimum perturbation to scale with the Reynolds number as Re−2.
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I. INTRODUCTION

Understanding the transition to turbulence is a long-lasting
problem in fluid dynamics, particularly in the case of simple
flows in which the base flow does not become linearly unstable.
This applies to the Hagen-Poiseuille or pipe flow, which is
stable for all Reynolds numbers Re, or the plane Couette
flow [1].

At low Reynolds numbers, all initial conditions decay to the
laminar profile for those flows. At higher Reynolds numbers,
above a critical value, perturbations of the flow obtained by,
e.g., placing obstacles into the flow or making boundaries
of the pipe or the plates rough enough can lead to turbulent
states, which may last for a long time. As the Reynolds number
increases, smaller perturbations are required to destabilize the
laminar flow. The magnitude of the perturbation that disrupts
the laminar flow depends not only on the Reynolds number,
but also on the direction of the perturbation. Here direction
refers to direction in infinite-dimensional state space. Thus,
some directions require a much larger magnitude perturbation
to destabilize the laminar flow to turbulent states, as compared
to others. Low-dimensional models, based on the Galerkin
method, have been used to better understand the turbulent
behavior [2–7]. Depending on the model and the Reynolds
number, when the system exhibits turbulence, the turbulent
state can be either transient or sustained. Here we continue the
practice of referring to transient or sustained chaotic oscilla-
tions obtained in low-dimensional models as turbulence [2–7].
Low-dimensional models can be suggestive of properties
observed in higher-dimensional models. For example, the
nine-dimensional model in [8] suggested ideas which were
followed up in the ≈120 000-dimensional model [9], which
turned out to have similar properties. However, there are no
guarantees that low-dimensional phenomena will be reflected
in the higher-dimensional model.

Numerical simulations and experiments for plane Couette
flow [7,10–12] and pipe flow [10,13–18] show that the
turbulent state is transient for lower Reynolds numbers. In the
transient turbulence region, the system exhibits an exponential
distribution of lifetimes (where the lifetime is the time taken
for a given trajectory to reach a specified distance from the
laminar attractor). This exponential distribution is indicative
of a chaotic saddle (nonattracting chaotic invariant set). A
transition of turbulence from transient to sustained, i.e., from a
chaotic saddle to a chaotic attractor, would require a boundary
crisis [19] and would result in a diverging average lifetime

of a trajectory. References [10–18] show that the median
lifetime varies as 1/(Rec − Re), where Rec denotes the critical
Reynolds number, beyond which the system exhibits sustained
turbulence coexisting with the laminar attracting state; that is,
the turbulent state is a chaotic attractor. Other studies [2,20,21]
suggest that the average lifetime of a trajectory increases
rapidly with Reynolds number, but does not diverge, and
present evidence that it increases exponentially, so that the
turbulent state is transient for all Reynolds numbers. Hof
et al. [22] have shown for the pipe flow that no critical
point for the transition to persistent turbulence exists. More
recently, experiments and extensive numerical simulations
have revealed that there is a transition between the laminar
and the turbulent state for higher Reynolds numbers (Re >

2300) [23,24]. Moreover, the trajectories for high Reynolds
numbers possess a memory expressed by a superexponential
scaling with the Reynolds number. The explanation of this
transition is based on the existence of spatially localized
turbulent structures, so-called puffs, which become more
frequent at higher Reynolds numbers. This finding suggests
not only that the transition to turbulence is due to a more
complex temporal structure of the flow field, but that spatial
aspects need to be taken into account.

Recognizing the great difficulty of conducting such studies
for the full partial differential equations for the fluid flow,
we examine, instead, a nine-dimensional model of sinusoidal
shear flow [2,25,26] that is a generalization of the model
in [27]. In this model, since the laminar state is linearly stable,
irrespective of whether the turbulent state is a chaotic saddle
or a chaotic attractor, infinitesimal perturbations applied to
the laminar state will always decay. Evidence of the one
or the other scenario can only be obtained using finite size
perturbations. While transient turbulent states are related to
finite though possibly very long decay times, permanent
turbulence will be reached by perturbations which never decay.

