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Temporal motifs reveal collaboration patterns in online task-oriented networks
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Real networks feature layers of interactions and complexity. In them, different types of nodes can interact
with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs),
where teams of people share tasks towards creating a quality artifact, such as academic research papers or
software development in commercial or open source environments. Accomplishing those tasks involves both
work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the
different types of activities and how they alternate over time can result in much more precise understanding of
the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and
link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal
motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available
data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the
observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency
between collaboration and communication in the code writing process. Moreover, we show that models based on
temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to
programmer productivity than models based on aggregated TOSNs.
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I. INTRODUCTION

With the availability of electronic communication data
on phone calls [1], emails [2], tweets [3], etc., social net-
works [4,5] have been extensively studied in recent years, and
their significance in various social processes is now widely
recognized [6–8]. More recently, the focus has been on task-
oriented social networks (TOSNs), i.e., communities of people
who are virtually organized around and working on a common
goal; i.e., there is a typical wealth of other data recording
their technical contribution. Examples of such communities
are Open Source Software (OSS) projects [9], Wikipedia [10],
Stack Overflow [11], etc., where people cooperate to create
software, share knowledge, and provide quick and high-quality
answers for different kinds of questions, respectively.

One of the more interesting phenomena observed in empir-
ical network research is that social, biological, and technical
networks share structural properties, such as small worldi-
ness [12], scale freeness [13], and motifs richness [14,15]. Re-
vealing global properties helps to capture a network as a whole,
while identifying mesoscale motifs is important to understand
its evolving mechanism in a bottom-up fashion [16,17].
Many efforts have been made to identify motifs, or small
connected subgraphs, in complex networks. For example,
Shen-Orr et al. [14] detected motifs in the transcriptional
regulation network of Escherichia coli and found that each
of the significant motifs has specific function in determining
gene expression, while Valverde and Solé [18] found that the
frequent motifs in software networks are more likely to be
a consequence of network heterogeneity and size rather than
software functionality.
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Real complex networks are also dynamic or temporal.
The nodes are connected via links representing discrete
events [19,20], e.g., in social networks, individuals join and
quit frequently and they communicate with each other at differ-
ent times [21]; and in biological networks, there are sequences
of activities to process gene regulation [22]. The sequence
of these events have been shown to have important effects
on many processes in the networks [23,24]. In fact, some
sequences of links recur, forming temporal motifs. Identifying
such temporal, or time-dependent, motifs in networks has been
receiving attention lately. Braha and Bar-Yam [25] studied a
series of static, or snapshot networks, by aggregating events
over short time periods and counting observed temporal motifs
in them. Bajardi and Dornhaus [26] considered temporal
motifs as sequences of connected events belonging to adjacent
time windows, and Kovanen et al. [27] considered two events
�t-connected if a sequence of events exists between them,
satisfying that each pair of the consecutive events have at least
one node in common and the time interval between them is no
longer than �t . Then they studied connected temporal motifs
consisting of �t-connected events. These studies address the
time dimension of complex networks, and their results indicate
that motifs in the overall aggregate networks are always
overrepresented, leading to inflated results.

In this paper, we focus on identifying temporal motifs
in TOSNs in order to reveal temporal collaboration between
people working on the same artifact. In particular, we consider
our networks as containing, in the simplest case, two types of
nodes: people (P) and artifacts (A), and two types of links
between them: people working on artifacts (P → A) and
people communicating with others (P → P).1 Then, for a

1These two kinds of activities might not be independent; in fact,
we have shown that communication is vital to make the temporal
collaboration effective [28].
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temporal collaboration to occur, it is necessary that two people
work on the same artifact(s), e.g., P1 → A, and P2 → A, at
close enough points in time. However, this is not sufficient. To
observe the dependency between these two different kinds of
activities and understand the evolution of a TOSN as a whole,
the respective collaboration and communication networks
should be considered simultaneously. This motivates our
current work where the challenge is to develop novel methods
to identify task-related temporal motifs, involving two people,
an artifact, and the two activities of working on the artifact or
communicating. With such methods we hope to reveal the spe-
cific roles of communication in temporal collaboration. Such
temporal motifs can also be used to filter accompanying noisy
information, such as noncollaborative activities and indepen-
dent communication activities, so as to make the relationship
between communication and collaboration more distinct and to
suggest appropriate layered network models [29–33]. This ap-
proach can be further used to help reveal latent team structures
with higher confidence, which is considered to be strongly
associated with individual and group performance [34–37].

