
PHYSICAL REVIEW E 91, 052814 (2015)

Distinguishing between discreteness effects in stochastic reaction processes
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The effect of discreteness on stochastic dynamics of chemically reacting systems is studied analytically. We
apply the scheme bridging the chemical master equation and the chemical Fokker-Planck equation by a parameter
representing the degree of discreteness previously proposed by the author for two concrete systems. One is an
autocatalytic reaction system, and the other is a branching-annihilation reaction system. It is revealed that the
change in characteristic time scales when discreteness is decreased is yielded between the two systems for
different reasons. In the former system, it originates from the boundaries where one of the chemical species
is zero, whereas in the latter system, it is due to modification of the most probable extinction path caused by
discreteness loss.
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I. INTRODUCTION

Stochastic dynamics of chemically reacting systems can
be described by the chemical master equation (CME) [1,2].
Of particular interest are those involving a small number
of molecules because they are found in several scientific
disciplines, such as cell biology, population genetics, ecology,
and so on. However, in general it is difficult to solve
the CME analytically. Hence, in previous work, stochastic
dynamics of chemically reacting systems have been typically
studied via stochastic numerical simulations [3] or the linear
noise approximation [4,5] in which the average behavior
predicted by the mean-field deterministic equation is corrected
by a fluctuation term around that. In general, the linear
noise approximation is effective when the system size is
moderately large. Examples include resonant amplification of
intrinsic noise leading to a sustainable cycling behavior [6]
and correction to the Michaelis-Menten equation in a small
subcellular compartment [7], to name but a few.

Two notions should be distinguished with respect to
stochastic dynamics of chemically reacting systems. One is
intrinsic noise, and the other is discreteness. Intrinsic noise
refers to stochasticity originating from the intrinsic random-
ness of occurrences of reactions. This is in contrast to extrinsic
noise resulting from randomness evoked by environment.
Discreteness, on the other hand, simply means that state
variables are non-negative integers. One might suspect that
discreteness may have a great impact on systems with a small
number of molecules because the relative change in the number
of molecules becomes larger as the system size decreases. If
the CME is replaced by an equation with continuous variables
(e.g., Fokker-Planck equations), then discreteness disappears
while some properties of intrinsic noise can be preserved (see
below).

In previous work, the author introduced a general scheme
bridging the CME and the chemical Fokker-Planck equation
(CFPE) with the discreteness parameter ε representing the
degree of discreteness [8]. Namely, ε is a unit of the change
in the number of molecules. ε = 1 gives the CME, and the
CFPE is obtained as ε → 0. In this scheme, the first and
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second jump moments of each reaction are preserved up to
an adjustment. We can quantitatively evaluate the effect of
discreteness distinguished from that of intrinsic noise, which
cannot be captured by the CFPE, by applying the scheme to
chemically reacting systems.

In this paper, we study two concrete chemically reacting
systems in order to demonstrate how the effect of discreteness
emerges. The first example is an autocatalytic reaction system
[9,10]. We will calculate the correlation time analytically and
show that the effect of discreteness on it originates from the
boundaries where the number of one molecular species is
zero. The second example is a branching-annihilation reaction
system [11,12]. In this system, it was shown that extinction
to zero occurs with probability one for both the CME and the
CFPE. We will show that modification in the most probable
extinction path induced by discreteness loss results in an
exponential difference in the average extinction time between
the CME and the CFPE.

This paper is organized as follows. In Sec. II, the scheme
to bridge the CME and the CFPE is reviewed. In Secs. III
and IV, the autocatalytic reaction system and the branching-
annihilation reaction system are studied, respectively. In
Sec. V, concluding remarks are given.

II. BRIDGING THE CME AND THE CFPE

In this section, we review the scheme bridging the CME
and the CFPE proposed in Ref. [8].

