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Oscillator death induced by amplitude-dependent coupling in repulsively coupled oscillators
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The effects of amplitude-dependent coupling on oscillator death (OD) are investigated for two repulsively
coupled Lorenz oscillators. Based on numerical simulations, it is shown that as constraint strengths on the
amplitude-dependent coupling change, an oscillatory state may undergo a transition to an OD state. The parameter
regimes of the OD domain are theoretically determined, which coincide well with the numerical results. An
electronic circuit is set up to exhibit the transition process to the OD state with an amplitude-dependent coupling.
These findings may have practical importance on chaos control and oscillation depression.

DOI: 10.1103/PhysRevE.91.052902 PACS number(s): 05.45.Xt, 05.65.+b

I. INTRODUCTION

Coupled dynamical systems often exhibit rich forms of
emergent phenomena [1–3]. Besides synchronization as one of
the major self-organized behaviors [4–6], oscillation quench-
ing [7–9] refers to a suppression of oscillation under various
types of interaction or intentional control. Two kinds of oscilla-
tion quenching including amplitude death (AD) and oscillation
death (OD) have been extensively studied in many real-world
applications, such as vibration suppression in mechanical
engineering [10], synthetic genetic networks [11,12], and laser
systems [13,14]. The key characters and differences between
these two types of oscillation quenching are as follows. The
AD suppresses oscillations through the occurrence of a single
stable homogeneous steady state (HSS) and thus it is mainly
applied as a control tool in coupled systems [15,16]. In
contrast, the OD appears showing a stable inhomogeneous
steady state (IHSS) owing to a symmetry breaking of the
system. Thus, the OD is much more significant for life science
compared to AD; for example, it can provide an essential
mechanism for cellular differentiation [17,18]. Very recently,
it has been verified that AD may transit to OD via a Turing-type
bifurcation due to the interplay between the heterogeneity of
the coupled oscillators and the coupling strength [9], or via
repulsive interaction [19,20]. In addition, in the context of
network topologies, oscillation quenching has been studied
for regular networks such as global (all-to-all) [21] or local
coupling [22,23], and networks with complex topologies such
as small-world networks [24] or scale-free networks [25,26]. In
general, the mechanisms for the appearance of OD are related
to the characteristics of either the interacting units (such as
frequency mismatches [21,27] and the spatial distributions
of parameter mismatches [28,29]), or the coupling schemes
[such as dissimilar (or conjugate) variables coupling [7,30,31],
dynamical coupling [32], repulsive coupling [19,20], and
delayed time coupling [33–36], etc.].
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So far little attention has been on the characteristics
of transferring interaction signals between coupled oscil-
lators. In many realistic systems, the amplitude-frequency
and phase-frequency characteristics of the coupling unit are
very important since they have significant influences on the
dynamical process. The amplitude constraint effect, as one of
the amplitude-phase characteristics, refers to signals whose
amplitude is larger than a limitation and have to saturate to a
limited value, could have significant influence on the signals
transferring results. For instance, in electronic engineering
limiting amplifiers [37] were invented and have been widely
applied to various forms of communication systems such
as optical fiber communication [38], digital communication,
and microwave communication. In some theoretic studies,
Gao et al. [39] found that a single chaotic system can
be controlled to various target states such as periodic or
steady states when applying the amplitude constraint on a
single variable. In addition, spatiotemporal chaos can also
be tamed to stationary patterns if some transferring signals
are repressed, with the so-called phase space compression
method [40]. Therefore, it is meaningful to explore amplitude
constraint effects in more general dynamical systems point
of view, such as studying the model of two coupled chaotic
oscillators, and make a connection with the OD phenomenon.
In this paper, we investigate amplitude-dependent coupling
effects on OD by studying the repulsively coupled chaotic
or periodic oscillators experimentally and numerically, and
we find solid evidence that there is an optimal level of
amplitude constraint which can force the coupled oscillators to
damp.

