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Ising model in clustered scale-free networks
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The Ising model in clustered scale-free networks has been studied by Monte Carlo simulations. These networks
are characterized by a degree distribution of the form P (k) ∼ k−γ for large k. Clustering is introduced in the
networks by inserting triangles, i.e., triads of connected nodes. The transition from a ferromagnetic (FM) to
a paramagnetic (PM) phase has been studied as a function of the exponent γ and the triangle density. For
γ > 3 our results are in line with earlier simulations, and a phase transition appears at a temperature Tc(γ ) in
the thermodynamic limit (system size N → ∞). For γ � 3, a FM-PM crossover appears at a size-dependent
temperature Tco, so the system remains in a FM state at any finite temperature in the limit N → ∞. Thus, for
γ = 3, Tco scales as ln N , whereas for γ < 3, we find Tco ∼ JNz, where the exponent z decreases for increasing
γ . Adding motifs (triangles in our case) to the networks causes an increase in the transition (or crossover)
temperature for exponent γ > 3 (or �3). For γ > 3, this increase is due to changes in the mean values 〈k〉
and 〈k2〉, i.e., the transition is controlled by the degree distribution (nearest-neighbor connectivities). For γ � 3,
however, we find that clustered and unclustered networks with the same size and distribution P (k) have different
crossover temperature, i.e., clustering favors FM correlations, thus increasing the temperature Tco. The effect of
a degree cutoff kcut on the asymptotic behavior of Tco is discussed.
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I. INTRODUCTION

Many natural and artificial systems have a network struc-
ture, with nodes representing typical system units and edges
playing the role of interactions between connected pairs
of units. Complex networks can be used to model various
kinds of real-life systems (social, economic, technological,
and biological) and to analyze processes taking place on
them [1–5]. In recent years, various network models have been
designed to capture aspects of real systems, thus allowing
us to explain empirical data in several fields. This is the
case of small-world [6] and scale-free networks [7], which
provide us with the underlying topological structure to analyze
processes such as signal propagation [6,8], as well as the spread
of information [9,10], opinions [11], and infections [12,13].
These types of networks have been also used to study statistical
physical problems such as percolation [12,14] and cooperative
phenomena [15–21].

In scale-free (SF) networks the degree distribution P (k),
where k is the number of links connected to a node,
has a power-law decay Psf(k) ∼ k−γ [22,23]. This type
of network has been found in several real-life systems,
such as the Internet [24], the world-wide web [25], protein
interaction networks [26], and social systems [27]. In both
natural and artificial systems, the exponent γ controlling
the degree distribution is usually in the range 2 < γ < 3
[22,23]. The origin of power-law degree distributions was
studied by Barabási and Albert [7], who found that two
ingredients can explain the scale-free nature of networks,
namely growth and preferential attachment. More general
models based on these ingredients have appeared later in
the literature [28,29]. One can also deal with equilibrium SF
networks, defined as statistical ensembles of random networks
with a given degree distribution Psf(k), for which one may
analyze several properties as a function of the exponent γ

[22,30].

Many real-life networks include clustering, i.e., the proba-
bility of finding loops of small size is larger than in random
networks. This has been in particular quantified by the so-
called clustering coefficient, which measures the likelihood of
“triangles” in a network [4]. Most network models employed
in the past did not include clustering. Some of them, such
as the Watts-Strogatz small-world model [6], show clustering
but are not well suited as models of most actual networks.
Several computational models of clustered networks have been
defined along the years [31–33], but in general their properties
cannot be calculated by analytical procedures. In last years, it
was shown that generalized random graphs can be generated
incorporating clustering in such a way that exact formulas can
be derived for many of their properties. This is the case of the
networks defined by Newman [34] and Miller [35].

Cooperative phenomena in complex networks are known
to display characteristics related to the particular topology of
these systems [19]. The Ising model on SF networks has been
studied by using several theoretical techniques [16,36–40], and
its critical behavior was found to depend on the exponent γ .
Two different regimes appear for uncorrelated networks. On
one side, for an exponent γ > 3, the average value 〈k2〉 is finite
in the large-size limit, and there appears a ferromagnetic- (FM)
to-paramagnetic (PM) transition at a finite temperature Tc. On
the other side, when 〈k2〉 diverges (as happens for γ � 3), the
system remains in its ordered FM phase at any temperature,
so there is no phase transition in the thermodynamic limit.
The antiferromagnetic Ising model has been also studied
in scale-free networks, where spin-glass phases have been
found [41,42].

All this refers to unclustered random networks with a
power-law degree distribution. One may ask how this picture
changes when the networks are clustered, i.e., the clustering
coefficient has a non-negligible value. In principle, one expects
that the presence of small loops in the networks will enhance
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correlations between spins located on network nodes, thus
favoring ordered schemes such as an FM pattern. Thus,
the effects of clustering on various cooperative phenomena
in complex networks have been studied earlier. This is
the case of percolation [43–46], epidemics [35,47,48], and
dynamical processes [49,50]. Yoon et al. [51] studied the
Ising model on networks with arbitrary distribution of motifs
using an analytical procedure, the so-called belief-propagation
algorithm. For the networks considered in that paper, where
the thermodynamic limit is well defined (Tc converges for
N → ∞), these authors found that clustering increases the
critical temperature in comparison with treelike networks with
the same mean degree but does not change the critical behavior.

In this paper we study the FM-PM transition for the Ising
model in scale-free networks with clustering, which is realized
by introducing triangles in the networks, i.e., three-membered
loops. Several values of the exponent γ are considered, as well
as various concentrations of triangles. We employ Monte Carlo
(MC) simulations to obtain the transition temperature, when it
is well defined (for γ > 3), and to derive the size dependence
of the crossover temperature for cases where 〈k2〉 diverges as
N → ∞ (γ � 3).

The paper is organized as follows. In Sec. II we describe the
clustered networks considered here. In Sec. III we present the
computational method employed to carry out MC simulations.
In Sec. IV we present results of the simulations and a
discussion for the different parameter regions, depending on
the value of the exponent γ (>3, =3, or <3). The paper closes
with a summary in Sec. V.

II. SCALE-FREE NETWORKS WITH CLUSTERING

We consider clustered networks with a degree distribution
P (k) that follows the power-law dependence Psf(k) ∼ k−γ for
large degree k. Clustering is included by inserting triangles in
the networks, i.e., triads of connected nodes. Other kinds of
polygons (e.g., squares and pentagons) can be introduced to
study their effect on critical phenomena in physical systems,
but we choose triangles since they cause stronger correlations
between entities defined on network sites, as in the case of the
Ising model considered here.

We generate networks by following the method proposed
by Newman [34], where one separately specifies the number
of edges and the number of triangles. This procedure allows
one to generalize random graphs to incorporate clustering in
a simple way, so exact formulas can be derived for many
properties of the resulting networks [34].