Choosing any initial condition lying in the basin of the
laminar attractor, and moving along any direction in the nine-
dimensional space, one almost always encounters turbulent
behavior, and this turbulent behavior is preceded by a disconti-
nuity in the lifetimes. Such a point of discontinuity is said to lie
in the “edge of chaos” [8]. The first computation of the edge in a
pipe flow has been reported in [28]. Lebowitz [29,30] examines
the emergence of the edge via a homoclinic bifurcation and
its stability behavior in low-dimensional models of a shear
flow. Lebowitz et al. [31] analyze the structure of the edge
in low-dimensional shear flow models and show that the
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edge winds endlessly around the orbits which decay more
slowly towards the laminar state, so that the slow-decaying
orbits can circumnavigate the edge to reach the laminar state.
Reference [32] studies the structure of the edge in a numerical
model of the plane Couette flow with 64 × 36 × 64 modes.

Reference [33] investigates the structure of the stable
manifold of the saddle on the edge for the plane Couette flow,
based on minimal-energy perturbations to the laminar state
that reach the edge, using time as a parameter. Reference [34]
investigates a plane Couette flow and uses an optimization
method to compute the minimal-energy perturbations inducing
transition, as a combination of a finite number of linear optimal
modes. More recently, a variational method [35] has been used
to investigate the nonlinear stability of the pipe flow [36,37]
and the plane Couette flow [38–41]. This method determines
“the minimal seed of turbulent transition [37],” that is, the
initial condition of minimal energy leading eventually to the
edge state by optimizing a functional linked to turbulence,
such as the perturbation kinetic energy [36,37,39,40] or the
time-averaged dissipation [38,41] over all possible initial
disturbances of a given magnitude. These initial disturbances
evolve based on the Navier-Stokes equations to a large target
time. The initial disturbance norm is gradually increased
until a sudden jump is observed in the optimized functional.
The jump corresponds to encountering a state lying beyond
the edge. Different exponents relating the scaling of the
critical amplitude with respect to the Reynolds number have
been computed using different numerical models [3,9,42–44].
Experiments for the pipe flow conducted in different laborato-
ries yield exponents which partly differ [45–47].

While the particular notion of the edge is slightly different
depending on whether turbulence is transient or sustained, its
procedure of identification is very similar. The edge denotes the
accessible part of the boundary, where a path in a basin might
terminate. Most points of a fractal boundary are surrounded
by infinitely many layers of boundary and these are not in the
edge. In case of a transient turbulent state, the edge denotes
the “boundary” of the chaotic saddle which is embedded in
the basin of attraction of the laminar state and is accessible
from that state. In case of bistability with the coexistence of
a laminar and a turbulent state, the edge is considered to be
the boundary of the basin of attraction. This boundary has
been shown to be the stable manifold of a periodic saddle or
of a chaotic saddle embedded in the basin boundary [7,9,26].
The distance of the edge of chaos from the laminar attractor
indicates the minimum perturbation that would destabilize
the laminar attracting state. This is referred to as the critical
amplitude.

Here we address the Reynolds number dependence of the
minimum perturbation required to drive the laminar attracting
state into the turbulent region regardless of whether transient
or sustained turbulence occurs. For this purpose we employ
the nine-dimensional sinusoidal shear flow model studied
in [2,25,26]. This minimum perturbation is closely related
to the edge of chaos introduced in [8]. Our goal is to gain
greater understanding of the geometry of the edge of chaos,
particularly emphasizing those edge of chaos points that
are closest to the laminar attractor and hence correspond
to those directions, which start from the laminar attractor
and require relatively small perturbations to create transient

chaos. We examine the geometry of the edge of chaos to see
how the distance of the edge from the laminar attractor, and
consequently “the stability of the laminar attractor,” varies as
a function of the Reynolds number.

Section II starts with a brief description of the model; then
we discuss some basic definitions (Sec. III), along with the
method to follow along the edge of chaos in a high-dimensional
phase space. In Sec. IV, we compute the minimal perturbation
needed to reach the edge of chaos and, hence, to drive
the system to a turbulent state, which is either transient or
permanent, depending on the Reynolds number. Additionally,
we discuss the nontrivial attracting orbits and the structure of
their basins of attraction. Furthermore, in Sec. V, we discuss
our results related to the dependence of lifetimes and the
geometry of the edge on Reynolds number and compare them
with previous findings.