II. MODELS

Let us consider two diffusively coupled oscillators with
amplitude constraint effects,

Ẋ1(t) = f (X1(t)) + ε2U1(t),

Ẋ2(t) = f (X2(t)) + ε2U2(t), U2(t) = −U1(t),
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U1(t) =

⎧⎪⎨
⎪⎩

�UC, ε1�[X2(t) − X1(t)] � UC

ε1�[X2(t) − X1(t)], |ε1�[X2(t) − X1(t)]| � UC

−�UC, ε1�[X2(t) − X1(t)] � −UC

,

(1)

where Xi ∈ Rn(i = 1,2), f : Rn → Rn represents a nonlinear
function capable of exhibiting rich dynamics including chaos,
ε2 is a scalar control coupling strength, and U1,2 denotes an
interaction signal transferred. Since the coupling terms Ui are
strongly related to the amplitude of the input signals, we name
it amplitude-dependent coupling. Here the variable ε1 is the
amplifying coefficient of the coupling unit, � is a constant
matrix describing the coupling scheme, and UC (UC > 0) is the
amplitude constraint constant of the coupling unit with which
all signals larger than UC (or less than −UC) are confined
to UC (or −UC), whereas when the maximal amplitudes of
signal in the coupling unit are less than UC (|ε1�[X2(t) −
X1(t)]| < UC), there are no amplitude constraint effects. To
explore the amplitude-dependent coupling induced OD in the
coupled system, it is convenient to analyze the existence and
stability of the corresponding OD state.

Let Ẋi(t) = 0; the fixed point (X∗
1,X

∗
2) could be determined

by the following equations:

f (X∗
1) + ε2U1 = 0, f (X∗

2) + ε2U2 = 0. (2)

If U2 = −U1 and f is an odd function of X, i.e., f (−X) =
−f (X), Eqs. (2) can be further combined to a single equation,

f (X∗
1) + ε2U1 = 0. (3)

Then the fixed points (X∗
1,X

∗
2) (X∗

2 = −X∗
1) can be classified

according to the different values of UC :
(i) If UC is sufficiently large (|2ε1�X∗

1 | < UC) and there is
no amplitude constraint effect, then X∗

1 is determined by

f (X∗
1) − 2ε2ε1�X∗

1 = 0. (4)

(ii) If UC is sufficiently small (|2ε1�X∗
1 | > UC), then

f (X∗
1) + ε2�UC = 0. (5)

With no amplitude constraint in case (i), the stability of
the fixed point has been discussed in Ref. [20] and the
stable OD can be observed for a suitably selected repulsive
coupling. In contrast, with the amplitude constraint in case
(ii), the stability of the fixed point can be determined by
the linearization analysis. Letting Xi = X∗

i + ηi (i = 1,2) and
linearizing Eq. (1) around X∗

i , we obtain
(

η̇1

η̇2

)
=

(
Df(X∗

1) 0
0 Df(−X∗

1)

) (
η1

η2

)
. (6)

Since f (X) is an odd function of X, Df (−X∗
1) = Df (X∗

1),
Eq. (6) can be further simplified to

η̇i = Df(X∗
1)ηi, i = 1,2. (7)

Clearly the fixed point (X∗
1, − X∗

1) becomes stable only
when the maximal real part of the eigenvalues of Df(X∗

1)
is negative under the condition of the amplitude constraint
(|2ε1�X∗

1 | > UC).

III. OD IN COUPLED LORENZ SYSTEM

To explore OD in detail, let us employ a specific model of
two repulsively coupled Lorenz systems. The equations of the
classical chaotic Lorenz oscillator are

ẋ0(t) = σ (y0(t) − x0(t)),

ẏ0(t) = Rx0(t) − y0(t) − x0(t)z0(t), (8)

ż0(t) = x0(t)y0(t) − bz0(t).

We have rescaled the variables x0(t),y0(t),z0(t) by the
transformation of x(t) = x0(t)/5, y(t) = y0(t)/5, and z(t) =
z0(t)/10. Then the modified equations become

ẋ(t) = σ [y(t) − x(t)],

ẏ(t) = Rx(t) − y(t) − 10x(t)z(t), (9)

ż(t) = 2.5x(t)y(t) − bz(t),

with the classical system parameters σ = 10, R = 28, and
b = 8/3 for a chaotic oscillator. Note that the right hand side
of Eqs. (9) satisfies the odd property for x and y, i.e., f (−x, −
y,z) = −f (x,y,z). We set the coupling scheme of two coupled
Lorenz units

� =
⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ ,

then the coupling terms in Eqs. (2) become ε2U1 = ε2ε1(y2 −
y1) and ε2U2 = ε2ε1(y1 − y2). If there is no amplitude con-
straint in the coupling unit (UC is infinite), the coupled system
may transit to complete synchronization with a positive ε (ε =
ε2ε1) [4,41], or to antiphase synchronization otherwise [6],
according to previous studies. Since the condition of amplitude
constraint effects in the coupling unit is UC < |ε1(y2 − y1)|max,
there should be no amplitude constraint effects if the complete
synchronous (y2 = y1) happens [41]. Therefore, to make the
effect more likely observable, we set ε1 < 0 and ε2 > 0.