The rest of the paper is organized as follows. In Sec. II we
introduce TOSNs and the data set collected from OSS projects.
In Sec. III we propose a method to identify temporal motifs
in TOSNs and use a null model to generate random networks
for comparison. In Sec. IV we use the temporal motifs to
filter structural noisy information so as to reveal the distinct
relationship between collaboration and communication. We
then apply these motifs to visualize the temporal interactions
between individuals. In Sec. V we use these temporal motifs to
reveal the team structure and adopt their structural properties
to model individual and team productivity. Finally, the paper
concludes in Sec. VI.

II. TASK-ORIENTED SOCIAL NETWORKS

A TOSN usually contains different types of nodes and links,
i.e., people collaborate to produce different kinds of artifacts,
such as movies [12], music [38], scientific papers [39,40],
software [41–43], etc.; they may also communicate with each
other to coordinate their work through different media. Such
a network is more general than bipartite networks [1,44] and
multiplex networks [29–33], where only the type of nodes and
the type of links vary, respectively. For simplicity, here we
mainly focus on the basic TOSN with two types of nodes; i.e.,
a group of people (P) work on artifacts (A), and they communi-
cate with each other, as shown in Fig. 1. Such a basic TOSN is
sufficient to provide the simplest framework to study interac-
tions between communication and collaboration, thus enabling
the quantitative study of sociotechnical systems [45–47];
a more complex TOSN can be considered as a natural
collection of basic ones; i.e., more types of artifacts and more
communication channels can be added into the framework to
study interactions among them at finer resolutions.

Here a TOSN is denoted by G = {X,Y,EX,EY ,EB}, where
X = {x1,x2, . . . ,xN } and Y = {y1,y2, . . . ,yM} are the node
sets containing two types of nodes, people and artifacts,
respectively; EX, EY , and EB are the link (or edge) sets where
EX is the set of communication links between people (P →
P), EY is the set of dependency links between artifacts (A →
A), and EB is the set of links from people to artifacts (P → A).

…. …. 

FIG. 1. (Color online) Sketch of a typical TOSN, with two types
of nodes and links, i.e., a group of people collaborating to process
a number of artifacts, while they communicate with each other to
coordinate their work.

Each link in the TOSN is represented by a sequence of time
stamps at which the series of interacting events between the
two incident nodes were recorded.

In this paper, we focus on Open Source Software (OSS)
projects TOSNs, as examples on which to introduce and study
temporal motifs. In each OSS project, there are a group of
developers whose work activities are in large part committing
code changes to the artifact files, and they communicate
with each other through emails. We choose OSS because
in addition to the availability of their work activities, the
developer discussions via emails are also archived and often
meaningfully related to the work activities [37].

We collected commit and email communication activities
of developers from 31 OSS projects from the Apache Software
Foundation on March 24, 2012, from which we obtain
the TOSNs, one for each project. For each project, email
communications were mined from the developer mailing lists,
while commit activities are gathered from the corresponding
Git repository [48]. Note that messages may be automatically
posted to a mailing list in an OSS community to inform
others when some work is completed. To exclude such
trivial communication activities, we consider only response
emails [37]. We also use a semiautomatic approach to solve the
problem of multiple aliases which some developers use [48].

III. TEMPORAL MOTIFS IN A TOSN

The simplest meaningful motif in a network is a triangle
involving three nodes, the richness of which is used to quantify
the local clustering of the network [49]. For every triple
of nodes in a TOSN denoted by G, there are in total four
combinations: {xi,xj ,xk}, {yi,yj ,yk}, {xi,yj ,yk}, {xi,xj ,yk}.
For the first two cases, the motifs are the same as those in the
networks containing only one type of node and thus will not
be considered here. For the third case, since the dependencies
between files are relatively stable when compared to the
other two types of links, the temporal three-motifs mean that
a developer tends to process related artifacts at successive
time by following a random walk on the file dependency
network, which has been extensively studied in both theory
and practice [50,51] and thus will also be excluded in this
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FIG. 2. (Color online) (a) A TOSN with six developers (red circles) and seven files (blue squares). (b) Four typical temporal motifs: plan
before temporal collaboration (TAB/TBA), call for participation (ATB/BTA), discussion after temporal cocommits (ABT/BAT), and temporal
cocommits without communications by email (AB/BA). (c) The ordered sequence of activities, which is divided into a subsequence at the
interactivity intervals larger than a given threshold θ . (d) The subsequences after combining the same successive elements. (e) Counting
temporal motifs in the resulting subsequence.