II. THE MODEL OF THE SINUSOIDAL SHEAR FLOW

For the purpose of our study, we investigate the
nine-dimensional sinusoidal shear flow model examined
in [2,25,26].

In the model, the fluid between two free-slip walls experi-
ences a sinusoidal body force. The coordinate system is such
that x points downstream, y in the direction of the shear, and z

in the spanwise direction. d is the distance between the walls,
ρ is the fluid density, and ν is the kinematic viscosity. The
characteristic velocity U0 is the laminar velocity that arises
due to the forcing at a distance d/4 from the top wall. The
Reynolds number is defined as Re = U0d

2ν
. The lengths are

nondimensionalized in units of d/2, velocities in units of U0,
time in units of (d/2)/U0, and pressure in units of ρU0

2. Then
the evolution equation is

∂u

∂t
= −(u · ∇)u − ∇p + ∇2u

Re
+ F (y).

As the fluid is incompressible, ∇ · u = 0. There are free-slip
boundary conditions at the walls at y = ±1; hence,

uy |y=±1 = 0,
∂ux

∂y

∣
∣
∣
∣
y=±1

= ∂uz

∂y

∣
∣
∣
∣
y=±1

= 0.

It is assumed that the flow is periodic in the streamwise and
spanwise directions, with lengths Lx and Lz, respectively.
References [2,25,26] analyze the flow for a domain with Lx =
4π,Lz = 2π (which corresponds to the optimal domain size
for a plane Couette flow to obtain the formation of stationary
coherent structures), as well as for a narrower domain with
Lx = 1.75π,Lz = 1.2π (which corresponds to the minimum
domain size that can sustain turbulence for plane Couette flow).
We focus on the latter case Lx = 1.75π,Lz = 1.2π .

The nondimensionalized volume force is

F (y) =
√

2π2

4Re
sin(πy/2)êx .

The full model is given in the Supplemental Material [48],
and a detailed discussion of the modes and their interaction is
given in [2]. We write the state of the model as

a(t) = (a1(t), . . . ,a9(t)),
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where ai(t),i = 1,2, . . . ,9 are the time-dependent coefficients
that multiply the different spatial modes. The laminar state of
the model, which is linearly stable for all Reynolds numbers,
corresponds to a fixed point,

a1 = 1, a2 = a3 = · · · = a9 = 0.

As in [26], which studies the same model we do, the fluctuation
energy with respect to the laminar profile is defined as E =
(1 − a1)2 + ∑9

j=2 aj
2. Thus, each initial condition a(0) for the

nine-dimensional model can be associated to the initial energy
of the perturbation. For Re < 335 and 515 < Re < 1000, the
laminar state is the only attractor in the system, while the
turbulent state is transient and represents a chaotic saddle. For
335 < Re < 515, the system has a symmetric pair of stable
“nontrivial” attractors associated with sustained turbulence,
besides the laminar attractor.

III. THE EDGE OF CHAOS

Let us first give some definitions related to our study.
Lifetime. The lifetime associated to a given point is defined

as the time it takes for the trajectory starting from a point
to reach a specified distance from the laminar attractor. This
specified distance is implemented as a small ball around the
fixed point corresponding to the laminar state.

The edge of chaos. As one travels along a direction through
state space, starting from any point in the basin of the laminar
attractor, the edge is the locus of the first point which is
encountered where the lifetime goes to infinity.

Although the lifetime approaches infinity along the edge,
the turbulent region beyond the edge is unstable for a large
interval of Reynolds numbers, and hence has finite, though
possibly very long, lifetimes. The edge of chaos is a measure
0 set, and hence it is numerically impossible to encounter the
points along the edge with arbitrarily large lifetimes. Within the
interval of Reynolds numbers where also the pair of symmetric
nontrivial attractors coexist with the stable laminar state, the
lifetimes are as large as the integration time, when a trajectory
is in the basin of attraction of one of the nontrivial attractors.

FIG. 1. (Color online) The histogram shows the distance of the
edge from the laminar attractor for 100 000 randomly chosen
directions in the nine-dimensional state space, at Re = 400. The bin
size is 0.0003. The largest bin count of 2620 is at the bin centered at
0.005 76.