To explore the stability of the OD state, let us first
work out the fixed point with an amplitude constraint as
(X∗

1,X
∗
2) = [x∗

1 ,x∗
1 ,2.5(x∗

1 )2/b, − x∗
1 , − x∗

1 ,2.5(x∗
1 )2/b]. Ac-

cording to Eqs. (5) and (9), x∗
1 satisfies the equation (R −

1)x − 25 ∗ x3/b + ε2UC = 0, whose solution is

x∗
1 = T/30 + 2b(R − 1)

5T
, (10)

with

T = 3

√
540ε2UC + 12b

√
12b(1 − R)3 + 2025ε2

2U
2
C. (11)

Then its linearized matrix is presented as

Df (X∗
1) =

⎛
⎝ −10 10 0

R − (25/b)(x∗
1 )2 −1 −10x∗

1
2.5x∗

1 2.5x∗
1 −b

⎞
⎠ . (12)

The eigenvalue λi’s of Df (X∗
1) can be obtained by using a

symbolic manipulation program such as Mathematica. The
expression of λi’s are not presented here, since they are too
complex and very long.

As a result, the stable OD domain of the coupled system
should be determined by the following two key factors: (i) the
parameter spaces when the maximal real part of the eigenvalue
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FIG. 1. (Color online) (a) The theoretical results of OD domains
in the (ε2-UC) parameter space. The OD domain is enclosed by line
0 and lines i,i = 1 − 3 (above line 0 and below line i); the numbers
1–3 stand for ε1 = −1, − 2, and −3, respectively. (b) The numerical
results of OD domains marked by color dots with the same parameters
as those in (a).

of the matrix [Eqs. (12)] is negative, and (ii) the parameter
spaces by the amplitude constraint condition: |2ε1x

∗
1 | > UC ,

i.e., UC <
√

(b/25)[8ε3
1ε2 + 4ε2

1 (R − 1)]. Figure 1(a) presents
the critical lines of the stable OD according to these two
factors. The line 0 corresponds to the critical line according
to the factor (i), while the lines i(i = 1, 2, and 3) are just the
critical lines based on the factor (ii) for ε1 = −1, − 2, and −3,
respectively. The OD domains are the areas enclosed by the
line 0 and the line i (areas above the line 0 and below the line
i) for each ε1 = −1, − 2, and −3, respectively. According to
these theoretical results, it is obvious that there is an optimal
interval of UC which may lead to OD for a given set of ε1

and ε2. When UC is large enough, the amplitude constraint
does not have any impact and hence the dynamics is the
same as that with ideal coupling. According to the results
discussed in Ref. [6], there is no OD regime for this kind
of repulsively coupled Lorenz system. On the contrary, if
UC is too small, the strong amplitude constraint cannot work
either.

To verify our theoretical results, we calculate the dynamics
of the coupled systems [Eqs. (9)] numerically. We record all
parameters of ε2 versus UC when the coupled systems exhibit
the OD state for random initial values. The parameter spaces
of the OD state are dotted in black, light gray, and gray for
ε1 = −1, − 2, and −3, respectively, as shown in Fig. 1(b). We
can find that the OD domains coincide well with the theoretical
results when ε2 is small, except that there are still some
blank areas within the theoretically predicted OD domains
left for possible oscillatory behaviors. By a careful check, we
indeed find that the OD state coexists with the oscillating state
within the blank areas. Figures 2(a) and 2(b) present two time
series of x1,2(t) of the oscillating state and the OD state from
different initial conditions. The oscillating state is in antiphase
synchronization, which coincides with the finding in Ref. [6].