study. The fourth case will be the focus of this paper:
temporal three-motifs indicating a coevolving pattern between
collaboration and communication of two developers working
on the same file. Since the motifs on the combination {xi,xj ,yk}
do not involve the dependency links between artifacts, we set
EY = ∅ in the rest of the paper.

A. Mathematical definitions

Here we define activity sequences among the nodes
{xi,xj ,yk} in G, as defined above. We denote by “T” a
communication activity between developers xi and xj , by “A”
a commit activity of xi , and by “B” a commit activity of xj

on file yk , respectively, as shown in Fig. 2(a). Then, over time,
the activities over these three nodes form an ordered sequence
S = (s1,s2, . . . ,sH ) ∈ {T,A,B}H , with element sh occurring at
time th, and satisfying th < th+1 for h = 1,2, . . . ,H − 1.

There are six different temporal activity triples, corre-
sponding to the three element permutations of {T,A,B}:TAB,
TBA, ATB, ABT, BTA, and BAT. TAB, e.g., means the two
developers xi and xj communicate with each other first,
perhaps planning or coordinating future actions, after which
xi commits to the file yk and then xj follows suit. Since the
commit activities A and B have no precedence in time over
each other, i.e., are topologically equivalent, these six triangles
can be combined into the following three temporal motifs:
TAB and TBA, denoted by M1, meaning planning followed by
temporal collaboration; ATB and BTA, denoted by M2, mean-
ing call for participation; and ABT and BAT, denoted by M3,
meaning discussion after temporal cocommits. Such temporal
motifs can then be used to quantify the coevolving patterns
of collaboration and communication between developers in a

TOSN. In order to investigate more comprehensively the role
of email communication in a collaboration, we include a fourth
motif, representing AB and BA, denoted by M4, meaning
that two developers might temporally cocommit to the same
file without communicating by email. All these motifs are
visualized in Fig. 2(b).

B. Identification of temporal motifs

Given a sequence of activities for a triple of nodes
{xi,xj ,yk}, we consider long time intervals in the sequence
to be natural separators between series of temporal motifs,
since a discussion or code commits are more likely occur as
bursts of communications or commits [28]. We reconstruct
their temporal motifs as follows.

(1) Divide. Given a sequence S = (s1,s2, . . . ,sH ) of ac-
tivities occurring at successive times ti , we divide them into
subsequences defined by instances of si and si+1 separated
by large time intervals, i.e., ti+1 − ti > θ , some predefined
threshold, as shown in Fig. 2(c).

(2) Combine. For each subsequence, we combine repeated
successive activities, as shown in Fig. 2(d). We denote by
F = (f1,f2, . . . ,fP ) the resulting subsequence, satisfying
fi �= fi+1 for i = 1,2, . . . ,P − 1.

(3) Count. We count the occurrence of our four motifs
above, M1, . . . ,M4, by looking at consecutive, nonoverlapping
tuples or triples in F , as shown in Fig. 2(e). The tuples AB or
BA are counted as motif M4 only if not preceded or followed
by T, in which case they will be counted as M1 or M3.

We note that we only consider two- or three-motifs
throughout the paper, but the method proposed above can be
directly extended to identify longer motifs.
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C. Null model for comparison

In a static complex network containing only one kind
of nodes, the significance of a motif is always validated
by comparing with the random networks generated by a
null model, as conditionally randomized versions of the real
network [14,15,18,52], e.g., random networks with the same
degree sequence. A motif is considered structurally significant
only when its count in the real network is statistically larger
than those in the random networks. The situation is more
complicated in temporal networks, where the time dimension
is not projected out and thus the successive activities in a
temporal motif must be near each other in time. In this case, the
randomized reference can be obtained by time shuffling [27],
i.e., randomly exchanging the time stamps of events but
keeping the structure of the aggregate network the same, to
observe the temporal correlations among events.