For a network of size N (number of nodes), we call ti
the number of triangles in which node i takes part, and si

the number of single edges not included in the triangles. This
means that edges within the triangles are listed separately from
single links. Thus, a single link can be viewed as a network
element joining together two nodes and a triangle as an element
connecting three nodes. The degree ki of node i is then ki =
si + 2 ti , as each triangle connects it to two other nodes. A
picture of such a network is presented in Fig. 1, where triangles
are indicated with asterisks (*).

To generate the networks, we first define the edges. We
assign to each node i a random number si , which represents
the number of outgoing links from this node (stubs). The set of

*
*

*

*

FIG. 1. (Color online) Schematic representation of a typical net-
work considered in this work for which one separately specifies the
number of single links and triangles attached to each node. Triangles
are indicated by asterisks (*).

numbers {si}Ni=1 (with si � k0, the minimum allowed degree)
is taken from the probability distribution Psf(s) ∼ s−γ [52],
giving a total number of stubs K = ∑N

i=1 si . We impose the
restriction that K must be an even integer. Then we connect
stubs at random (giving a total of L = K/2 connections), with
the following conditions: (i) no two nodes can have more
than one bond connecting them (no multiple connections) and
(ii) no node can be connected by a link to itself (no self-
connections).

In a second step we introduce triangles into the networks.
Their number N� is controlled by the parameter ν, which
gives the mean number of triangles in which a generic node is
included (N� = 1

3Nν). The number of triangles ti associated to
a node i is drawn from a Poisson distribution Q(t) = e−ννt/t!.
Thus, we have ti “corners” associated to node i, and the total
number is T = ∑N

i=1 ti = 3N�. We impose the condition that
T be a multiple of 3. Then we take triads of corners uniformly
at random to form triangles, taking into account conditions
(i) and (ii) above to avoid multiple and self-connections. Note
that single links can by chance form triangles. Calling Nt the
number of such triangles, their density Nt/N for a given mean
degree 〈k〉 vanishes as N → ∞. In fact, Nt/N scales as 1/N

for large N [4,34,51].
In complex networks, one usually defines the clustering

coefficient C as the ratio C = 3N�/N3, where N3 is the
number of connected triplets [4]:

N3 = N
∑

k

k(k − 1)

2
P (k) = 1

2
N (〈k2〉 − 〈k〉) . (1)

Thus, for the networks discussed here, we have

C = 2ν

〈k2〉 − 〈k〉 , (2)

and the clustering coefficient can be changed as a function of
the parameter ν.

Aside from γ and the triangle density ν, our networks are
defined by the minimum degree k0. Since we are interested in
finite-size effects, the network size N is also an important
variable in our discussion. The degree distribution P (k)
obtained for networks generated by following the procedure
described above is presented in Fig. 2. In this figure, we have
plotted P (k) for networks including 105 nodes, with γ = 3
and k0 = 3. Each curve corresponds to a particular value of
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FIG. 2. (Color online) Probability density as a function of the
degree k for networks with γ = 3, minimum degree k0 = 3, and
N = 105 nodes. The data shown are an average over 200 network
realizations for each value of the parameter ν = 0, 1, and 2.

the parameter ν = 0, 1, and 2, including in each case an
average over 200 network realizations. Comparing the curves
corresponding to different ν values, one observes that the
introduction of triangles in the networks causes clear changes
in the distribution P (k) for small k values. However, for large
degrees, the distribution is found to follow the dependence
Psf(k) ∼ k−γ typical of scale-free networks, with γ = 3 in
the present case. This could be expected, since the Poisson
distribution Q(t) associated to the triangles has a much faster
exponential-like decay for large t . In the three cases shown
in Fig. 2 there appears an effective cutoff kcut � 300, which is
related to the finite size N of the networks (see below). We note
that a maximum degree kcut was explicitly introduced earlier
in scale-free networks for computational convenience [38].

An important characteristic of the considered networks,
which will be employed below to discuss the results of the
Ising model, is the mean degree 〈k〉. For scale-free networks
with ν = 0, the mean degree is given by

〈k〉∞ =
∞∑

k=k0

k Psf(k) ≈ k0
γ − 1

γ − 2
, (3)

where the last expression is obtained by replacing the sum by
an integral, which is justified for large N . Note that we assume
here γ > 2 and that the distribution Psf(k) is normalized to
unity (for γ � 2 the mean degree 〈k〉 diverges in the large-size
limit: 〈k〉∞ → ∞). Then, for our networks including triangles,
one has

〈k〉∞ ≈ 2 ν + k0
γ − 1

γ − 2
. (4)

For finite networks, a size effect is expected to appear in the
mean degree, as a consequence of the effective cutoff appearing
in the degree distribution (see Fig. 2). This is shown in Fig. 3,
where we present 〈k〉 versus N−1/2, for our generated networks
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FIG. 3. (Color online) Mean degree 〈k〉 as a function of N−1/2

for networks with γ = 3, k0 = 3, and three values of ν: 0 (squares),
1 (circles), and 2 (diamonds). Error bars of the simulations results
are less than the symbol size. Lines are fits to the expression 〈k〉 =
a + b N−1/2.

with γ = 3 and k0 = 3. The mean degree decreases as N−1/2

increases, i.e., 〈k〉 increases as the system size is raised. The
data shown in Fig. 3 for ν = 0, 1, and 2, follow a linear
dependence and in fact can be fitted as 〈k〉 = a + b N−1/2,
at least in the region plotted in the figure (N > 500). The fit
parameter a is close to the mean degree 〈k〉∞ given in Eq. (4),
and the small difference is mainly due to the replacement of
sums by integrals in the derivation of that equation. Note that
for γ = 3, ν = 0, and k0 = 3, Eq. (4) yields 〈k〉∞ = 6. The
slope b obtained from the linear fits turns out to be the same
(within statistical noise) for the three cases shown in Fig. 3.

This size dependence of 〈k〉 can be understood by noting
that the effective cutoff kcut appearing in a power-law degree
distribution is related with the network size N by the
expression [36,37]

∞∑
kcut

Psf(k) = c

N
, (5)

where c is a constant on the order of unity. From this
expression, one can derive for γ = 3 (see the Appendix):

〈k〉 ≈ 〈k〉∞
[

1 −
( c

N

) 1
2 + O

(
1

N

)]
. (6)

Comparing with the fit shown in Fig. 3, one finds c ≈ 7, which
introduced into Eq. (A7) yields for the cutoff kcut ≈ 360, in line
with the results shown in Fig. 2, thus providing a consistency
check for our arguments.

For scale-free networks with an exponent γ < 3, Catan-
zaro et al. [53] found that appreciable correlations appear
between degrees of adjacent nodes when no multiple and
self-connections are allowed. Such degree correlations can
be avoided by assuming a cutoff kcut ∼ N1/2. Thus, for
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γ < 3 we generate here networks with cutoff kcut = N1/2.
For the clustered networks considered here, generated as
in Ref. [34], the presence of triangles introduces degree
correlations between nodes forming part of a triangle in the
network.