Since the OD and the oscillating states have their own
attractor basins, the sizes of their basins should change for

FIG. 2. (Color online) (a),(b) The time series of variable x1,2(t)
for two coexisting solutions with two different initial value sets as
(4.472 38, 5.005 78, − 1.994 34, − 3.600 81, − 3.7079, 3.139 42),
(4.114 36,4.759 25, − 2.530 78, − 1.1519, − 2.7289, − 3.136 24),
respectively; ε1 = −2, ε2 = 3, and UC = 5.

different values of UC . Figures 3(a)–3(c) present the basins
of the OD states represented by dots for the parameters UC =
5, 6, and 6.5, respectively; ε1 = −2 and ε2 = 3. Obviously, the
area of the OD basin shrinks with the value of UC approaching
the OD boundary in Fig. 1. We calculate the basin stability of
the OD defined by SOD = NOD

Ntol
[42], where NOD denotes the

number of sets of initial values leading to the OD state, while
Ntol = 10 000 is fixed for all samples of initial values. If OD

FIG. 3. (a)–(c) The basins of the OD states for UC = 5, 6, and
6.5, respectively; ε1 = −2 and ε2 = 3. The initial value is set as
x1 = y1 = x∗

1 + δx, x2 = y2 = −x∗
1 + δy, z1 = z2 = (x∗

1 )2, and all
values of δx and δy are recorded when the OD state is finally achieved.
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FIG. 4. (Color online) (a), (b) The basin stabilities of OD for
ε2 = 1 and 3, respectively; ε1 = −1 (hollow triangle), −2 (hollow
square), and −3 (solid square). The critical boundaries of UC coincide
with those in Fig. 1(a).

coexists with the oscillating state, SOD ∈ (0,1), and otherwise
if OD loses stability, SOD = 0. The results of SOD for ε2 = 1
and 3 are presented in Figs. 4(a) and 4(b). We find that the
critical values of UC for SOD jumping from 0 to 1 or decreasing
from a finite value to 0 just match with the theoretical results
in Fig. 1. To emphasize this point, we add 0, 1, 2, and 3 in the
figures.

It is expected to observe amplitude-dependent coupling
induced OD for other coupling schemes as well. Without

FIG. 5. (Color online) (a) The analytic results of the OD domains
in the (ε2-UC) parameter space with a different coupling scheme
considered [Eq. (13)]. The OD domains with the amplitude constraint
effects are enclosed by line 0 and lines i,i = 1 − 3 (above line 0 and
below lines i) for ε1 = −1, −1.5, and −2, respectively. The OD
domains without the amplitude constraint effects are enclosed by
lines 1 and 6, lines 2 and 5, and lines 3 and 4, for ε1 = −1, −1.5,
and −2, respectively. (b) The numerical results compared with the
analytic results in (a).

losing generality, we consider the following coupling scheme:

� =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ . (13)

If the coupling unit satisfies the condition of amplitude constraint |2ε1x
∗
1 | > UC [Eq. (5)], we

may obtain the fixed point F1(x∗
1 ,y∗

1 ,
R(y∗

1 +ε2UC/10)2

1+(y∗
1 +ε2UC/10)2 , − x∗

1 , − y∗
1 ,

R(y∗
1 +ε2UC/10)2

1+(y∗
1 +ε2UC/10)2 ), where x∗

1 = y∗
1 +

ε2UC/10, and y∗
1 = 1

30
3

√
U 3

Cε3
2 + 6G + 18bUCε2R + 36bUCε2 − 30(− 1

900 U 2
Cε2

2− bR
75 + b

75 )
3
√

U 3
Cε3

2+6G+18bUCε2R+36bUCε2

− ε2UC

15 , with G =√
3bU 4

Cε4
2 − 3b2U 2

Cε2
2R

2 + 60b2U 2
Cε2

2r + 24b2U 2
Cε2

2 − 48[b(R − 1)]3. The amplitude constraint condition becomes
|2ε1(y∗

1 + ε2UC/10)| > UC , namely,

UC <
ε1

√
b(ε2ε1 − 5)(−ε2ε1 − 5r + 5)

2.5(ε2ε1 − 5)
. (14)

The linearized matrix is repressed as

Df (X∗
1) =

⎛
⎝

−10 10 0

R − 25R(y∗
1 +0.1ε2Uc)2/b

1+25(y∗
1 +0.1ε2Uc)2/b

−1 −10(y∗
1 + 0.1ε2Uc)

2.5y∗
1 2.5(y∗

1 + 0.1ε2Uc) −b

⎞
⎠ . (15)

Again the eigenvalues λi of Df (X∗
1) are worked out by using

Mathematica. One critical line (marked as line 0) of the OD
domain is obtained when the largest real part of the eigenvalue
is zero. Then the domain of OD induced by the amplitude
constraint should be enclosed by the line 0 and the critical
curves by Eq. (14).