In temporal TOSNs, we focus on motifs that indicate
temporal correlations among different kinds of individual
activities. Such temporal correlations can be found in both
the network structure and the time series of the activities.
In reality, however, the network structure may depend on
other factors, such as the order in which individuals and
artifacts joined the system (e.g., developers do not commit
to files that were created after they had left the project) and
the dependency between artifacts (e.g., developers are more
likely to commit to dependent files). The rewiring process
that generates the null background can potentially break down
such orders and dependencies and thus might make the null
model inappropriate. Therefore, here we would like to create
a null model by only shuffling the time intervals between
activities under certain conditions, rather than change the
network structure randomly, so that most statistical properties
of the real network will be kept in the process and the resulting
aggregate network will be the same as the observed one.

Since there are two kinds of activities, commits and
communications, in a TOSN the temporal correlation between
them then can be discharged by shuffling the time intervals
in only one of these activities. Here we adopt this approach,
proposed originally in our previous work [37], to shuffle the
time intervals between commit activities for each developer,
on each file, via the following three steps:

(1) Initialization. For each commit link, let there be
U commit activities occurring at times τ1,τ2, . . . ,τU , with
τi < τi+1 for i = 1,2, . . . ,U − 1. Then we obtain an ordered
sequence of interactivity time intervals between them, denoted
by �τi = τi+1 − τi , i = 1,2, . . . ,U − 1.

(2) Shuffling. We randomly rearrange (permute or shuffle)2

the U − 1 time intervals and obtain a new sequence of
time intervals, denoted by �πi , i = 1,2, . . . ,U − 1. This
essentially generates random orderings of idling periods for the
developer on the current file, but ensures that the distribution of
these idling periods are exactly the same as actually observed.

(3) Welding. We weld these time intervals in the new
order, one by one, to obtain a new sequence of com-
mit activity occurrence time, denoted by π1,π2, . . . ,πU ,

2For example, by using the sample() function in R.
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FIG. 3. (Color online) The average numbers of three-motifs M1,
M2, and M3 and two-motifs M4 for the 31 TOSNs at different time
threshold θ , varying from three hours to three days.

satisfying

πi = τi, i = 1,
(1)

πi = πi−1 + �πi−1, i � 2.

Note that this null model will not change the number of commit
activities and the whole period of development, i.e., from τ1

to τU , for each developer on each file as well.
We use the same method as above to identify the motifs in

the temporal networks created by this null model. For each real
network, we generate 100 random networks. Denote by λk the
number of Mk motifs in the observed network and by λ∗

k the
average number of Mk motifs and by σ the standard deviation
among them in the random networks. Then the significance of
a motif is measured by its Z-score [18], defined as

χk = λk − λ∗
k

σ
. (2)

We also compare the occurrence of the four different
motifs among themselves, in order to see which motif is
preferred in the observed network, and thus address the role of
communication in temporal collaboration.

D. Significance of temporal motifs

By applying these methods to the 31 observed projects
collected from Apache Software Foundation, we get the
numbers of three-motifs M1, M2, and M3 and two-motifs M4 in
these networks. The average number of these motifs (over all
31 TOSNs) at different time thresholds θ are shown in Fig. 3.
We find more temporal motifs M1 than M3 in most projects,
indicating that developers prefer to talk prior to, rather than
following, bursts of commit activity. Using Student’s t test,
we find the difference is quite significant (p = 1.32e − 11),
when considering all the cases with different time thresholds
θ = 3,6, . . . ,72 (h) together. It should be noted that here
the number of the same motif across different projects has
a relatively large standard deviation, e.g., about 795 for M1

when θ = 24 (h). This is mainly because these projects are of
quite different size; e.g., there are 72 developers in Axis2_java,
while there are only three developers in Bookkeeper.
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We generate random TOSNs as null model references
and then calculate Z-scores for the three-motifs M1, M2,
and M3 with Eq. (2). We find that the Z-scores of the
three-motifs in these networks under various time threshold
are always positive, and most of them (87% for M1, 90%
for M2, and 79% for M3) are larger than two, indicating that
the temporal three-motifs are more abundant than expected
by chance. We also find that the counts of the two-motif
M4 in 28% of the cases are smaller than random,3 and
developers avoid temporally cocommitting with each other
without coordinating. These results suggest that temporal
collaboration is an important emergence in these TOSNs
and confirm that communication plays an important role in
synchronizing the work of developers [28].