We consider a chemically reacting system consisting of
N molecular species X1, . . . ,XN and M chemical reactions
R1, . . . ,RM . The state of the system at time t is specified by a
vector X(t) = [X1(t), . . . ,XN (t)], where Xi(t) represents the
number of Xi molecules in the system at time t (i = 1, . . . ,N).
In the following, we use the same symbol to denote both the
molecular species and the number of that molecular species
because there is no fear of confusion. Let aj (X) be the
probability that reaction Rj occurs once per unit time called the
propensity function (j = 1, . . . ,M). νij denotes the change in
the number of Xi molecules when reaction Rj occurs. We
set νj = (ν1j , . . . ,νNj ) for j = 1, . . . ,M . If P (X,t) denotes
the probability that X(t) = X holds given an initial condition
X(t0) = X0, then the time evolution of P (X,t) is governed by
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the CME,

∂tP (X,t) =
M∑

j=1

[aj (X − νj )P (X − νj ,t) − aj (X)P (X,t)].

(1)

The CFPE is obtained by formally truncating the Kramers-
Moyal expansion of the CME up to the second order [13],

∂tP (X,t) = −
N∑

i=1

∂Xi
[Ai(X)P (X,t)]

+1

2

N∑
i,i ′=1

∂Xi
∂Xi′ [Bii ′(X)P (X,t)], (2)

where

Ai(X) =
M∑

j=1

νij aj (X), (3)

Bii ′(X) =
M∑

j=1

νij νi ′j aj (X) (4)

for i,i ′ = 1, . . . ,N . Note that Xi (i = 1, . . . ,N) are non-
negative real numbers in the CFPE.

The CFPE can be derived as an approximation of the CME
under an appropriate condition [14]. However, our interest in
this paper is the effect of discreteness. Here, we do not regard
the CFPE as an approximation of the CME but as a reference
to quantify the effect of discreteness.

It is known that a Fokker-Planck equation can be approxi-
mated by a sequence of master equations parametrized by the
parameter ε which represents jump width [13]. In the case of
the CFPE, there is a sequence of master equations {Mε}0<ε�1

such that the CFPE is recovered as ε → 0 and ε = 1 is identical
to the CME [8]. ε is a unit of the change in the number of
molecules and thus represents the degree of discreteness.

The master equation Mε for each 0 < ε � 1 is defined
as follows. For each reaction Rj in a given chemically
reacting system, we introduce two reactions R+

j and R−
j whose

propensity functions are

a+
j,ε(X) = aj,ε(X)

2ε
+ aj,ε(X)

2ε2
, (5)

a−
j,ε(X) = −aj,ε(X)

2ε
+ aj,ε(X)

2ε2
, (6)

and state change vectors are +ενj and −ενj , respectively.
Here, aj,ε(X) is defined by declaring the unit of change in
the number of molecules as ε. For example, let us assume
that reactions follow the mass action kinetics. Namely, for a
reaction Rj of the form

n1Xi1 + · · · + nkXik → · · · ,

we specify

aj (X) = cj

k∏
l=1

(
Xil

nl

)
(7)

for a non-negative constant cj . aj,ε(X) is obtained by replacing
(Xil − m) by (Xil − mε) in the binomial coefficients in
Eq. (7).

The transition probability from state X to X ′ per unit time
is given by

Wε(X ′|X) =
M∑

j=1

{a+
j,ε(X)δ[X ′ − (X + ενj )]

+ a−
j,ε(X)δ[X ′ − (X − ενj )]}, (8)

where δ is the Dirac δ function. Thus, the master equation Mε

is

∂tP (X,t) =
∫

d X ′[Wε(X|X ′)P (X ′,t) − Wε(X ′|X)P (X,t)].

(9)

Since a+
j,1(X) = aj (X), a−

j,1(X) = 0, M1 is identical to the
original CME.

The first and second jump moments of Mε are given by∫
d X ′(X′

i − Xi)Wε(X ′|X) =
M∑

j=1

νij aj,ε(X), (10)

∫
d X ′(X′

i − Xi)(X
′
i ′ − Xi ′ )Wε(X ′|X) =

M∑
j=1

νij νi ′j aj,ε(X),

(11)

respectively. The fact that the CFPE is derived in the limit of
ε → 0 follows from Eqs. (10) and (11). Equations (10) and
(11) also show that the first and second jump moments are
preserved up to the adjustment resulting from the change in
the unit of the change in the number of molecules.