However, on the other hand, if UC is sufficiently large,
|2ε1x

∗
1 | < UC , there is no amplitude constraint effect.

We obtain the fixed point of the coupled Lorenz system

as F2(x∗
1 ,

bRx∗
1

b+(x∗
1 )2 , − 25Rx(x∗

1 )2

10b+250(x∗
1 )2 ,x

∗
1 , − bRx∗

1
b+(x∗

1 )2 ,
25Rx(x∗

1 )2

10b+250(x∗
1 )2 )

from Eq. (4). Thus x∗
1 is determined by σbRx

b+25x2 − σx −
2ε1ε2x = 0, i.e., x∗

1 =
√

σb(R−1)−2ε1ε2b

25(σ+2ε1ε2) . Based on the analysis

in Ref. [20], we obtain that the fixed point is stable in the
interval ε1ε2 ∈ (−5, − 2.83].

Finally, to combine these two components, the OD domain
in the parameter space of UC versus ε2 consists of two types
of OD domains: (i) The first one is the OD domain without
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exhibiting the amplitude constraint effects, which is enclosed
by the critical lines [Eq. (14)] and ε1ε2 ∈ (−5, − 2.83], and
(ii) the second one is the OD domain showing the amplitude
constraint effects, which are enclosed by the line 0 and the
critical lines [Eq. (14)]. Again take ε1 = −1, − 2, and −3
as examples; the OD domains of situation (i) are the areas
enclosed by the lines 1 and 6 (D1), lines 2 and 5 (D2), and
lines 3 and 4 (D3), respectively, while those of situation (ii)
are the areas enclosed by the lines 0 and 1, lines 0 and 2,
and lines 0 and 3, respectively [see details in Fig. 5(a)]. The
numerical results presented in Fig. 5(b) clearly coincide with

the analytical results in Fig. 5(a). We also find that now there
is no coexistence between the OD and the oscillating states,
compared to the first coupling scheme.

IV. EXPERIMENTAL RESULTS

To experimentally observe the amplitude constraint effects,
we set up the electronic circuit of the linearly coupled Lorenz
system. The Lorenz circuit unit [43] is composed of three
integrators, each realizing a variable of Lorenz equation,
denoted by xi, yi , and zi (i = 1,2), respectively. The nonlinear

FIG. 6. (Color online) (a) The electronic circuit unit of a chaotic Lorenz oscillator. (b) The circuit of the coupling channel with the amplitude
constraint effect. Here P1 and P2 are connected with X1 of the two Lorenz circuit units, and P3 and P4 are connected with IO1.
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terms in the Lorenz equation are created by the analog
multipliers (AD633/AD with a gain coefficient of 0.1), as
shown in Fig. 6(a). The linear coupling unit in Fig. 6(b) can
be set up based on an analog amplifier with an amplitude
constraint effect. (Generally, the voltages of the source power
of an analog amplifier are VSS = +15V, VEE = −15V , and
the output signal is surely less than the limitation |VD| =
|VSS | − 1.5V .) The unit consists of two obstructors, one
subtractor, and three amplifiers (the two determine ε1 and ε2,
and the other is with the gain of −1). Signals from y1 (y2) in the
two Lorenz circuit units are input to P1 (P2) and transmitted
to the places marked with IO1 (IO2) in Fig. 6(a) [and the
duplicated Lorenz unit through P4 (P3)]. Thus, the coupled
system can be described by

ẋ1(t) = 1

R55C10
[y1(t) − x1(t)],

ẏ1(t) = R61

R59R58C11
x1(t) − 1

R60C11
y1(t)