Interestingly, although the count for each three-motif is
much larger in most observed TOSNs than in the random
ones, the fractions of each three-motif out of all three-motifs
are close to each other in the observed and random networks.
This is expected since the time shuffling process does not
change most statistical properties of the TOSNs. For instance,
the shuffling process does not change the total active period
length and the total numbers of communication and commit
activities of any developer, and thus at least the three-motifs
involving their first and last commit activities are kept the same
in the random shuffling process.

IV. TEMPORAL MOTIFS AS FILTERS

As we know, in many cases, communication is vital to
making collaboration effective, i.e., more communication
is always needed when coordinate additional collaborative
work [28]. This can be coarsely validated by calculating
the correlation between aggregate collaboration and social
networks, both of which can be obtained from the TOSN.

In OSS projects, two developers are linked in the aggregate
collaboration network if they have ever committed to the same
files. To each link we give a weight representing the shared
number of times that they have committed to the same files.
That is, suppose they committed to the same K files, denoted
by fi , i = 1,2, . . . ,K , and for each file fi , the first developer
commits αi times and the second βi times. Then we define the
collaborative weight between them as

wC =
K∑

i=1

min{αi,βi}. (3)

For a pair of developers linked in the aggregate collaboration
network we also define social weight as the number of response
email messages between them through the mailing list in
Apache, denoted by wE ; it equals zero if no such email
communication is observed. Then, for each TOSN, we have a
list of collaborative weights of links and a list of corresponding
social weights, denoted by WC and WE , respectively, and we

3This indicates that the large number of two-motifs shown in Fig. 3
is consistent with a random phenomenon, i.e., developers committed
to the same files independently at close times.

calculate their similarity as

R = 〈WC,WE〉
‖WC‖‖WE‖ . (4)

While we indeed find WC and WE are positively correlated,
R = 0.46 ± 0.33 for the 31 TOSNs, we also find many
outliers: i.e., pairs of developers who work on a large number
of the same files may seldom contact each other through email,
while developers who communicate frequently with each other
may work alone most of the time and have little overlap
between the files to which they contribute. This phenomenon
is reasonable, since online communities are always highly
dynamic; e.g., many OSS projects last for more than 10 years
and the volunteer developers join and quit frequently. Thus,
to assert a collaborative relationship between two developers
we need more than just evidence that they simply contributed
to the same files; i.e., we need also to know whether their
activities occurred close together in time [28]. Moreover, for
the same pair of developers, some communications may be
independent from collaborative activities, since they may be
just chatting or sharing knowledge, rather than discussing how
to solve a current problem in the project. These may introduce
noise and make it challenging to reveal a distinct relationship
between communication and collaboration when only using
aggregate TOSNs.

The temporal motifs we propose here capture the temporal
collaborations between developers, and the communication
links in the three-motifs can be considered strongly associated
with the temporal collaborations, since they happen close in
time. In other words, these temporal motifs can be used to filter
structural noise and thus can help identify collaboration and
the associated communications with higher confidence. We
connect these two- and three-motifs to establish an aggregate
motif network for each OSS project, where two nodes are
linked if they are connected in at least one temporal motif,
with the link weight representing the times a link appears in
all the motifs. Such a network can be used to visualize various
temporal interactions between individuals, based on which we
can understand them as a system. As examples, the aggregate
motif networks for the six largest OSS projects are shown in
Fig. 4 when the time threshold is set to θ = 3 (h). It can be seen
that a large part of collaborations are indeed accompanied with
email communications between developers. Note that these
networks are quite different from the aggregate TOSNs, since
a number of commit and communication activities have been
removed in the process of identifying temporal motifs.