FIG. 2. The distance of the periodic orbit on the edge from the
laminar attractor on the y axis vs Reynolds number on the x axis is
plotted, for Re = 200, 300, . . . , 1000, 1500, 2000.

In Fig. 1, the histogram plots the distance of the
edge from the laminar attractor for 100 000 randomly
chosen directions in the nine-dimensional state space at
Re = 400.

Following the edge of chaos. To follow along the edge
of chaos, we use the technique outlined in [49]. Choosing
a direction from the laminar attractor towards the edge, an
initial condition on the path before the edge point is reached,
gives a trajectory whose amplitude remains small as it relaxes
to the laminar state. Conversely, an initial condition chosen
beyond the edge generates a trajectory with a chaotic transient
typically containing at least one large amplitude excursion
before decaying. Repeated bisection can be used to reduce the
distance between the two initial conditions to obtain a new
pair of points that approximate the edge point. Trajectories
starting from this new pair of points are then followed until the
distance between them exceeds a given threshold, followed by
bisection and so on, thus producing a numerical approximation
to an edge trajectory.

We follow along the edge trajectory starting from a
randomly chosen direction, for Reynolds numbers from 200
to 2000. Our computations indicate that in each case, the
trajectory converges to a periodic orbit on the edge. In Fig. 2,
the distance of the periodic orbit on the edge from the
laminar attractor, is plotted as a function of Reynolds number,
for Re = 200,300, . . . ,1000,1500,2000. The distance of the
periodic orbit from the laminar attractor scales as ≈Re−1 (see
Fig. 2).

IV. THE GEOMETRY OF THE EDGE OF CHAOS

A. Contour graphs for three orthogonal vectors

To examine the edge of chaos, we choose three mutually
orthogonal vectors starting from the laminar attractor, namely,
v1 = [1,1,1,1,1,1,1,1,1], v2 = [−1,1,2,0,1,0,−1,0,−2],
and v3 = [1,−1,0,1,0,−1,−2,2,0]. We look at two different
planes: plane 1, formed by vectors v1 and v2, and plane 2,
formed by vectors v1 and v3. Figures 3(a), 3(c), and 3(e) show
the contour plots for the lifetimes in plane 1, for Reynolds
numbers 200, 400, and 1000, respectively. Figures 3(b), 3(d),
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FIG. 3. (Color online) Panels (a), (c), and (e) show the contour plots for the lifetimes, in the plane 1 formed using orthogonal vectors v1
and v2, for Reynolds numbers 200, 400, and 1000, respectively. Panels (b), (d), and (f) show the contour plots for the lifetimes, in the plane
2, formed using orthogonal vectors v1 and v3, for Reynolds numbers 200, 400, and 1000, respectively. In each of the plots, the points with
lifetimes exceeding the maximum value indicated by the color bar are color coded with the color corresponding to the maximum value. The
figure is shifted so that the origin corresponds to the laminar attractor.

and 3(f) show the contour plots for the lifetimes in plane 2, for
Reynolds numbers 200, 400, and 1000, respectively. The figure
is shifted so that the origin corresponds to the laminar attractor.
In each of the plots, the points with lifetimes exceeding the
maximum value indicated by the color bar are color coded
with the color corresponding to the maximum value.

B. Lifetime distribution

For 335 < Re < 515, the system has a symmetric pair of
stable “nontrivial” attractors, besides the laminar attractor.
For Re < 335 and 515 < Re < 1000, the laminar state is
the only attractor. Reference [2] observes an exponential

distribution of lifetimes for those values of Reynolds num-
ber for which the laminar attractor is the only attractor,
indicative of the turbulent state being a chaotic saddle.
This was also observed by us. This exponential distribution
can be used to compute the average lifetime τ of the
transients at those Reynolds numbers for which the laminar
attractor is the only attracting state. Hence, we use Re =
200, 300, 600, 700, 800, 900, 1000, 1500, 2000 to study the
distribution of the average lifetimes. In Fig. 4, 1/τ is
plotted as a function of the Reynolds number, where
τ denotes the average lifetime. The figure indicates
that τ ∼ Re4.51.
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FIG. 4. 1/τ vs Re is plotted for Re =
200, 300, 600, 700, 800, 900, 1000, 1500, 2000. Here τ is
the average lifetime. Note that we exclude Re = 400, 500. Because
of the presence of a nontrivial attractor at Re = 400, 500 (sustained
turbulence instead of transient turbulence corresponding to a chaotic
saddle), the average lifetime for convergence to the laminar attractor
is not defined.