− 0.1

R62C11
x1(t)z1(t) + R24

R20
U (t),

ż1(t) = 0.1R65

R64R63
x1y1(t) − 1

R66C12
z1(t),

ẋ2(t) = 1

R55C10
[y2(t) − x2(t)],

ẏ2(t) = R61

R59R58C11
x2(t) − 1

R60C11
y2(t)

− 0.1

R62C11
x2(t)z2(t) − R24

R20
U (t),

ż2(t) = 0.1R65

R64R63
x2y2(t) − 1

R66C12
z2(t),

U (t) = −R19

R18
[y2(t) − y1(t)]. (16)

FIG. 7. (Color online) (a) Theoretical results of critical lines for
OD domain in the (ε2-UC) parameter space with parameter ε1 = −1
(lines 0 and 1) and ε1 = −2 (lines 0 and 2), respectively. (b) The
experimental results of OD domain for ε1 = −1 (light gray dots) and
ε1 = −2 (dark gray dots), respectively.

FIG. 8. (Color online) (a),(b) The time series of x1,2(t) of the cou-
pled circuits for R19 = 200 K � (ε2 = 3) and R24 = 3 K � (ε1 = −2)
showing the coexistence of the OD and oscillation for different initial
conditions; UC ≈ 4.5 V and VSS = 6 V. (c),(d) The corresponding
U (t)’s in the channel of the coupled systems. The scales of the
oscilloscope are 2 ms/division and 2 V/division.

Owing to the voltage limitation of the operational amplifier
(OPAM), the output of the coupling unit U (t) is not allowed
to be larger than VC . Otherwise, the OPAM will be saturated
and have a constant output of ±VC . Therefore, by considering
the amplitude constraint of the OPAM unit, we have

U (t) =

⎧⎪⎪⎨
⎪⎪⎩

VC, −R19
R18

[y2(t) − y1(t)] > VC

−R19
R18

[y2(t) − y1(t)],
∣∣−R19

R18
[y2(t) − y1(t)]

∣∣ � VC ;

−VC, −R19
R18

[y2(t) − y1(t)] < −VC

(17)

by changing the values of the resistor R19, R24, and the
voltage of the OPAM [VSS and VEE in Fig. 6(b)], we can
change the value of ε1, ε2, and the amplitude constraint
strength VC (VC ≈ VSS − 1.5V ) with ε1 = −R19

R18
and ε2 =

10R24
R20

accordingly. Figure 7(b) presents the experimental results
of the OD domain in the parameter space of ε2 versus VC ,
which coincide with the theoretical results in Fig. 7(a) and the
numerical results in Fig. 1(b). Within the blank area in the
stable OD domain predicted theoretically, the coexistence of
the OD and oscillation states are also expected. By injecting
electricity power to the capacity C1 ∼ C3, we can change the
initial values of the Lorenz circuit. The experimental results
are shown in Figs. 8(a)–8(d), which record the time series of
x1,2(t) and the corresponding U (t)’s within the two coexisting
regimes for two sets of different initial values; the parameters
are set as ε1 = −2 (R18 = 100 K �, R19 = 200 K �), ε2 = 3
(R20 = 10 K �,R24 = 3 K �), VSS = 6 V, and VEE = −6 V.

V. CONCLUSION

By considering the amplitude constraint effect of the
coupling unit, we have found that two repulsively coupled
chaotic oscillators can undergo a transition from oscillation to
OD for properly selected control parameters. This amplitude
constraint induced OD is of general importance because the
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coupling units usually have a limitation of the signal amplitude
in many realistic systems. Since the signal transferring in the
coupling unit is larger than the limitation, the signal will be
saturated to a limited value. This limitation can dramatically
change the system dynamics, for example, forcing a chaotic
system to oscillation quenching. This is also important for
various natural and man-made systems, ranging from climate,
lasers, chemistry, and engineering systems. Moreover, we find
that the amplitude constraint induced OD is not exclusive
in coupled chaotic systems, such as the coupled Lorenz
oscillators with two different coupling manners as reported
in the paper; it also appears in coupled periodic systems such
as the Landau-Stuart oscillators.

In the paper, the odd function property of the nonlinear
function is required for the theoretic analysis. It is unclear

whether this limitation can be removed. In addition, the
problem whether the amplitude constraint effect is helpful
to revive oscillations [44] is interesting and needs further
research.
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