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To fully characterize the information that two source variables carry about a third target variable, one must
decompose the total information into redundant, unique, and synergistic components, i.e., obtain a partial
information decomposition (PID). However, Shannon’s theory of information does not provide formulas to
fully determine these quantities. Several recent studies have begun addressing this. Some possible definitions for
PID quantities have been proposed and some analyses have been carried out on systems composed of discrete
variables. Here we present an in-depth analysis of PIDs on Gaussian systems, both static and dynamical. We
show that, for a broad class of Gaussian systems, previously proposed PID formulas imply that (i) redundancy
reduces to the minimum information provided by either source variable and hence is independent of correlation
between sources, and (ii) synergy is the extra information contributed by the weaker source when the stronger
source is known and can either increase or decrease with correlation between sources. We find that Gaussian
systems frequently exhibit net synergy, i.e., the information carried jointly by both sources is greater than the
sum of information carried by each source individually. Drawing from several explicit examples, we discuss
the implications of these findings for measures of information transfer and information-based measures of
complexity, both generally and within a neuroscience setting. Importantly, by providing independent formulas
for synergy and redundancy applicable to continuous time-series data, we provide an approach to characterizing
and quantifying information sharing amongst complex system variables.
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I. INTRODUCTION

Shannon’s information theory [1] has provided extremely
successful methodology for understanding and quantifying
information transfer in systems conceptualized as receiver
and transmitter, or stimulus and response [2,3]. Formulating
information as reduction in uncertainty, the theory quantifies
the information I (X ; Y ) that one variable Y holds about
another variable X as the average reduction in the surprise of
the outcome of X when knowing the outcome of Y compared
to when not knowing the outcome of Y . (Surprise is defined
by how unlikely an outcome is and is given by the negative of
the logarithm of the probability of the outcome. This quantity
is usually referred to as the mutual information since it is
symmetric in X and Y .) Recently, information theory has
become a popular tool for the analysis of so-called complex
systems of many variables, for example, for attempting to
understand emergence, self-organization, and phase transitions
and to measure complexity [4]. Information theory does not,
however, in its current form, provide a complete description
of the informational relationships between variables in a
system composed of three or more variables. The information
I (X ; Y ,Z) that two source variables Y and Z hold about a
third target variable X should decompose into four parts:1
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1It is our convenient convention of terminology to refer to variables

as sources and targets, with Y and Z always being the sources that
contribute information about the target variable X . These terms relate
to the status of the variables in the informational quantities that we
compute and should not be considered as describing the dynamical
roles played by the variables.

(i) U (X ; Y |Z), the unique information that only Y (out of Y
and Z) holds about X ; (ii) U (X ; Z|Y ), the unique information
that only Z holds about X ; (iii) R(X ; Y ,Z), the redundant
information that both Y and Z hold about X ; and (iv)
S(X ; Y ,Z), the synergistic information about X that only
arises from knowing both Y and Z (see Fig. 1). The set of
quantities {U (X ; Y |Z),U (X ; Z|Y ),R(X ; Y ,Z),S(X ; Y ,Z)} is
called a partial information decomposition (PID). Information
theory gives us the following set of equations for them:

I (X ; Y ,Z) = U (X ; Y |Z) + U (X ; Z|Y )

+ S(X ; Y ,Z) + R(X ; Y ,Z), (1)

I (X ; Y ) = U (X ; Y |Z) + R(X ; Y ,Z), (2)

I (X ; Z) = U (X ; Z|Y ) + R(X ; Y ,Z). (3)

However, these equations do not uniquely determine the PID.
One cannot obtain synergy or redundancy in isolation, but only
the net synergy

�I (X ; Y ,Z) =: I (X ; Y ,Z) − I (X ; Y ) − I (X ; Z)

= S(X ; Y ,Z) − R(X ; Y ,Z). (4)

An additional ingredient to the theory is required, specifically,
a definition that determines one of the four quantities in
the PID. A consistent and well-understood approach to
PIDs would extend Shannon information theory into a more
complete framework for the analysis of information storage
and transfer in complex systems.