Let us now illustrate the dependence of the lifetimes on
the distance of the initial state from the laminar state. For
Re = 600, we compute the lifetimes for points in plane 1
starting from the laminar attractor until radius values of 0.05
[similar to Figs. 3(a), 3(c), and 3(e)]. We observe that points
that lie within the edge with trajectories converging quickly
to the laminar attractor have lifetimes <2900, and a sudden
jump in lifetimes is observed for points lying on the other side
of the edge, which exhibit turbulent behavior before reaching
the laminar attractor. For points having lifetimes exceeding
2900, Fig. 5 plots the radial distance on the x axis vs lifetime
on the y axis. Observe that in this transient turbulence region,
the distribution of lifetimes is largely independent of radial
distance.

FIG. 5. For Re 600, we compute the lifetimes for points in plane
1 starting from the laminar attractor until radius values of 0.05. The
figure considers those points lying in the turbulent region and plots
the corresponding radial distance on the x axis vs lifetime on the y

axis. Observe that in the transient turbulence region, the distribution
of lifetimes is largely independent of radial distance.

FIG. 6. (Color online) The basin of attraction corresponding to
Patt is plotted in red (dark gray), where Patt ≈ (0.877,0.115). The
black rectangle denotes the region which is magnified in Fig. 7.

C. Nontrivial attracting orbits

The system has a symmetric pair of nontrivial attractors
associated with sustained turbulence, apart from the laminar
attractor, for 335 < Re < 515. The nontrivial attractors can
be periodic, chaotic, or quasiperiodic. We investigate the pair
of attractors at Re = 425, where the attractors are periodic.
For this, we choose a point on one of the nontrivial attracting
orbits (we call this point Patt) and the corresponding point on
the symmetric attracting orbit (we call this point Patt,sym).

We choose Patt such that a1 = 0.129 992,a2 =
−0.065 592 9, a3 = 0.047 570 6, a4 = 0.032 996 7, a5 =
0.075 385 4, a6 = −0.003 250 98, a7 = −0.042 364,

a8 = −0.019 685,a9 = −0.101 453, so that for Patt,sym,
a1 = 0.129992, a2 = 0.065 592 9, a3 = −0.047 570 6, a4 =
−0.032 996 7, a5 = −0.075 385 4, a6 = −0.003 250 98, a7 =
−0.042 364,a8 = −0.019 685,a9 = −0.101 453. We look
at a plane containing the laminar attractor and the points
Patt and Patt,sym. Say the vector directed from the laminar
attractor to Patt is called Vatt and the vector directed from the
laminar attractor to Patt,sym is called Vatt,sym. Then the vectors
Vatt + Vatt,sym and Vatt − Vatt,sym are orthogonal. In Figs. 6 and
7, the x axis is along Vatt + Vatt,sym and the y axis is along
Vatt − Vatt,sym.

The figures are shifted so that the origin corresponds to the
laminar attractor. The x and y coordinates corresponding to
Patt in the x-y plane are ≈(0.877,0.115) and the coordinates
corresponding to Patt,sym are ≈(0.877,−0.115). In this plane,
Fig. 6 shows the basin of attraction corresponding to Patt in red
(dark gray) for x ∈ [0,1.5],y ∈ [−0.3,0.3]. In Figs. 7(a)–7(c)
we magnify the region close to Patt denoted by the black
rectangle in Fig. 6. Figure 7(a) shows the basin of attraction
corresponding to Patt in red (dark grey). Figure 7(b) shows
the basin of attraction corresponding to Patt,sym in black.
Figure 7(c) shows the basin of attraction corresponding to
the laminar attractor in blue (dark gray). We can see from
Fig. 7(a) that the open neighborhood around Patt containing
only points lying in the basin of attraction corresponding to Patt

is small. Most of the state space is filled with transient chaos
and the basins of attraction of the attractors are well mixed.
Eckhardt and co-workers [50,51] study the bifurcations of the
nontrivial attracting orbits in the plane Couette flow, using
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FIG. 7. (Color online) Panels (a), (b), and (c) are magnifications
of the black rectangle shown in Fig. 6, close to Patt and plot the basins
of attraction corresponding to Patt in red (dark gray), to Pattsym in
black, and to the laminar attractor in blue (dark gray), respectively.