In addition, for each project, based on the aggregate motif
network, we obtain another pair of aggregate collaboration
and social networks, the correlation between which can be
calculated by the same method, as described by Eq. (4), for
comparison. As expected, for most OSS projects, collaborative
and social weights are positively correlated, no matter whether
they are obtained from the aggregate TOSN or the aggregate
motif network. By comparison, we find that, on average, the
correlation coefficients between the two based on the aggregate
motif networks are much larger (with significance of p = 0,
per Student’s t test) than those based on the aggregate TOSN,
and the former is even larger than 0.8 when θ � 24 (h), as
shown in Fig. 5. This validates the utility of the temporal
motifs in information processing; i.e., they can be treated as
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(a) (b) (c)
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FIG. 4. (Color online) Aggregate motif networks for six OSS projects: (a) Ant, (b) Axis2_java, (c) Cxf, (d) Derby, (e) Lucene, and
(f) Openejb, with time threshold set to θ = 3 (h). Here the red circles represent developers and the blue diamonds represent files; the red solid
lines represent the communications between developers, and the gray dashed lines represent the developer commits to files.

efficient information filters to identify temporal collaborations
and further reveal the more distinct relationship between
collaboration and communication.

Note that the collaborative activities of developers and
the associated communications occur at close times, but
almost never at exactly the same time; i.e., developers need
some time to revise the code and reply to emails. As a
result, the time threshold cannot be too small, since the
counts of temporal motifs decrease very quickly as the time
threshold θ approaches zero, resulting in the correlation
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ (h)

R

Based on the aggregate TOSN
Based on the aggregate motif network

FIG. 5. (Color online) Correlation between collaborative and so-
cial weights, calculated by Eq. (4), obtained from the aggregate
TOSN and the corresponding aggregate motif networks for all 31 OSS
projects (the mean value and the error bars are shown), as functions
of the time threshold θ .

R going to zero. On the other hand, the time threshold
cannot be too large either, since it would result in temporally
distant commits of two different developers being considered
collaborative.

V. IDENTIFYING TEAM STRUCTURE

Organizational properties of teams, such as their centraliza-
tion and cohesion, may have significant effects on individual
and group performance [34–37]. Teams in online TOSNs are
typically self-organized, with volunteers who work on the
projects remotely and come and go as they please. Identifying
the structure of self-organized teams would, thus, be very
valuable when studying their performance.

Due to the available trace data in OSS TOSNs, this can
be done by reverse engineering the team compositions from
the observations of peoples’ activities. We proceed to do that
here. To reveal a statistically meaningful relationship between
network properties and individual and group performance, in
the rest of the paper we consider only the most productive, or
top, developers, having at least 100 commits, and keep only
projects with at least five such developers. After this filtering,
we were left with 21 projects and a total of 220 developers.

A conservative estimate of a team and their activities
may be found in the overlap between their communication
and collaboration networks. We consider that two developers
collaborate if they commit to the same files and communicate
with each other, around the same point in time. Given an
aggregate TOSN and the temporal motifs for a group of
developers, the following two networks over the top developers
can capture their team structure:
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TABLE I. The network properties, including average degree 〈k〉,
average clustering coefficient 〈CC〉, and the heterogeneity H , of �1

and �2 for the six largest OSS projects. For �2, the time threshold is
set to θ = 12 (h).

〈k〉 〈CC〉 H

Project �1 �2 �1 �2 �1 �2

Ant 6.06 3.00 0.85 0.75 1.05 1.30
Axis2_java 7.88 2.23 0.85 0.73 1.16 2.02
Cxf 5.89 1.58 0.84 0.73 1.13 2.13
Derby 6.50 3.21 1.00 0.73 1.00 1.22
Lucene 4.73 2.45 0.95 0.73 1.01 1.10
Openejb 3.82 1.73 0.93 0.70 1.11 1.45

Network �1: two developers are linked if they cocommit to
at least one file and there is at least one email message between
them.

Network �2: two developers are linked if they form a
temporal three-motif together with at least one file to which
they have both committed code.

Note that network �2 depends on the time threshold θ , and
satisfies �2(θ ) ⊆ �2(θ + �) ⊆ �1 for any positive θ and �,
indicating that the links in �2 with a smaller time threshold
constitute a subset of the links in �2 with a larger time
threshold; also, the links in �2 with any time threshold
constitute a subset of the links in �1.