In addition to the four equations above, the minimal further
axioms that a PID of information from two sources should
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FIG. 1. General structure of the information that two source
variables Y and Z hold about a third target variable X . The ellipses
indicate I (X ; Y ), I (X ; Z), and I (X ; Y ,Z) as labeled and the four
distinct regions enclosed represent the redundancy R(X ; Y ,Z), the
synergy S(X ; Y ,Z), and the unique information U (X ; Y |Z) and
U (X ; Z|Y ) as labeled.

satisfy are (i) that the four quantities U (X ; Y |Z), U (X ; Z|Y ),
R(X ; Y ,Z), and S(X ; Y ,Z) should always all be greater than
or equal to zero and (ii) that redundancy R(X ; Y ,Z) and
synergy S(X ; Y ,Z) are symmetric with respect to Y and Z
[5–10]. Interestingly, several distinct PID definitions have been
proposed, each arising from a distinct idea about what exactly
should constitute redundancy and/or synergy. These previous
studies of PIDs have focused on systems composed of discrete
variables. Here, by considering PIDs on Gaussian systems, we
provide a study of PIDs that focuses on continuous random
variables.

One might naively expect that for sources and target being
jointly Gaussian, the linear relationship between the variables
would imply zero synergy and hence a trivial PID with
the standard information theory equations (1)–(3) determining
the redundant and unique information. However, this is not
the case; net synergy (4), and hence synergy, can be positive
[11,12]. We begin this study (Sec. III) by illustrating the
prevalence of jointly Gaussian cases for which net synergy
(4) is positive. Of particular note is the fact that there
can be positive net synergy when sources are uncorrelated.
After this motivation for the study, in Sec. IV we introduce
three distinct previously proposed PID procedures: (i) that
of Williams and Beer [5]; (ii) that of Griffith et al. [6,9]
and Bertschinger et al. [8,10]; and (iii) that of Harder et al.
[7]. In addition to satisfying the minimal axioms above,
these PIDs have the further commonality that redundant and
unique information depend only on the pair of marginal
distributions of each individual source with the target, i.e.,
those of (X,Y ) and (X,Z), while only the synergy depends
on the full joint distribution of all three variables (X,Y ,Z).
Bertschinger et al. [10] have argued for this property by
considering unique information from a game-theoretic view
point. Our key result, which we then demonstrate, is that
for a jointly Gaussian system with a univariate target and
sources of arbitrary dimension, any PID with this property
reduces to simply taking redundancy as the minimum of the

mutual informations I (X ; Y ) and I (X ; Z) and letting the other
quantities follow from (1)–(3). This common PID, which
we call the minimum mutual information (MMI) PID, (i)
always assigns the source providing less information about
the target as providing zero unique information, (ii) yields
redundancy as being independent of the correlation between
sources, and (iii) yields synergy as the extra information
contributed by the weaker source when the stronger source
is known. In Sec. V we proceed to explore partial information
in several example dynamical Gaussian systems, examining
(i) the behavior of net synergy, which is independent of
any assumptions on the particular choice of PID, and (ii)
redundancy and synergy according to the MMI PID. We
then discuss implications for the transfer entropy measure
of information flow (Sec. VI) and measures that quantify
the complexity of a system via information flow analysis
(Sec. VII). We conclude with a discussion of the shortcomings
and possible extensions to existing approaches to PIDs and the
measurement of information in complex systems.

This paper provides tools for exploring information sharing
in complex systems that go beyond what standard Shannon
information theory can provide. By providing a PID for triplets
of Gaussian variables, it will enable one to study synergy
among continuous time-series variables, independently of
redundancy. In Sec. VIII we consider possible application to
the study of information sharing among brain variables in
neuroscience. More generally, there exists the possibility of
application to complex systems in any realm, e.g., climate
science, financial systems, and computer networks.

II. NOTATION AND PRELIMINARIES

Let X be a continuous random variable of dimension m. We
denote the probability density function by PX (x), the mean by
x̄, and the m × m matrix of covariances cov(Xi,Xj ) by �(X).
Let Y be a second random variable of dimension n. We denote
the m × n matrix of cross covariances cov(Xi,Y j ) by �(X,Y ).
We define the partial covariance of X with respect to Y as

�(X|Y ) =: �(X) − �(X,Y )�(Y )−1�(Y ,X). (5)

If X ⊕ Y is multivariate Gaussian (we use the symbol ⊕
to denote vertical concatenation of vectors), then the partial
covariance �(X|Y ) is precisely the covariance matrix of the
conditional variable X|Y = y, for any y,