It is clear that the term in a+
j,ε(X) reciprocal to ε and

that the reciprocal to ε2 correspond to the drift and the
diffusion terms in the CFPE, respectively. These two terms
balance each other in the CME [a−

j,ε(X) = 0]. However, as ε

approaches 0, the discrepancy between the two terms becomes
large.

III. AUTOCATALYTIC REACTION SYSTEM

Let us consider the following autocatalytic reaction system:

R1: X → Y, a1(X,Y ) = kX, ν1 = (−1,+1),

R2: Y → X, a2(X,Y ) = kY, ν2 = (+1,−1),

R3:X + Y → 2X, a3(X,Y ) = sXY, ν3 = (+1,−1),

R4:X + Y → 2Y, a4(X,Y ) = sXY, ν4 = (−1,+1).

This system undergoes a transition from a unimodal to a
bimodal stationary probability distribution due to the multi-
plicative nature of intrinsic noise [9]. This phenomenon was
found by numerical simulation in a similar system consisting
of four molecular species [15]. Recently, the mean switching
time between the two peaks in the bimodal regime has received
attention [10,16]. The time-dependent analytic solution has
been also obtained [17].
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Since the total number of molecules N := X + Y is
preserved in every reaction, this autocatalytic reaction system
can be treated as a one-variable system. In the following, we
focus on X.

Let P s(X) be the stationary probability distribution for the
number of X molecules. The CME and the CFPE have the same
transition condition from unimodality to bimodality [9]: k = s.
When k > s, P s(X) has a unique maximum at X = N/2. If
k < s, then it has two peaks at the boundaries X = 0,N . It can
be shown that this also holds for every Mε . Thus, the qualitative
feature of the stationary probability distribution (unimodal
or bimodal) is independent of the degree of discreteness.
However, we can expect that the characteristic time scale of the
stochastic dynamics is dependent on the degree of discreteness
because it was shown that the CFPE fails to predict the mean
switching time in the bimodal regime [10,16].

Here, we calculate the correlation time (which is easier
to calculate than the mean switching time in the CME and
has more generality because it is applicable for systems
that do not necessarily exhibit switching behavior) for Mε

in order to reveal how it is dependent on the degree of
discreteness.

Mε is given by

∂tP (X,t) = t+ε (X − ε)P (X − ε,t)

+ t−ε (X + ε)P (X + ε,t)

− [t+ε (X) + t−ε (X)]P (X,t), (12)

where

t+ε (X) =
{
k+N + (N − k0)X − X2, if 0 � X < N,

0, otherwise,

t−ε (X) =
{
k−N + (N + k0)X − X2, if 0 < X � N,

0, otherwise,

k0 = ε k
s
, k+ = 1+ε

2
k
s
, and k− = 1−ε

2
k
s
. We perform the time

scale transformation t → t(ε−2s) and write the time after this
rescaling again as t .

Let us introduce the probability generating function by

G(q,t) =
N/ε∑
n=0

qnP (εn,t). (13)

The generating function equation corresponding to Mε is

∂tG(q,t) + H (∂q,q)G(q,t) = b(q,t), (14)

where H (p,q) = f2(q)p2 + f1(q)p + f0(q), b(q,t) =
b0(q)P (0,t) + bN (q)P (N,t), f2(q) = ε2q(1 − q)2, f1(q) =
ε(1 − q)[(N − k0 − ε)q − (N + k0 − ε)], f0(q) = N (1 − q)
(k+ − k−q−1), b0(q) = k−N (1 − q−1), and bN (q) =
k−N (qN/ε − qN/ε+1). We assume that ε is taken such
that N/ε is an integer.

Note that b(q,t) = 0 for ε = 1. However, it is not necessar-
ily so for ε < 1. As one can see from the above definition,
the term b(q,t) originates from the boundaries X = 0,N .
Inequality b(q,t) �= 0 represents the imbalance between the
“drift part” and the “diffusion part” of the propensity functions
at the boundaries X = 0,N .
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FIG. 1. Stationary variance in X in the autocatalytic reaction
system with N = 10 and s = 1 for different values of ε and the CFPE.
Marks represent numerically calculated stationary variance from
the stationary distribution (ε = 1: square; ε = 0.1: circle; ε = 0.01:
upper triangle; ε = 0.001: lower triangle). The solid lines are Eq. (17).
The dashed line is Eq. (18).