III. SIMULATION METHOD

On the networks defined in Sec. II, we consider a spin model
given by the Hamiltonian

H = −
∑
i<j

JijSiSj , (7)

where Si = ±1 (i = 1, . . . ,N) are Ising spin variables, and
the coupling matrix Jij is given by

Jij ≡
{
J (>0), if i and j are connected,
0, otherwise. (8)

This model has been studied by means of Monte Carlo
simulations, sampling the configuration space by using the
Metropolis local update algorithm [54]. We are particularly in-
terested in the behavior of the magnetization M = ∑N

i=1 Si/N .
For a given set of parameters (γ , ν, k0) defining the networks,
the average value 〈M〉 has been studied as a function of
temperature T and system size N . This allows us to investigate
the transition from a FM (〈M〉 	= 0) to a PM (〈M〉 = 0) regime
as T is increased.

Depending on the value of the exponent γ defining the
power-law distribution of single edges, two different cases
are found [16,36,38]. First, for γ > 3, one expects a phase
transition with a well-defined transition temperature Tc (<∞)
in the thermodynamic limit N → ∞. Second, for γ � 3 a
FM-PM crossover is known to appear for scale-free networks,
with a crossover temperature Tco(N ) increasing with system
size and diverging to infinity as N → ∞.

For the cases where a FM-PM transition occurs in the
thermodynamic limit (γ > 3), the transition temperature Tc

has been obtained here by using Binder’s fourth-order cumu-
lant [54],

UN (T ) ≡ 1 − 〈M4〉N
3〈M2〉2

N

. (9)

The average values in this expression are taken over different
network realizations and over different spin configurations for
a given network at temperature T . In this case, the transition
temperature is obtained from the unique crossing point of the
functions UN (T ) for several system sizes N [17,38].

In the second case (γ � 3), the size-dependent crossover
temperature Tco(N ) has been obtained from the maximum
of the magnetization fluctuations (�M)2

N as a function of
temperature, with

(�M)2
N = 〈M2〉N − 〈M〉2

N . (10)

We note that Tco values derived by using this criterion
agree within error bars with those found from the maximum
derivative of the heat capacity [38].

The largest networks considered here included about 105

sites. Such network sizes were employed in particular to
study the dependence of Tco on N for γ � 3. For the

cases where a phase transition exists in the thermodynamic
limit (γ > 3), sizes around 4 × 104 nodes were considered.
The results presented below were obtained by averaging in
each case over 800 networks, except for the largest system
sizes, for which 400 network realizations were generated.
Similar MC simulations have been carried out earlier to study
ferromagnetic [17,38] and antiferromagnetic [42,55] Ising
models in complex networks.

IV. RESULTS AND DISCUSSION

A. Case γ > 3

For unclustered scale-free networks with an exponent
γ > 3, the average value 〈k2〉 converges to a finite value
as N → ∞. In this case, analytical calculations [16,36] and
Monte Carlo simulations [38] predict a well-defined FM-PM
transition temperature Tc given by

J

Tc

= 1

2
ln

( 〈k2〉
〈k2〉 − 2〈k〉

)
. (11)

This equation is equivalent to Eq. (56) in Ref. [51].
For the clustered networks considered here with γ > 3, we

have calculated Tc from the Binder’s cumulant UN for several
values of the triangle density ν and minimum degree k0 > 1.
In each case, four different network sizes were considered.
In all these cases, a well-defined transition temperature was
found from the crossing point of the curves UN (T ) for different
sizes N , as in Ref. [38]. We note that 〈k2〉 − 2〈k〉 > 0 for
k0 > 1, and Tc is well defined by Eq. (11). For k0 = 1, the
simulated networks consist of many disconnected components,
and Binder’s cumulant UN (T ) does not give a unique crossing
point for different system sizes N .

Going to the results of the present MC simulations, in Fig. 4
we present the transition temperature Tc as a function of the
minimum degree k0 for an exponent γ = 5 and three values
of the triangle density ν = 0, 1, and 2. In the three cases
we observe a linear increase of Tc for rising k0. The case
ν = 0 corresponds to a power-law degree distribution Psf(k) ∼
k−γ (unclustered networks). Values of Tc found here for these
networks are somewhat higher than those obtained in Ref. [38],
by an amount �Tc ∼ 0.6 J , due to the strict degree cutoff kcut

employed in that work. These earlier results are shown in Fig. 4
as open symbols. For ν = 1 we find Tc values higher than for
ν = 0, and the transition temperature increases further, by the
same amount, for ν = 2.

Looking at Eq. (11), one expects that Tc should have an
explicit dependence on 〈k〉 and 〈k2〉 rather than the minimum
degree k0 itself. In Fig. 5 we present the transition temperature
Tc as a function of the mean degree 〈k〉, as derived from MC
simulations for unclustered networks (ν = 0, open squares)
and clustered networks with ν = 2 (solid diamonds). Lines in
this figure were obtained from the average values 〈k〉 and 〈k2〉.
Taking into account that ki = si + 2ti , the average value 〈k2〉
for clustered networks with γ > 3 can be calculated as:

〈k2〉 = 〈s2〉 + 4〈s〉〈t〉 + 4〈t2〉, (12)

since s and t are independent due to the way of building
up these networks. For the power-law distribution of si
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FIG. 4. (Color online) Transition temperature Tc for networks
with γ = 5 as a function of the minimum degree k0. Open symbols
represent results of MC simulations, as obtained from Binder’s
cumulant for ν = 0 (squares), 1 (circles), and 2 (diamonds). Error
bars are less than the symbol size. Solid lines were derived from the
analytical expression given in Eq. (11), using values of 〈k〉 and 〈k2〉
obtained from Eqs. (4) and (14). Solid squares are data obtained in
Ref. [38] for unclustered networks (ν = 0). The dashed line is a guide
to the eye.
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FIG. 5. (Color online) Transition temperature Tc for scale-free
networks with γ = 5 as a function of the mean degree 〈k〉. Data
points are results for networks with ν = 0 (open squares) and ν = 2
(solid diamonds). Error bars are less than the symbol size. Solid and
dashed-dotted lines are analytical predictions from Eq. (11) for ν = 0
and 2, respectively. The dashed line represents the mean-field result
given by Eq. (15).

corresponding to single edges, we have in the large-N limit:

〈s2 〉∞ ≈ k2
0

γ − 1

γ − 3
(13)

so

〈k2〉∞ = k2
0

γ − 1

γ − 3
+ 4 k0 ν

γ − 1

γ − 2
+ 4 ν (ν + 1) . (14)

Here ν and ν (ν + 1) are the average values 〈t〉 and 〈t2〉
corresponding to the Poisson distribution Q(t) of triangles
in these networks. Introducing Eq. (14) for 〈k2〉∞ and Eq. (4)
for 〈k〉∞ into Eq. (11), with the parameters γ = 5 and ν = 0,
we find for the transition temperature Tc the solid line shown
in Fig. 5. This line lies very close to the results derived
from our Monte Carlo simulations for unclustered networks
(open squares). Similarly, for γ = 5 and ν = 2, we obtain
from Eq. (11) the dashed-dotted line, which coincides with
the data obtained from simulations for clustered networks
(full diamonds). Note that for γ > 3, finite-size effects on
〈k〉 and 〈k2〉 are negligible for the network sizes employed in
our simulations, so the agreement between Eq. (11) and our
simulation data is good. In fact, the MC results agree within
error bars with the transition temperature given by Eq. (11).