a numerical resolution of 32 × 33 × 32 and 48 × 33 × 48
modes, respectively. Their papers contain basin of attraction
plots similar to Fig. 7(a), which seems to suggest an analogous
behavior in full high-dimensional flows.

D. Properties of the edge as a function of Reynolds number

According to the aim of this study, we now present our
results on the minimum perturbation necessary to desta-
bilize the laminar state. To this end, we choose 10 000
directions randomly in the nine-dimensional state space,

FIG. 8. For 10 000 randomly chosen vectors, the minimum
distance from the edge of chaos vs Reynolds number is plotted for
Re = 200, 300, . . . , 1000, 1500, 2000.

starting from the laminar attractor. For these directions,
we compute the minimum, the average, and the maximum
distance from the edge of chaos, respectively, and plot
them as a function of the Reynolds number, for Re =
200, 300, . . . , 1000, 1500, 2000 in Figs. 8–10. Of particular
interest is the minimum distance since it corresponds to the
minimum perturbation necessary to destabilize the laminar
state leading to a transient or sustained turbulent motion. The
obtained scaling with the Reynolds number is ∼Re−2.

V. DISCUSSION

We have studied a nine-dimensional model of the sinusoidal
shear flow to contribute to a greater understanding of the
geometry of the edge of chaos playing a crucial role in the
transition from a laminar state to transient or sustained turbu-
lence. In this low-dimensional model the transient or sustained
turbulent state correspond to either a chaotic saddle or a chaotic
attractor, respectively. Of particular interest are such finite-size
perturbations which destabilize the laminar state. The latter is
for the whole considered interval of Reynolds numbers linearly

FIG. 9. For 10 000 randomly chosen vectors, the average distance
from the edge of chaos vs Reynolds number is plotted, for Re =
200, 300, . . . , 1000, 1500, 2000.
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FIG. 10. For 10 000 randomly chosen vectors, the maximum
distance from the edge of chaos vs Reynolds number is plotted,
for Re = 200, 300, . . . , 1000, 1500, 2000. We believe that the
deviation from the scaling of the maximum boundary distance is
caused by the bending of the long tendril-like structures seen in
Figs. 3(a) to 3(f). This deviation from the scaling does not feature in
Fig. 9 (which plots the average distance from the edge of chaos vs
Reynolds number), as there are few points on the edge which have a
large distance from the laminar attractor. (See the histogram in Fig. 1.)

stable, i.e., all infinitesimal perturbations would decay. To find
the minimum perturbation we have investigated the edge of
chaos separating the laminar state from the turbulent ones.
Our method does not employ an optimization procedure as
opposed to the “minimal seed” method [35]. On examining
Reynolds numbers from 200 to 2000, we find that the nearest
point on the edge of chaos to the laminar attractor (and thus the
critical amplitude of the perturbation beyond which the laminar
attractor becomes unstable), has a distance proportional to
≈Re−2 (Fig. 8). Thus, the critical amplitude of perturbation
Ac that can be added to the laminar attractor beyond which
the laminar attractor would fall into the turbulent region scales
as Ac ∼ Reα , with α = −2 for the sinusoidal shear flow. This
scaling for the sinusoidal shear flow is different compared
to the scalings found numerically or experimentally for other
flows.