The CFPE obtained in the limit of ε → 0 (before the time
rescaling) is

∂tP (X,t) = −∂X[A(X)P (X,t)] + 1
2∂2

X[B(X)P (X,t)],

(15)

with A(X) = k(N − 2X) and B(X) = kN + 2sX(N − X).
In the following subsections, we denote the stationary

probability distribution of X for Mε by P s
ε (X) and that for

the CFPE by P s
0 (X). First, we calculate the stationary variance

because we need it to obtain the correlation time. Then, we
proceed to the calculation of the correlation time.

A. Stationary variance

Let Gs(q) be the generating function of P s
ε (X) and bs(q) =

b0(q)P s
ε (0) + bN (q)P s

ε (N ). From Eq. (14), we have

H (∂q,q)Gs(q) = bs(q). (16)

By appealing to the formula ∂k
qGs |q=1 = 〈n(n − 1) · · · (n −

k + 1)〉, where 〈· · · 〉 is the stationary average, we obtain

〈X2〉 − 〈X〉2 = N (sN + 2k)

4(s + 2k)

− (1 − ε)kN (N + ε)

2(s + 2k)
P s

ε (0)ε−1, (17)

where we make use of the fact that P s
ε (0) = P s

ε (N ).
The stationary variance for the CFPE directly calculated

from Eq. (15) is

〈X2〉 − 〈X〉2 = N (sN + 2k)

4(s + 2k)
− kN2

2(s + 2k)
P s

0 (0). (18)

It is clear that the right hand side of Eq. (17) converges to that
of Eq. (18) as ε → 0.

Figure 1 shows the stationary variance for several values of
ε and that for the CFPE. Here, N = 10 and s = 1. k is varied
for several orders of magnitude. The difference between these
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curves is noticeable in the bimodal regime of the stationary
distribution (k < s = 1).

The second term on the right hand side of Eq. (17)
originates from bs(q). Thus, the effect of discreteness loss
to the stationary variance only comes from the broken balance
between the drift and the diffusion parts in the propensity
functions at the boundaries X = 0,N . Since this term is strictly
negative when ε < 1, the stationary variance for ε < 1 has
smaller values than that for the CME.

However, it should be emphasized that the difference
in the stationary variance vanishes for the small k limit.
Indeed, we have P s

0 (0) = B(0)k/s−1/
∫ N

0 B(X)k/s−1dX ∼
s(k ln k−1)−1. Thus, the second term on the right hand side of
Eq. (18) becomes 0 as k → 0, implying that 〈X2〉 − 〈X〉2 →
N2/4 in both Eqs. (17) and (18).

B. Correlation time

In this subsection, we calculate the correlation time,

τ =
∫ ∞

0
C(t)dt/C(0), (19)

where C(t) = 〈X(t)X(0)〉 − 〈X〉2 is the stationary autocorre-
lation function before the time rescaling t → (ε−2s)t . For the
calculation of τ , we appeal to the large deviation theory for
stationary processes [18]: Let W be the transition matrix for
Mε (12). Then, we have∫ ∞

−∞
C(t)dt = ε2s−1 d2

dr2
φ(0), (20)

where φ(r) is the largest eigenvalue of the matrix W + rU, U

is a diagonal matrix whose (i,j ) element is Uij = εiδij , and
δij is the Kronecker δ function.

In order to calculate d2

dr2 φ(0), we add the term rεnP (εn,t)
to the right hand side of Mε . Let Pr (εn,t) be a solution of this
new equation. The corresponding generating function Gr (q,t)
satisfies

∂tGr (q,t) + Hr (∂q,q)Gr (q,t) = br (q,t), (21)

where Hr (p,q) = f2(q)p2 + fr,1(q)p + f0(q), fr,1(q) =
f1(q) − rεq, and br (q,t) = b0(q)Pr (0,t) + bN (q)Pr (N,t).