X|(Y = y) ∼ N [μX|Y= y,�(X|Y )], (6)

where μX|Y= y = x̄ + �(X,Y )�(Y )−1( y − ȳ).
Entropy H characterizes uncertainty and is defined as

H (X) =: −
∫

PX (x) ln PX (x)dmx. (7)

[Note that, strictly, Eq. (7) is the differential entropy since
entropy itself is infinite for continuous variables. However,
considering continuous variables as continuous limits of
discrete variable approximations, entropy differences and
hence information remain well defined in the continuous limit
and may be consistently measured using Eq. (7) [2]. Moreover,
this equation assumes that X has a density with respect to the
Lebesgue measure dmx; this assumption is upheld whenever
we discuss continuous random variables.] The conditional
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entropy H (X|Y ) is the expected entropy of X given Y , i.e.,

H (X|Y ) =:
∫

H (X|Y = y)PY ( y)dn y. (8)

The mutual information I (X ; Y ) between X and Y is the
average information, or reduction in uncertainty (entropy),
about X , knowing the outcome of Y :

I (X ; Y ) = H (X) − H (X|Y ). (9)

Mutual information can also be written in the useful form

I (X ; Y ) = H (X) + H (Y ) − H (X,Y ), (10)

from which it follows that mutual information is symmetric in
X and Y [2]. The joint mutual information that two sources Y
and Z share with a target X satisfies a chain rule

I (X ; Y ,Z) = I (X ; Y |Z) + I (X ; Z), (11)

where the conditional mutual information I (X ; Y |Z) is the
expected mutual information between X and Y given Z. For
X Gaussian,

H (X) = 1
2 ln[det �(X)] + 1

2m ln(2πe), (12)

and for X ⊕ Y Gaussian,

H (X|Y ) = 1

2
ln[det �(X|Y )] + 1

2
m ln(2πe), (13)

I (X ; Y ) = 1

2
ln

[
det �(X)

det �(X|Y )

]
. (14)

For X a dynamical variable evolving in discrete time, we
denote the state at time t by X t and the infinite past with respect
to time t by X−

t =: X t−1 ⊕ X t−2, . . .. The p past states with
respect to time t are denoted by X (p)

t =: X t−1 ⊕ X t−2 ⊕ . . . ⊕
X t−p.

III. SYNERGY IS PREVALENT IN GAUSSIAN SYSTEMS

In this section we demonstrate the prevalence of synergy
in jointly Gaussian systems and hence that the PIDs for such
systems are typically nontrivial. We do this by computing the
net synergy, i.e., synergy minus redundancy �I (4). Since the
axioms for a PID impose that S and R are greater than or
equal to zero, this quantity provides a lower bound on synergy
and in particular a sufficient condition for nonzero synergy
is �I (X ; Y ,Z) > 0. Some special cases have previously been
considered in [11,12]. Here we consider the most general three-
dimensional jointly Gaussian system (X,Y,Z)T (here we use
lightface rather than boldface type for the random variables
since they are one dimensional). Setting means and variances
of the individual variables to 0 and 1, respectively, preserves all
mutual information between the variables and so without loss
of generality this system can be specified with a covariance
matrix of the form

� =
⎛
⎝1 a c

a 1 b

c b 1

⎞
⎠ , (15)

where a, b, and c satisfy |a|,|b|,|c| < 1 and

2abc − a2 − b2 − c2 + 1 > 0 (16)

X

Y Z

X

Y Z

(a) (b)

FIG. 2. Correlational structure of two example systems of uni-
variate Gaussian variables for which Y and Z exhibit positive net
synergy with respect to information about X. Variables are shown as
circles and the variables that are correlated are joined by lines. (a)
Y and Z are uncorrelated and yet show synergy. (b) X and Z are
uncorrelated and yet Z contributes synergistic information about X

in conjunction with Y . See the text for details.

(a covariance matrix must be nonsingular and positive defi-
nite).