For comparison, we also present in Fig. 5 the critical
temperature obtained in a mean-field approach [16]:

T MF
c = 〈k2〉

〈k〉 J , (15)

which is displayed as a dashed line (ν = 0). Note that this
mean-field expression can be derived from Eq. (11) in the
limit 〈k2〉/〈k〉 
 1. Expanding Eq. (11) for small 〈k〉/〈k2〉,
one has

Tc

J
= 〈k2〉

〈k〉 − 1 − 1

3

〈k〉
〈k2〉 + O

( 〈k〉2

〈k2〉2

)
, (16)

where we recognize the first term in the expansion as the
mean-field approximation in Eq. (15).

The critical temperature Tc derived from our MC simu-
lations for γ = 5, and shown in Fig. 4 as a function of the
minimum degree k0, can be fitted linearly with good precision
as Tc = a k0 + b. In fact, for ν = 0 we find a = 1.52 and b =
−1.17. The value of a can be estimated from the mean-field
approximation in Eq. (15), which yields Tc ≈ 3k0J/2.

Turning to the results found for clustered networks, we
observe in Fig. 4 that, for a given k0, the transition temperature
clearly increases when the triangle density rises. However,
the same expression for Tc given in Eq. (11) reproduces
well the MC results for clustered and unclustered networks,
once the corresponding values for 〈k〉 and 〈k2〉 are introduced,
as shown in Fig. 5. Since these average values depend only on
the degree distribution P (k) (nearest neighbors), this means
that the transition temperature for networks with γ > 3 does
not depend on the clustering. Thus, including triangles in
these networks changes the transition temperature because it
changes the degree distribution P (k), but networks with the
same P (k) but without triangles give the same Tc, as predicted
by Eq. (11). This does not happen for the crossover temperature
Tco obtained for finite-size networks with γ � 3 (see below).
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B. Case γ = 3

For unclustered scale-free networks with an exponent γ

close to (but higher than) 3, the transition temperature Tc is
given from Eq. (16) by

Tc

J
≈ 〈k2〉

〈k〉 ≈ k0
γ − 2

γ − 3
. (17)

Then dTc/dγ ≈ −k0J/(γ − 3)2 < 0, and Tc increases as γ is
reduced, eventually diverging for γ → 3, as a consequence of
the divergence of 〈k2〉.

For γ = 3, analytical calculations [36,37] have predicted a
FM-PM crossover at a size-dependent temperature Tco, which
scales as log N . This dependence of the crossover temperature
agrees with that derived from MC simulations for the same
type of networks [38]. A logarithmic increase of Tco with
system size N has been also found by Aleksiejuk et al. [56,57]
from MC simulations of the Ising model in Barabási-Albert
growing networks. Note that these networks (with γ = 3)
display correlations between degrees of adjacent nodes [7].

For scale-free networks with γ = 3 and ν = 0, the mean
degree 〈k〉 can be approximated as [see Eqs. (4) and (6)]:

〈k〉 ≈ 2k0

[
1 −

( c

N

) 1
2

]
, (18)

and 〈k2〉 is given by [see the Appendix, Eq. (A13)]:

〈k2〉 ≈ k2
0 ln N. (19)

Applying Eq. (11) to the size-dependent crossover temperature
corresponding to γ = 3, one finds for large system size N :

Tco ≈ 1
2k0J ln N. (20)

For uncorrelated scale-free networks with γ = 3, Dorogovtsev
et al. [36] found for the crossover temperature

Tco ≈ 1
4 〈k〉J ln N, (21)

which coincides with Eq. (20) for 〈k〉 ≈ k0(γ − 1)/(γ − 2) =
2k0.

In Fig. 6 we present the results of our MC simulations for
Tco as a function of the network size N . Data points correspond
to networks with γ = 3 and three values of the triangle density
ν = 0, 1, and 2. The observed linear trend of the data points in
this semilogarithmic plot indicates a dependence Tco ∼ J ln N ,
as that given in Eq. (20). We find that values of the crossover
temperature for system size N < 4000 tend to be higher than
the linear asymptotic trend found for larger sizes. In fact, in
the linear fits presented in Fig. 6, we only included sizes N �
4000. The deviation for small N is particularly observed for
ν = 0 and 1. Thus, our results indicate a dependence Tco/J =
A ln N + B, with a constant A that decreases for increasing ν.
We found A = 1.38, 1.25, and 1.09 for ν = 0, 1, and 2,
respectively. Note that in the case ν = 0 (scale-free networks
without clustering), the slope A is somewhat smaller than the
value predicted by Eq. (20) for k0 = 3, i.e., A = k0/2 = 1.5.

A similar logarithmic dependence of Tco upon N was
observed in earlier works. For scale-free networks with a strict
cutoff kcut, the prefactor A was found to increase linearly with
k0, so A/k0 = 0.28 ± 0.01 [38]. For Barabási-Albert networks
with k0 = 5, Aleksiejuk et al. [56] found from a fit similar
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FIG. 6. (Color online) Crossover temperature Tco/J for scale-
free networks with γ = 3 and minimum degree k0 = 3 as a function of
the system size N . Squares, ν = 0; circles, ν = 1; diamonds, ν = 2.
Lines are least-squares fits to the data points for N � 4000 nodes.

to ours A = 2.6, which means A/k0 = 0.52, similar to our
A/k0 = 0.46 for ν = 0.

Given the increase in crossover temperature for rising
system size N , it is worthwhile analyzing the dependence of
Tco on the minimum degree k0. In fact, given the parameters
γ and ν, k0 controls the mean degree 〈k〉 of our networks. In
Fig. 7(a) we display results for Tco/J for an exponent γ = 3
and triangle density ν = 0, 1, and 2. In all cases, the networks
included N = 8000 nodes. As expected, for a given value
of ν, the crossover temperature increases as 〈k〉 (or k0) is
raised. Moreover, the line giving the dependence of Tco on
〈k〉 shifts downwards for rising ν. In view of Eq. (17), this
can be interpreted from a decrease in the ratio 〈k2〉/〈k〉 for
networks with constant size and increasing triangle density ν.
Note, however, that the dependence of Tco on 〈k〉 is not strictly
linear for fixed N , as predicted by Eq. (21). This is a finite-size
effect, since this equation corresponds to the asymptotic limit,
valid in the large-N regime, so for N = 8000 such an effect is
still clearly appreciable in the results shown in Fig. 7(a). This
can be further visualized in Fig. 7(b), where we present the
ratio Tco/(J 〈k〉) for the same data as in Fig. 7(a). Values of this
ratio corresponding to different triangle densities ν converge
one to the other as the mean degree increases.