Let Pφ(r) = [Pφ(r)(0),Pφ(r)(ε), . . .] be the unique eigenvec-
tor of the maximum eigenvalue φ(r) normalized by the inner
product 〈 Q,R〉 = ∑

n Q(εn)R(εn)/P s(εn). Now, we take the
following solution:

Pr (εn,t) = eφ(r)tPφ(r)(εn). (22)

The generating function for this solution is Gr (q,t) =
eφ(r)tFr (q) where Fr (q) = ∑

n Pφ(r)(εn)qn. Substituting this
into Eq. (21), we obtain

φF + f2∂
2
qF + f1∂qF + f0F = b0Pφ(0) + bNPφ(N ), (23)

where we omit variables q and r for simplicity.
Equation (23) holds in the neighborhood of (q,r) = (1,0).

Hence, we can take an arbitrary curve q = q(r) which passes
through (q,r) = (1,0) and differentiate Eq. (23) with respect
to r at r = 0. Here, we consider the Hamiltonian system [19],

q̇ = ∂pHr (p,q), (24)

ṗ = −∂qHr (p,q) (25)

and take the family of equilibrium solutions {(p(r),q(r))}r
such that q(0) = 1. From q̇ = ṗ = 0, we obtain q ′ = s/(2kε)
and q ′′ = s2(k − s)/(4k3ε2) after some algebra, where ′
denotes differentiation with respect to r at r = 0.

Differentiating Eq. (23) with respect to r along q = q(r) at
r = 0 twice and substituting q ′ and q ′′, we finally get∫ ∞

−∞
C(t)dt = N (sN + 2k)

4k(s + 2k)
− (1 − ε)N (N + ε)

2(s + 2k)
P s

ε (0)ε−1

+ (1 − ε)N

s
ε

d

dr
Pφ(0)(0), (26)

where we make use of the fact that P s
ε (0) = P s

ε (N ) and
d
dr

Pφ(0)(0) = − d
dr

Pφ(0)(N ), which follows from the following
Eqs. (27) and (28). d

dr
Pφ(0) is the unique solution of the

following linear system of equations:

W
d

dr
Pφ(0) =

(
d

dr
φ(0)I − U

)
P s , (27)

0 =
N/ε∑
n=0

d

dr
Pφ(0)(εn), (28)

where I is the identity matrix. Equations (27) and (28)
follow by differentiating (W + rU )Pφ(r) = φ(r)Pφ(r) and the
normalization condition 〈Pφ(r),Pφ(r)〉 = 1 with respect to r at
r = 0, respectively.

For CFPE (15), we have (by using the method in Sec. S.9
in Ref. [20])∫ ∞

−∞
C(t)dt = N (sN + 2k)

4k(s + 2k)
− N2

2(s + 2k)
P s

0 (0)

− N

4k
P s

0 (0)
∫ N

0

[
1 −

(
kN

B(X)

)k/s
]

dX.

(29)

One can show that the right hand side of Eq. (26) converges to
that of Eq. (29) as ε → 0 by considering the continuous limit
of Eqs. (27) and (28) before the time rescaling.

Equations (27) and (28) also imply d
dr

Pφ(0)(0) � 0. Thus, as
in the case of the stationary variance, the effect of discreteness
loss originates only from the boundaries X = 0,N , and it
decreases the value of the integral of the autocorrelation
function. Figure 2 shows the correlation time for several values
of ε and that for the CFPE. One can see that discreteness loss
has a negative effect on the values of the correlation time. This
tendency is larger in the bimodal regime.