Reference [3] studies a 19-dimensional Galerkin approx-
imation to a parallel shear flow. They choose a fixed initial
flow field with a random selection of amplitudes in the
19-dimensional space, scale it up by an amplitude parameter,
and plot the lifetimes as a function of amplitude and Reynolds
number. They suggest that the critical amplitude scales as
Re−1. References [34,41] measure the minimum perturbation
for plane Couette flow in terms of the minimum energy needed
to destabilize the laminar state. This minimal energy has
been found to scale with the Reynolds number as ∼Re−2

in [34] and ∼Re−2.7 in [41]. This minimum energy is, in
general, proportional to the square of the minimum distance.
Reference [52] predicts an exponent of −1 for plane Couette
flow and −1.5 for plane Poiseuille flow. Reference [53] studies
experimentally the plane Poiseuille flow and estimates an
exponent of −1.5. Reference [54] computes an exponent of
−1 for plane Couette flow using direct numerical simulation
based on a disturbance in the form of a pair of streamwise

vortices. Reference [55] finds numerically that the threshold
vortex amplitude to induce instability scales as Re−1.6 in
the plane Poiseuille flow and as Re−1 in the plane Couette
flow.

Various exponents corresponding to the critical amplitude
have been suggested for the pipe flow. Reference [42] studies
a minimal numerical three-dimensional model of a pipe flow
and computes an exponent of −1.5. Reference [43] studies
a numerical model of the pipe flow considering streamwise
perturbations and finds a dependence of the critical amplitude
on the type of perturbation with exponents ranging from −1
to −1.5. Reference [9] carries out numerical simulations of
pipe flow using a model with about 1.2 × 105 degrees of
freedom and tracks the edge of chaos, computing an exponent
of −1. Reference [56] conducts numerical simulations of the
pipe flow for autonomous and impulsive forcing scenarios
and shows a dependence of the exponent on the type of
perturbation and computes exponents ranging from −1 to
−1.5. Reference [45] conducts an experimental investigation
of a pipe flow and reports that the critical amplitude scales
as Re−1. Reference [47] agrees with the results in [45] and
also conducts an experimental investigation of a pipe flow for
push-pull disturbances computing scaling exponents between
−1.3 and −1.5. Reference [57] carries out an experimental
investigation of a pipe flow and shows that the edge of chaos
is a complicated structure with folds.

Based on our computations for the sinusoidal shear flow, the
average distance of the laminar attractor to the edge of chaos
scales like ≈Re−1.8 (Fig. 9) and the maximum distance of the
laminar attractor to the edge of chaos scales like ≈Re−1.23

(Fig. 10).
We find that the distance of the periodic orbit on the

edge from the laminar attractor scales as ≈Re−1 (Fig. 2).
Reference [58] investigates a pipe flow and shows that the
energy of the saddle state on the edge decreases with Reynolds
number, although it does not report an exponent. According
to [26], which studies the same system as we study, the average
(fluctuation) energy of the periodic orbit on the edge scales as
Re−2. Since the energy is given by E = (1 − a1)2 + ∑9

j=2 aj
2,

the average distance of the periodic orbit on the edge from
the laminar attractor would scale as Re−1, which agrees with
our computations. We find that the edge of chaos is a stable
manifold of a periodic saddle orbit. This is in line with the
observation in [26], which investigates the same system, and
also with [7], which studies a nine-dimensional system of the
plane Couette flow. Reference [26] calculates the probability
that an initial condition with a given energy will lead to
chaotic behavior by choosing uniformly distributed initial
conditions and shows that the periodic orbit on the edge lies
in the region corresponding to the energy with 96%–97%
probability of transient chaos. This indicates that the distance
of the periodic orbit on the edge from the laminar attractor is
significantly higher than the average edge distance from the
laminar attractor, which agrees with the equations in Figs. 2
and 9.

For Re = 200, 300, 600, 700, 800, 900, 1000, 1500,

2000, we observe an exponential scaling of lifetimes in
agreement with the suggestion that the turbulent state
represents a chaotic saddle [7,8,10–12,59]. Turbulent bursts in
the transient turbulence region persist for an average lifetime
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of ≈Re4.51 (Fig. 4). Thus, the average lifetime increases
rapidly with Reynolds number but it does not appear that the
lifetime would diverge for higher Reynolds numbers. This is
in line with the observations in [2,20–22].

Our study covers an interval of Reynolds numbers 200 �
Re � 2000. As the Reynolds number increases, we expect
more modes to become active and so higher-dimensional
approximations would be more appropriate.
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