For networks with a given size N , it is interesting to analyze
the dependence of Tco on the parameter ν for a fixed value of
the mean degree 〈k〉. Since 〈k〉 = 〈s〉 + 2ν, one can obtain
networks with given 〈k〉 by simultaneously changing 〈s〉 and
ν. In the actual implementations, we varied the minimum
degree k0, which defines a mean value 〈s〉, and then we took
ν = (〈k〉 − 〈s〉)/2, 〈k〉 being the required mean degree of the
clustered networks. In Fig. 8 we show the dependence of Tco

on the triangle density ν for 〈k〉 = 14 and 18. As expected from
the data shown in Fig. 7, Tco decreases for rising ν, and this
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FIG. 7. (Color online) (a) Crossover temperature as a function of
the mean degree 〈k〉 for networks with γ = 3 and N = 8000 nodes.
Symbols represent results for three ν values: 0 (squares), 1 (circles),
and 2 (diamonds). The data shown were obtained for networks with
several minimum degrees, k0 � 3. (b) Ratio Tco/J 〈k〉 vs 〈k〉 for the
same kind of networks as in (a). Lines are guides to the eye.

dependence turns out to be linear in both cases considered here.
The slope of this line is more negative for 〈k〉 = 14 than for
〈k〉 = 18. In fact, we found dTco/dν = −0.70 J and −0.56 J

for 〈k〉 = 14 and 18, respectively.
This means that for networks with given size N and mean

degree 〈k〉, including triangles in the networks (i.e., increasing
the triangle density ν) reduces the crossover temperature Tco.
The reason for this is the following. To have a constant 〈k〉
when changing ν for a given γ (γ = 3 here), one needs a
minimum degree k0 = 〈k〉/2 − ν [see Eq. (4)], so a rise of ν is
associated to a decrease in k0. This causes a reduction of 〈k2〉,
and therefore the temperature Tco decreases.
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FIG. 8. (Color online) Crossover temperature Tco/J for scale-
free networks with γ = 3 and N = 8000 nodes, as a function of
the triangle density ν. Each set of data corresponds to a fixed value of
the mean degree: 〈k〉 = 14 (circles) and 〈k〉 = 18 (squares). Dashed
lines are least-squares fits to the data points.

In other words, adding triangles to a network changes
the degree distribution P (k) itself, apart from introducing
clustering into the network. When one includes triangles
(ν increases) without changing the other parameters defining
the networks (i.e., N , k0, and γ ), one finds a clear increase in
Tco, as shown in Fig. 6. However, if one changes ν subject to
some particular restriction on the degree distribution, such as
keeping constant the mean value 〈k〉, one may find other types
of dependence of Tco on ν (as the decrease shown in Fig. 8).

This suggests that a relevant point here is a comparison
between clustered and unclustered networks with the same
degree distribution P (k). This will give insight into the “direct”
effect of clustering on the critical properties of the Ising
model. As noted above, the distribution P (k), as well as
Eq. (11) predicting the crossover temperature, do not include
any information on the clustering present in the considered
networks but only on the degrees (connectivity) of the nodes.
Thus, a natural question is the relevance of the difference
between the crossover temperature corresponding to networks
with the same size N and degree distribution P (k) but
including triangles or not. We have seen above that in the
case γ > 3 both types of networks have the same transition
temperature Tc, which agrees with Eq. (11). This is not clear,
however, for γ = 3. To clarify this point we have generated
networks with the same P (k) as those studied above for
different ν values, but without including triangles. In this case,
we used the distribution P (k) to define the set of degrees
{si}Ni=1, employed to build up the networks (ki = si for all i).

In Fig. 9 we present the temperature Tco as a function of
system size for networks with (circles) and without (squares)
triangles, as derived from our MC simulations. Clustered
networks were generated with γ = 3, ν = 2, minimum
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FIG. 9. (Color online) Crossover temperature as a function of
system size N for networks with γ = 3, ν = 2, and minimum degree
k0 = 3. Circles and squares represent results of MC simulation
for networks with and without triangles but with the same degree
distribution P (k). Error bars are less than the symbol size. The solid
line is the analytical prediction, Eq. (11), obtained from the mean
values 〈k〉 and 〈k2〉.

degree k0 = 3, and several sizes up to N = 2 × 105 nodes.
Unclustered networks were built up with the same distribution
P (k) as the clustered ones. The results presented in Fig. 9
indicate, first, that clustering increases Tco, and this increase
becomes more important for larger system size. As discussed
above, for the clustered networks we find a dependence
Tco/J = A ln N + B, with a slope A close to unity (A = 1.09).
We have also plotted the crossover temperature predicted by
Eq. (11), which takes into account only the average values 〈k〉
and 〈k2〉 (solid line). A linear dependence on ln N is also found
in this case but with a smaller coefficient A = 0.87. In fact,
this line crosses with that derived from MC simulations for a
system size N ≈ 105.

Looking at the size dependence of the crossover tempera-
ture for unclustered networks shown in Fig. 9 (dashed-dotted
line), we observe that for N < 104 the curve Tco(N ) found for
these networks is parallel (slightly below) to that found for
clustered networks (dashed line). For larger system sizes, the
dashed-dotted curve becomes parallel to that corresponding to
the analytical model (solid line).

For a given system size, clustered networks display a
crossover temperature Tco larger than unclustered networks
with the same degree distribution P (k). This means that
clustering (triangles in this case) favors an increase in Tco, i.e.,
the FM phase is stable in a broader temperature range. This
has been already observed in the results shown in Fig. 6, but
in that case the difference between clustered and unclustered
networks was larger, due to the inclusion of triangles for ν > 0,
which changed the actual degree distribution P (k) with respect
to the case ν = 0.

The result for unclustered networks (no triangles) shown in
Fig. 9 converges to the analytical data given by Tco ∼ AJ ln N ,
with A = 0.87, as expected from the asymptotic limit for
Eq. (11). For large system size, the behavior of unclustered
networks is in this respect controlled by nodes with large
degree. Given that the effective degree cutoff scales as kcut ∼
N1/2 [see Eq. (A7)], nodes with large k appear progressively as
N is increased. Thus, the presence of nodes with high degree
favors ferromagnetic correlations in clustered networks and
therefore an increase in the crossover temperature Tco.