From Fig. 2, one might expect that the divergence of
the correlation time for the CFPE as k → 0 is slower than
that for the CME. This expectation is correct because of
the following reason. As we have noted in the calculation
of the stationary variance, we have P s

0 (0) ∼ (k ln k−1)−1 as
k → 0. On the other hand, the rightmost integral in Eq. (29) is
∼ (N/s)k ln k−1. Thus, one sees that the last term on the right
hand side of Eq. (29) is ∼N2/(4k). In turn, this term and the
first term on the right hand side of Eq. (29) cancel each other.
Remembering that the stationary variance C(0) converges to
the same value for both the CME and the CFPE as k → 0, we
conclude that the correlation time for the CFPE diverges, such
as O[(k ln k−1)−1], which is slower than k−1 for the CME.
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FIG. 2. Correlation time of the autocatalytic reaction system
with N = 10 and s = 1 for different values of ε and the CFPE.
Marks represent values calculated from the numerical derivative of
the numerically obtained maximum eigenvalue φ(r) (ε = 1: square;
ε = 0.1: circle; ε = 0.01: upper triangle; ε = 0.001: lower triangle).
Solid lines are the combination of Eqs. (17) and (26). The dashed line
is the combination of Eqs. (18) and (29).

IV. BRANCHING-ANNIHILATION REACTION SYSTEM

In this section, we consider the following chemically
reacting systems:

R1: X → 2X, a1(X) = αX, ν1 = +1,

R2: 2X → ∅, a2(X) = β
X(X − 1)

2
, ν2 = −2.

The deterministic mean-field equation for this system is the
logistic equation Ẋ = X(α − βX). It has two equilibrium
points: One is repulsive (X = 0), and the other is attractive
(X = α/β =: N ).

The stochastic dynamics of this system have a qualitatively
different feature from that for the deterministic dynamics. It
is known that stochastic trajectories from any initial condition
falls onto X = 0 (extinction) with probability one [11]. This
feature is common for both the CME and the CFPE dynamics.
The scenario of extinction for N 
 1 is as follows: First, an
initial distribution moves to a region close to X = N in time
of the order 1/α, and a quasistationary distribution is formed.

Second, the quasistationary distribution is degraded in time
of the exponential order of N into the δ peak at X = 0. The
average time taken in the second process is called the mean
extinction time.

However, the mean extinction time for the CFPE has an
exponential difference from that for the CME [12,21]. Let
us denote the former by τCFPE and the latter by τCME. When
N 
 1, it was shown that [11,12,21]

τCME ≈ 2
√

π

βN3/2
exp[N (2 − 2 ln 2)], (30)

τCFPE ≈
√

π

3

1

βN3/2
exp{N [(3/2) ln 3 − 1]}. (31)

Here, we calculate the mean extinction time for Mε and reveal
how discreteness loss gives rise to the exponential difference
between τCME and τCFPE.

Mean extinction time

We follow the method developed in Refs. [12,22]. The
probability generating function equation corresponding to Mε

is

∂tG(q,t) + H (∂q,q)G(q,t) = 0, (32)

where G(q,t) = ∑∞
n=0 qnP (εn,t) and the Hamiltonian

H (p,q) is given by

H (p,q) = α(1 − q)

(
1 + ε−1

2
q − −1 + ε−1

2

)
p

+β

2
(1 − q2)

(
1 − ε

2
q2 − 1 + ε

2

)
p2. (33)

For t 
 1
α

, assume that G(q,t) ≈ 1 − φ(q)e−Et , P (0,t) ≈
1 − e−Et , and P (εn,t) ≈ πne

−Et (n > 0), where πn � 0 and∑∞
n=1 πn = 1. πn is called the quasistationary distribution.

Since P (0,t) is the probability that X is extinct by time t ,
the extinction probability density at time t is p(t) = dP (0,t)

dt
≈

Ee−Et . Hence, the mean extinction time is given by [12]

τ =
∫ ∞

0
tp(t)dt ≈ E−1. (34)

E can be obtained by substituting G(q,t) = 1 − φ(q)e−Et into
Eq. (32) and solving the following eigenvalue problem:

− ε

2N
(1 − q2)

(−1 + ε−1

2
q2 − 1 + ε−1

2

)
d2φ

dq2
(q) − (1 − q)

(
1 + ε−1

2
q − −1 + ε−1

2

)
dφ

dq
(q) + E

α
φ(q) = 0. (35)

To solve Eq. (35), we can directly apply the method in Ref. [22] to it and get

τMε
≈

√
π

3 + ε2

(1 + ε)2

βN3/2
exp

[
N

(
− ln(3 + ε2)