For most of our projects, eventually almost every pair of
top developers ends up communicating with each other and
having cocontributed to same files. However, such nearly fully
connected networks do not capture the real team structure of
these projects, since, e.g., a pair of connected developers may
have contributed to the same files and communicated with
each other at very different times. The temporal motifs we
propose here do not have that weakness and thus can better
capture the collaboration between developers; hence, �2 is
more appropriate to describe the team structure. To address
the difference between �1 and �2, and provide insights for
future work in modeling team structure, we compare several
of their global properties for the six largest OSS projects
in Table I. We find that, after filtering those independent
commit and communication activities, the team structure gets
much sparser, while its clustering coefficient keeps relatively
large for all the considered projects. This indicates that the
developers in each of these projects tend to cluster together
even when the average degree of the network is relatively
low. Moreover, using the degree distribution, we define the
heterogeneity4 of a network as H = 〈k2〉/〈k〉2. We find that
�2 is more heterogeneous than �1, i.e., the individuals are
more different in �2, in terms of node degree.

These results are similar for varied time thresholds and
suggest that both local and global topological properties of
�2 can be used to better characterize the individuals and the
group, respectively, than those of �1, and thus may be stronger
predictors of their other properties, such as productivity.

4This measurement is also important to determine the critical point
to sustain reaction/epidemic activity on a network [53].

A. Centrality and individual productivity

In a group, a person is central if he or she is the most
popular and gets the most attention [36]. Centrality thus
mirrors social status. A number of centrality measures have
been devised, the most generic being the degree of a node
in a social network [37]. More specific ones, e.g., closeness
and betweenness, have been used to measure the centrality
of a person in scientific collaboration networks [39]. There,
the closeness of a node, defined as the average distance from
the node to all other nodes, is a measure of information
transmission from a person to all others, whereas betweenness
is a measure of a person’s control over information flowing
between others. More generally, Borgatti and Everett [54] pro-
posed a series of degree-like, closeness-like, and betweenness-
like centralities by considering different kinds of network
paths, or by expanding the definition of network distance.
Rothenberg et al. [55] used eight such centrality measures to
study the role of network structure in disease transmission.
They found that although these measures differ in their
theoretical formulation, they produce similar epidemiological
results: noncentral persons are likely to be HIV positive in
their low-prevalence social network. To measure centrality
we use the normalized degree, k̃, defined as the ratio of
node degree to the maximum degree in a project network.
We do this since we consider all top developers from all
the projects together. In that setting, the normalized degree
fixes the overall spread between node degrees across different
projects. We choose node degree because it is easy to calculate
and the definition is straight-forward in both connected and
unconnected networks; also, in many cases, these measures of
centrality are correlated with each other, and thus the use of
alternatives may not influence the results very much. Note that,
as suggested by Sarigöl et al. in their recent study on scientific
coauthorship networks [56], although no single centrality
measure could outperform the others, adopting a combination
of many complementary notions of centrality has the potential
to improve the precision of the model. This is partly because
the social status in the collaboration network is multifaceted
and thus can be reflected by different network measures.

To study the relationship between productivity [lines of
codes (LoCs) per day] and centrality, with the number of
commits, denoted by C, considered as a confound, we set
up two multiple linear regression models for productivity of
a developer as a function of the number of commits and of
their centrality, one model for �1 and another for �2. We find
that the models based on �2 under various time thresholds are
always better than those on �1, although the multiple R2 of
the model is only slightly better, i.e., 0.2276 ± 0.0048 versus
0.2218. Note that this slight difference may still indicate quite
different roles of centrality in the two models, since centrality
may have totally different relative importance [we use the
function calc.relimp() in R] in different cases; i.e., it explains
different fractions of variance in the two models.

For example, the model and results for �2 with the time
threshold θ = 12 (h) are shown in Table II [we used the
function lm() in R]; the multiple R2 equals 0.2333 and the
residual standard error (RSE) equals 1.248. We can see that,
when controlling for the number of commits, centrality k̃ is a
significant predictor in this model and its relative importance
is 24.4%. By comparison, centrality is not significant in the
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TABLE II. Multiple linear regression model for the individual
productivity against the number of commits and the centrality in �2

with θ = 12 (h).