C. Case γ < 3

As commented above, for γ < 3 it is known that correla-
tions between degrees of adjacent nodes appear in scale-free
networks when no multiple and self-connections are allowed,
unless one takes a degree cutoff kcut �

√
N [53]. For this

reason, we generated clustered and unclustered networks with
γ < 3 assuming a cutoff kcut = √

N . This means that in this
case Eq. (5) does not apply. With a calculation similar to
that presented in the Appendix, one finds in this case for
unclustered scale-free networks (ν = 0):

〈k2〉 ≈ γ − 1

3 − γ
k

γ−1
0 N (3−γ )/2 . (22)

For 2 < γ < 3, one has for the mean degree:

〈k〉 ≈ k0
γ − 1

γ − 2
, (23)

as in Eq. (3). For γ = 2, 〈k〉 diverges to infinity in the large-size
limit as

〈k〉 ≈ 1
2 k0 ln N. (24)

Thus, one expects a size-dependent crossover temperature

Tco

J
≈ 〈k2〉

〈k〉 ≈ γ − 2

3 − γ
k

γ−2
0 N (3−γ )/2 (25)

for 2 < γ < 3 and

Tco

J
≈ 2

√
N

ln N
(26)

for γ = 2.
We first present results for unclustered networks (ν = 0).

In Fig. 10 we show the temperature Tco as a function of system
size N for three values of γ in a logarithmic plot, as derived
from our MC simulations for networks with minimum degree
k0 = 3. The exponent γ increases from top to bottom: γ = 2,
2.5, and 3. For a given system size, Tco decreases as γ rises.
This is a consequence of a decrease in the ratio 〈k2〉/〈k〉 for
increasing γ , which causes a reduction in Tco, as predicted by
Eq. (25), where the term N (3−γ )/2 dominates for large N .

For networks with γ < 3 and large-enough size, log Tco

derived from the MC simulations is found to display a linear
dependence on log N , as expected for a crossover temperature
diverging as a power of the system size Tco ∼ Nz with an
exponent z dependent on the parameter γ [38]. Such a linear
dependence is obtained for system sizes N � N0, the size
N0 increasing with the exponent γ and eventually diverging
for γ → 3, for which Tco ∼ ln N is expected (see Fig. 6).
According to Eq. (25), one expects z = (3 − γ )/2. In fact,
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FIG. 10. (Color online) Crossover temperature Tco/J for scale-
free networks with ν = 0 and k0 = 3 as a function of system size N

in a logarithmic plot. Symbols represent results for three values of
the parameter γ : 2 (squares), 2.5 (circles), and 3 (diamonds). Error
bars are less than the symbol size. Lines are guides to the eye.

for γ = 2.5 we find z = 0.27 from a fit to the data points
corresponding to networks with N > 104. This value of z could
further decrease for larger system sizes, which is compatible
with the exponent z = 0.25 expected from Eq. (25).

We note that the degree cutoff is relevant for the size
dependence of the crossover temperature. Thus, the cutoff
employed here for networks with γ < 3 (kcut = √

N ) yields
an exponent z = (3 − γ )/2, to be compared with z = (3 −
γ )/(γ − 1), given by the “natural” cutoff in Eqs. (5) and (A7)
(see Refs. [36–38]). The latter cutoff is known to introduce
undesired correlations in networks such as those considered
here with γ < 3, as commented above.

We now turn to clustered networks. In Fig. 11 we show
the crossover temperature versus system size N for networks
with different triangle densities: ν = 0, 1, and 2. In Figs. 11(a)
and 11(b) results are given for γ = 2 and 2.5, respectively.
For small network size, Tco appears to be higher for larger
parameter ν in both cases. This difference, however, decreases
as N is increased, and for each value of γ the results for
different triangle densities ν converge one to the other. Thus,
in the logarithmic plots of Fig. 11, differences between the
crossover temperature for different ν values become irrelevant
for system size N ∼ 105.

Similarly to the case γ = 3 presented in Sec. IV B, for
γ < 3 it is also interesting to compare results for clustered
and unclustered networks with the same degree distribution
P (k). In Fig. 12 we present the temperature Tco as a function
of system size for networks with (circles) and without (squares)
triangles, as derived from our MC simulations. Clustered
networks were generated with γ = 2, ν = 2, minimum degree
k0 = 3, and various system sizes. For N < 2000 nodes, results
for clustered and unclustered networks coincide one with the
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FIG. 11. (Color online) Crossover temperature Tco/J as a func-
tion of system size N for scale-free networks with minimum degree
k0 = 3 and three values of the triangle density ν: 0 (squares),
1 (circles), and 2 (diamonds). (a) Networks with γ = 2; (b) networks
with γ = 2.5. Lines are guides to the eye.

other within statistical noise. For N > 2000, both sets of data
progressively separate one from the other, so the crossover
temperature for clustered networks (including triangles) is
larger than that corresponding to unclustered networks (no
triangles). The solid line in Fig. 12 is the analytical prediction
obtained from Eq. (11) by introducing the mean values 〈k〉
and 〈k2〉 corresponding to the actual networks. We observe
something similar to the case of γ = 3 shown in Fig. 9. For
large N , results of MC simulations for unclustered networks
approach the analytical expectancy, lying below the solid line,
whereas data for clustered networks become higher than the
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FIG. 12. (Color online) Crossover temperature as a function of
system size N for networks with γ = 2, ν = 2, and minimum degree
k0 = 3. Circles and squares represent results of MC simulations for
networks with and without triangles, respectively, but with the same
degree distribution P (k). Error bars are less than the symbol size.
The solid line indicates the result derived from 〈k〉 and 〈k2〉 by using
Eq. (11).

analytical prediction and progressively deviate from the latter
as system size N is increased.

As for the case γ = 3, we conclude that clustering favors
a stabilization of the FM phase versus the PM one, hence
increasing the crossover temperature Tco. This becomes more
noticeable for larger network size, where nodes with higher
degree progressively appear.

V. SUMMARY

We have studied the FM-PM transition for the Ising model
in clustered scale-free networks by means of Monte Carlo
simulations, and the results were compared with those found
for unclustered networks. Our results can be classified into two
different regions, as a function of the exponent γ defining the
power law for the degree distribution in scale-free networks.

For γ > 3, we find in all cases a well-defined transition
temperature Tc in the thermodynamic limit, in agreement with
earlier analytical calculations and MC simulations. This refers
equally to clustered and unclustered networks. Adding motifs
(triangles in our case) to the networks causes an increase in
the transition temperature, as a consequence of the associated
change in the degree distribution P (k), and in particular in
the mean values 〈k〉 and 〈k2〉. However, for clustered and
unclustered networks with the same degree distribution P (k),
one finds no difference in Tc, which coincides with that
predicted by analytical calculations [Eq. (11)]. This conclusion
agrees with that drawn in Ref. [51], where the addition
of motifs was found to increase the transition temperature,
without changing the critical behavior.