ε2
+ 1 + ε2

ε2
√

1 − ε2
ln

∣∣∣∣ (
√

1 + ε + √
1 − ε)[

√
(1 + ε)3 −

√
(1 − ε)3]

(
√

1 + ε − √
1 − ε)[

√
(1 + ε)3 +

√
(1 − ε)3]

∣∣∣∣
)]

. (36)

It can be verified that τMε
→ τCME as ε → 1 and τMε

→ τCFPE

as ε → 0.
The origin of the exponential difference between τCME

and τCFPE can be understood from the following geometrical
interpretation. Let us consider the Hamiltonian system q̇ =

∂pH (p,q), ṗ = −∂qH (p,q). On the q-p plane, the area

S(q0) = ∫ 1
q0

p(q)dq enclosed by three curves p = 0, q = 1,

and p = p(q) := 2N
ε

(1+ε)q−(1−ε)
(1+q)[(1+ε)−(1−ε)q2] gives the exponential

factor in τMε
(36), where q0 := 1−ε

1+ε
is the q coordinate of
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the intersection point between p = 0 and p = p(q). The
equation ṗ = −∂qH (p,q), restricted on q = 1, corresponds to
the deterministic mean-field equation. The p coordinate of the
intersection point between q = 1 and p = p(q) is N/ε. The
curve p = p(q) is the most probable extinction path from the
metastable state to the extinct state [22]. It moves toward q = 1
as ε → 0. This modification of the most probable extinction
path causes the change in the area S(q0), which yields the
exponential difference between τCME and τCFPE.

V. CONCLUDING REMARKS

In this paper, we investigated the effect of discreteness
on the stochastic dynamics of chemically reacting systems.
We focused on two concrete systems. One is an autocatalytic
reaction system exhibiting an intrinsic noise-induced transition
in the stationary probability distribution. The other is a
branching-annihilation reaction system in which intrinsic
noise gives rise to the extinction of the population of the
chemical species.

Discreteness loss yields a change in characteristic time
scales in both systems but for different reasons. In the first
example, the effect of discreteness loss in the correlation time
originates from the imbalance between the drift part and the
diffusion part of the propensity functions at the boundaries
X = 0,N . However, in the second example, the boundary
X = 0 has nothing to do because there is no term representing
the effect at the boundary in the generating function equation.
It is revealed that what makes the exponential difference in
the mean extinction time when the degree of discreteness
decreases is modification of the most probable path to
extinction.

It is natural to ask whether the existence of nonzero
boundary term b(q,t) always indicates a nontrivial discreteness
effect originating from the boundaries. The answer seems to

be no because of the following example. Let us consider the
reaction system studied in Sec. III with s = 0. Namely, now
we have no autocatalytic reactions. For this system, we still
have a nonzero boundary term b(q,t) in the generating function
equation for ε < 1. However, first of all, no transition occurs
in the stationary probability distribution P s(X) for the CME as
k → 0. Indeed, the stationary probability distribution P s(X)
is the binomial distribution B(N,1/2), which does not depend
on k. Furthermore, we have no significant difference in the
correlation time between the CME and the CFPE. Indeed,
one can see both the stationary variance and the integral of
the autocorrelation function for the CFPE have exponentially
small deviations from those for the CME as a function of N .
Thus, the existence of a nonzero boundary term b(q,t) is only
a necessary condition for the boundaries to induce a nontrivial
discreteness effect.

In previous work, the CFPE is typically regarded as an
approximation of the CME in an appropriate condition [14].
The condition justifying the approximation of the CME by the
CFPE is a sufficient condition such that the approximation is
effective. Logically, it has nothing to say about what occurs
when the approximation is not valid. In contrast, we do not
regard that the CFPE is an approximation of the CME but
regard that it is a limit of discreteness loss because our aim
is to study the effect of discreteness in stochastic dynamics
of chemically reacting systems. We hope that the presented
approach applied to other chemically reacting systems reveals
a variety of quantitative effects of discreteness on the stochastic
dynamics of them.
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