Variabes Estimate Std Error z value Pr(>|z|)
(Intercept) 1.3153 0.5530 2.379 0.0182
ln(C) 0.6187 0.0995 6.215 2.59e-09
k̃ 0.6350 0.2899 2.191 0.0295

model based on �1, and its relative importance is lower,
11.8%. In Table II the positive coefficient for k̃ means that
the effect of increased centrality is more LoCs per day, when
the numbers of their commits are comparable. Note that here
we log the productivity and the number of commits to stabilize
the variance and improve the model fit.

B. Cohesion and team productivity

Next, we study the relationship between social connectivity,
or cohesion, in a team and the team’s productivity performance.
To calculate a team’s cohesion, we use a measure similar to
that introduced by Yang and Tang [36]: the ratio of positive
mutual relationships to all possible ones. Since most email
communications in OSS are positive, e.g., encouraging others
to do more extensive work [28], we approximate team cohesion
by the link density in the network:

φ = 2

n(n − 1)

n∑
i=1

ki, (5)

where n is the team size and ki is the degree of node i. For each
project, we also calculate the team productivity as the average
productivity of the team members.

We use a multiple linear regression to model the average
productivity of developers in a team as a function of cohesion,
φ, in �2,5 while controlling for team size n and average
number of commits C. Since developers have different commit
and communication rhythms, to increase statistical power,
we pooled all projects in �2 with different time thresholds
θ = 3,6, . . . ,72 (h) into a single model. Note that varying
time threshold only influences the cohesion but has no effect on
team productivity; therefore, we expect pooling all data into a
single model is appropriate, with little threat to the validation of
the models. The results are shown in Table III, where the mul-
tiple R2 equals 0.2681 and the RSE equals 0.56. We find that,
while controlling for the average number of commits and team
size, team cohesion has a significant positive effect on the aver-
age productivity of developers, indicating that developers in a
more cohesive team will, statistically, have higher productivity.

These results about the relationship between network
properties and individual and team productivity validate again
the potential of the temporal motifs technology, i.e., the
properties in the �2 network can be used to better characterize
individuals and groups in OSS projects, and, thus, might be
appropriate to describe their team structures.

5Model on �1 had consistently poorer fit, i.e., none of the variables,
including the number of commits, team size, and team cohesion, is
significant in this case, so we omit it here.

TABLE III. Multiple linear regression model for the average
productivity in a team against the average number of commits, team
size, and team cohesion, by considering all the cases in �2 together.

Variable Estimate Std Error z value Pr(>|z|)
(Intercept) 2.4729 0.2969 8.330 7.80e-16
ln(C) 0.4451 0.0478 9.317 <2e-16
n 0.0309 0.0054 5.684 2.24e-08
φ 1.0110 0.1417 7.137 3.37e-12

VI. CONCLUSION

In this study, we proposed a methodology for identifying
temporal motifs composed of two people and an artifact in
task-oriented social networks. Such temporal motifs can be
used to filter out independent activities and thus help to identify
temporal collaborations between people, find the associated
communications, reveal the distinct dependency between the
two, and further infer the latent team structure. The time
threshold is always an important parameter in the studies
of temporal networks. Here the appropriate time threshold is
based on the Goldilocks approach: not too small, since people
need some time to respond to an event; and not too large, since
two events can hardly be considered as associated with each
other if they are apart from each other for a long time. We thus
vary it from three hours to three days.

We find that temporal motifs are an important emergence
in OSS projects, i.e., the numbers of temporal motifs in
real TOSN are always significantly larger than those in the
randomized networks. More interestingly, based on the team
structure inferred from the temporal motifs, we find that the
more central individuals and the more cohesive teams are more
productive. The results are less significant if we use the team
structure derived from the aggregate TOSN instead. This is a
validation for using temporal motifs, instead of an aggregate
TOSN, to describe team structure.

Here we considered only the basic TOSN that contains
two types of nodes and two types of links. However, people
in general may use different communication tools, such as
telephone, Twitter, MSN and so on, to chat or coordinate
different kinds of work. More general nodes and links will
certainly lead to more varied temporal motifs in TOSNs. More
broadly, the proposed techniques can be easily generalized for
use in other temporal networks, containing different types of
nodes and different types of links, although the meaning of the
temporal motifs might be domain specific. They can also be
used to reason about the causal relationship between different
kinds of activities, which can provide useful insights for the
modeling of layered networks.
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