For networks with γ � 3, the situation differs. In this case,
the crossover temperature Tco increases with system size N .
For γ = 3 we found Tco ∼ J ln N , and for γ < 3 we obtained
Tco ∼ JNz, with an exponent z = (3 − γ )/2. Comparing
clustered and unclustered networks, the conclusions obtained
for γ � 3 differ from those found for γ > 3.

For γ � 3, Tco is similar for clustered and unclustered
networks with the same degree distribution P (k), when
one considers small network sizes (N � 103). This behavior
changes for larger networks, and the crossover temperature Tco

of clustered networks becomes progressively larger than that
corresponding to the unclustered ones. Thus, we find that FM
correlations are favored by including triangles in the networks,
in particular in the presence of nodes with large degree k.

It is important to note that this conclusion refers to a
comparison of clustered and unclustered networks with the
same degree distribution P (k). Caution should be taken
when comparing results for networks with different degree
distributions. Thus, when triangles are added on a network
with a given distribution of links, the crossover temperature
Tco increases (see Fig. 6), but in this case the rise in Tco is
mainly due to the change in P (k) caused by the inclusion
of triangles. However, for clustered networks with the same
exponent γ (large-degree tail) and mean degree 〈k〉, an increase
in triangle density ν causes a decrease in Tco (see Fig. 8), as
a consequence of the associated variation in the distribution
P (k), and in particular in the mean value 〈k2〉.

We also note that results for unclustered or clustered scale-
free networks may differ when different degree cutoffs are
employed, especially for γ < 3, as the dependence of their
properties on system size can be appreciable. This applies,
in particular, to the scaling of the crossover temperature Tco

on N for large system size. To avoid correlations between
degrees of adjacent nodes, we have employed here for power-
law distributions a degree cutoff kcut = N1/2. However, for
clustered networks the presence of triangles introduces degree
correlations.

Other distributions that differ from the short-tailed Poisson
type introduced here for the triangles could be considered
to change more dramatically the long-degree tail of the
overall degree distribution P (k). For example, a power-law
distribution for the triangles (with an exponent γ ′) may give
rise to an interesting competition between the exponents of
both distributions (for single links and triangles), which could
change the critical behavior of the Ising model on such
networks as compared to those discussed here.
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APPENDIX: FINITE-SIZE EFFECTS ON
DEGREE DISTRIBUTIONS

Here we present some expressions related to finite-size
effects in scale-free networks. We assume a degree distribution
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Psf(k) defined as

Psf(k) =
{
n k−γ , for k � k0

0, for k < k0
(A1)

with γ > 2 and n a normalization constant.
Due to the finite network size N , an effective cutoff kcut

appears for the degree distribution in these networks [36,37].
This cutoff is such that

∑∞
kcut

Psf(k) ∼ 1/N , indicating that the
number of nodes with k > kcut is expected to be on the order
of unity. For concreteness, we write

∞∑
kcut

Psf(k) = c

N
(A2)

with c = O(1). Replacing the sum by an integral, we find
∞∑
kcut

Psf(k) ≈ n

γ − 1
k

1−γ
cut . (A3)

For c/N 
 1, one has for the normalization condition:

1 = c

N
+

kcut∑
k0

Psf(k) ≈ n

γ − 1

(
k

1−γ

0 − k
1−γ
cut

)
. (A4)

Then, the normalization constant n is

n = γ − 1

k
1−γ

0 − k
1−γ
cut

≈ (γ − 1) k
γ−1
0 . (A5)

Combining Eqs. (A2), (A3), and (A5) one finds

N

c
=

(
kcut

k0

)γ−1

− 1, (A6)

and for kcut 
 k0,

kcut ≈ k0

(
N

c

) 1
γ−1

, (A7)

so kcut ∼ N1/(γ−1), as in Refs. [36,37]. Considering this cutoff,
one has for the mean degree

〈k〉 =
kcut∑
k0

k Psf(k) = γ − 1

γ − 2

k
2−γ
cut − k

2−γ

0

k
1−γ
cut − k

1−γ

0

, (A8)

which gives, using Eq. (A7):

〈k〉 ≈ 〈k〉∞
(

c
N

) γ−2
γ−1 − 1

c
N

− 1
(A9)

with 〈k〉∞ ≈ k0(γ − 1)/(γ − 2). Thus, we find for the mean
degree 〈k〉:

〈k〉 ≈ 〈k〉∞
[

1 −
( c

N

) γ−2
γ−1 + O

(
1

N

)]
. (A10)

A similar calculation can be carried out to estimate finite-
size effects on 〈k2〉 for scale-free networks. For γ > 3, we
find:

〈k2〉 ≈ 〈k2〉∞
[

1 −
( c

N

) γ−3
γ−1 + O

(
1

N

)]
(A11)

with 〈k2〉∞ ≈ k2
0 (γ − 1)/(γ − 3).

For γ = 3, we have

〈k2〉 = n

kcut∑
k0

1

k
≈ 2

k−2
0 − k−2

cut

ln
kcut

k0
(A12)

and, using Eq. (A7), we obtain for kcut 
 k0:

〈k2〉 = k2
0 ln N + O (1) . (A13)

For γ < 3 a strict cutoff kcut = √
N has been introduced in

the networks discussed in the present paper in order to avoid
undesired correlations [53]. Thus, the equations given in this
Appendix do not apply to the actual networks discussed in
Sec. IV C.
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L. J. Dubé, Phys. Rev. Lett. 107, 158702 (2011).
[30] L. Bogacz, Z. Burda, and B. Waclaw, Physica A 366, 587 (2006).
[31] P. Holme and B. J. Kim, Phys. Rev. E 65, 026107 (2002).
[32] K. Klemm and V. M. Eguiluz, Phys. Rev. E 65, 036123 (2002).
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[53] M. Catanzaro, M. Boguñá, and R. Pastor-Satorras, Phys. Rev. E

71, 027103 (2005).
[54] K. Binder and D. W. Heermann, Monte Carlo Simulation in

Statistical Physics, 5th ed. (Springer, Berlin, 2010).
[55] C. P. Herrero, Phys. Rev. E 77, 041102 (2008).
[56] A. Aleksiejuk, J. A. Holyst, and D. Stauffer, Physica A 310, 260

(2002).
[57] A. Aleksiejuk-Fronczak, Int. J. Mod. Phys. C 13, 1415 (2002).

052812-12

http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1073/pnas.98.2.404
http://dx.doi.org/10.1073/pnas.98.2.404
http://dx.doi.org/10.1073/pnas.98.2.404
http://dx.doi.org/10.1073/pnas.98.2.404
http://dx.doi.org/10.1103/PhysRevLett.85.4629
http://dx.doi.org/10.1103/PhysRevLett.85.4629
http://dx.doi.org/10.1103/PhysRevLett.85.4629
http://dx.doi.org/10.1103/PhysRevLett.85.4629
http://dx.doi.org/10.1103/PhysRevLett.107.158702
http://dx.doi.org/10.1103/PhysRevLett.107.158702
http://dx.doi.org/10.1103/PhysRevLett.107.158702
http://dx.doi.org/10.1103/PhysRevLett.107.158702
http://dx.doi.org/10.1016/j.physa.2005.10.024
http://dx.doi.org/10.1016/j.physa.2005.10.024
http://dx.doi.org/10.1016/j.physa.2005.10.024
http://dx.doi.org/10.1016/j.physa.2005.10.024
http://dx.doi.org/10.1103/PhysRevE.65.026107
http://dx.doi.org/10.1103/PhysRevE.65.026107
http://dx.doi.org/10.1103/PhysRevE.65.026107
http://dx.doi.org/10.1103/PhysRevE.65.026107
http://dx.doi.org/10.1103/PhysRevE.65.036123
http://dx.doi.org/10.1103/PhysRevE.65.036123
http://dx.doi.org/10.1103/PhysRevE.65.036123
http://dx.doi.org/10.1103/PhysRevE.65.036123
http://dx.doi.org/10.1103/PhysRevE.72.036133
http://dx.doi.org/10.1103/PhysRevE.72.036133
http://dx.doi.org/10.1103/PhysRevE.72.036133
http://dx.doi.org/10.1103/PhysRevE.72.036133
http://dx.doi.org/10.1103/PhysRevLett.103.058701
http://dx.doi.org/10.1103/PhysRevLett.103.058701
http://dx.doi.org/10.1103/PhysRevLett.103.058701
http://dx.doi.org/10.1103/PhysRevLett.103.058701
http://dx.doi.org/10.1103/PhysRevE.80.020901
http://dx.doi.org/10.1103/PhysRevE.80.020901
http://dx.doi.org/10.1103/PhysRevE.80.020901
http://dx.doi.org/10.1103/PhysRevE.80.020901
http://dx.doi.org/10.1103/PhysRevE.66.016104
http://dx.doi.org/10.1103/PhysRevE.66.016104
http://dx.doi.org/10.1103/PhysRevE.66.016104
http://dx.doi.org/10.1103/PhysRevE.66.016104
http://dx.doi.org/10.1103/PhysRevE.66.036140
http://dx.doi.org/10.1103/PhysRevE.66.036140
http://dx.doi.org/10.1103/PhysRevE.66.036140
http://dx.doi.org/10.1103/PhysRevE.66.036140
http://dx.doi.org/10.1103/PhysRevE.69.067109
http://dx.doi.org/10.1103/PhysRevE.69.067109
http://dx.doi.org/10.1103/PhysRevE.69.067109
http://dx.doi.org/10.1103/PhysRevE.69.067109
http://dx.doi.org/10.1007/s10955-010-0067-9
http://dx.doi.org/10.1007/s10955-010-0067-9
http://dx.doi.org/10.1007/s10955-010-0067-9
http://dx.doi.org/10.1007/s10955-010-0067-9
http://dx.doi.org/10.1103/PhysRevE.83.061129
http://dx.doi.org/10.1103/PhysRevE.83.061129
http://dx.doi.org/10.1103/PhysRevE.83.061129
http://dx.doi.org/10.1103/PhysRevE.83.061129
http://dx.doi.org/10.1103/PhysRevB.73.224419
http://dx.doi.org/10.1103/PhysRevB.73.224419
http://dx.doi.org/10.1103/PhysRevB.73.224419
http://dx.doi.org/10.1103/PhysRevB.73.224419
http://dx.doi.org/10.1140/epjb/e2009-00240-2
http://dx.doi.org/10.1140/epjb/e2009-00240-2
http://dx.doi.org/10.1140/epjb/e2009-00240-2
http://dx.doi.org/10.1140/epjb/e2009-00240-2
http://dx.doi.org/10.1103/PhysRevE.80.036107
http://dx.doi.org/10.1103/PhysRevE.80.036107
http://dx.doi.org/10.1103/PhysRevE.80.036107
http://dx.doi.org/10.1103/PhysRevE.80.036107
http://dx.doi.org/10.1103/PhysRevE.81.066114
http://dx.doi.org/10.1103/PhysRevE.81.066114
http://dx.doi.org/10.1103/PhysRevE.81.066114
http://dx.doi.org/10.1103/PhysRevE.81.066114
http://dx.doi.org/10.1103/PhysRevE.82.066118
http://dx.doi.org/10.1103/PhysRevE.82.066118
http://dx.doi.org/10.1103/PhysRevE.82.066118
http://dx.doi.org/10.1103/PhysRevE.82.066118
http://dx.doi.org/10.1088/1751-8113/45/40/405005
http://dx.doi.org/10.1088/1751-8113/45/40/405005
http://dx.doi.org/10.1088/1751-8113/45/40/405005
http://dx.doi.org/10.1088/1751-8113/45/40/405005
http://dx.doi.org/10.1016/j.jtbi.2012.03.022
http://dx.doi.org/10.1016/j.jtbi.2012.03.022
http://dx.doi.org/10.1016/j.jtbi.2012.03.022
http://dx.doi.org/10.1016/j.jtbi.2012.03.022
http://dx.doi.org/10.1016/j.jtbi.2012.08.036
http://dx.doi.org/10.1016/j.jtbi.2012.08.036
http://dx.doi.org/10.1016/j.jtbi.2012.08.036
http://dx.doi.org/10.1016/j.jtbi.2012.08.036
http://dx.doi.org/10.1103/PhysRevE.82.036115
http://dx.doi.org/10.1103/PhysRevE.82.036115
http://dx.doi.org/10.1103/PhysRevE.82.036115
http://dx.doi.org/10.1103/PhysRevE.82.036115
http://dx.doi.org/10.1103/PhysRevE.83.036112
http://dx.doi.org/10.1103/PhysRevE.83.036112
http://dx.doi.org/10.1103/PhysRevE.83.036112
http://dx.doi.org/10.1103/PhysRevE.83.036112
http://dx.doi.org/10.1103/PhysRevE.84.041144
http://dx.doi.org/10.1103/PhysRevE.84.041144
http://dx.doi.org/10.1103/PhysRevE.84.041144
http://dx.doi.org/10.1103/PhysRevE.84.041144
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.77.041102
http://dx.doi.org/10.1103/PhysRevE.77.041102
http://dx.doi.org/10.1103/PhysRevE.77.041102
http://dx.doi.org/10.1103/PhysRevE.77.041102
http://dx.doi.org/10.1016/S0378-4371(02)00740-9
http://dx.doi.org/10.1016/S0378-4371(02)00740-9
http://dx.doi.org/10.1016/S0378-4371(02)00740-9
http://dx.doi.org/10.1016/S0378-4371(02)00740-9
http://dx.doi.org/10.1142/S012918310200398X
http://dx.doi.org/10.1142/S012918310200398X
http://dx.doi.org/10.1142/S012918310200398X
http://dx.doi.org/10.1142/S012918310200398X