Using (5) and (14), the mutual information between X and
Y and Z is given by

I (X; Y ) = 1

2
ln

(
1

1 − a2

)
, (17)

I (X; Z) = 1

2
ln

(
1

1 − c2

)
, (18)

I (X; Y,Z) = 1

2
ln

(
1 − b2

1 − (a2 + b2 + c2) + 2abc

)
(19)

and thus the general formula for the net synergy is

�I (X; Y,Z) = 1

2
ln

[
(1 − a2)(1 − b2)(1 − c2)

1 − (a2 + b2 + c2) + 2abc

]
. (20)

This quantity is often greater than zero. Two specific examples
illustrate the prevalence of net synergy in an interesting way.
Consider first the case a = c and b = 0, i.e., the sources each
have the same correlation with the target, but the two sources
are uncorrelated [see Fig. 2(a)]. Then there is net synergy since

�I (X; Y,Z) = 1

2
ln

(
1 − 2a2 + a4

1 − 2a2

)
> 0. (21)

It is remarkable that there can be net synergy when the two
sources are not correlated. However, this can be explained
by the concave property of the logarithm function. If one
instead quantified information as reduction in covariance,
the net synergy would be zero in this case. That is, if we
were to define I�(X; Y ) =: �(X) − �(X|Y ), etc., and �I� =:
I�(X; Y,Z) − I�(X; Y ) − I�(X; Z), then we would have

�I�(X; Y,Z) = (a2 + c2)b2 − 2abc

1 − b2
, (22)

which gives the output of zero whenever the correlation b

between sources is zero. This is intuitive: The sum of the
reductions in covariance of the target given each source
individually equals the reduction in covariance of the target
given both sources together, for the case of no correlation
between sources. There is net synergy in the Shannon
information provided by the sources about the target because
this quantity is obtained by combining these reductions in
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covariance nonlinearly via the concave logarithm function.
This suggests that perhaps I� would actually be a better
measure of information for Gaussian variables than Shannon
information (although unlike standard mutual information I�

is not symmetric). Note that Angelini et al. [12] proposed a
version of Granger causality (which is a measure of informa-
tion flow for variables that are at least approximately Gaussian
[13]) based on straightforward difference of variances without
the usual logarithm precisely so that for a linear system the
Granger causality from a group of variables equals the sum of
Granger causalities from members of the group (see Sec. VI
for a recap of the concept of Granger causality).

Second, we consider the case c = 0, i.e., in which there is
no correlation between the target X and the second source Z

[see Fig. 2(b)]. In this case we have

�I (X; Y,Z) = 1

2
ln

(
1 − a2 − b2 + a2b2

1 − a2 − b2

)
> 0. (23)

Hence, the two sources Y and Z exhibit synergistic information
about the target X even though X and Z are uncorrelated
and this is modulated by the correlation between the sources
Y and Z. Although this is perhaps from a naive point of
view counterintuitive, it can be explained by thinking of Z

as providing information about why Y has taken the value it
has and from this one can narrow down the range of values
for X, beyond what was already known about X just from
knowing Y . Note that in this case there would be net synergy
even if one quantified information as reduction in covariance
via I�(X; Y ) defined above.

Figures 3(a), 3(b), 3(d), and 3(e) show more generally
how net synergy depends on the correlation between source
variables Y and Z. For correlations a and c between the two
sources and the target being equal and positive, net synergy is
a decreasing function of the correlation b between the sources,
while for correlations a and c being equal but opposite, net
synergy is an increasing function of the correlation b between
sources [Fig. 3(a)]. Net synergy asymptotically approaches
infinity as the correlation values approach limits at which
the covariance matrix becomes singular. This makes sense
because in those limits X becomes completely determined
by Y and Z. More generally, when a and c are unequal, net
synergy is a U-shaped function of correlation between sources
[Fig. 3(d)]. In Figs. 3(b) and 3(e) the alternative measure �I�

of net synergy based on information as reduction in variance
is plotted. As described above, this measure behaves more
elegantly, always taking the value zero when the correlation
between sources is zero. Taken together these plots show that
net redundancy (negative net synergy) does not necessarily
indicate a high degree of correlation between source variables.

This exploration of net synergy demonstrates that it
would be useful to obtain explicit measures of synergy and
redundancy for Gaussian variables. As mentioned in the
Introduction, several measures have been proposed for discrete
variables [5–10]. In the next section we will see that, for a broad
class of jointly Gaussian systems, these all reduce essentially
to redundancy being the minimum of I (X ; Y ) and I (X ; Z).
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FIG. 3. Illustrative examples of net synergy and synergy SMMI

between Gaussian variables. (a) Net synergy in Shannon information
that sources Y and Z share about the target X, as a function of
the correlation between Y and Z for (black) correlations between
X and Y and between X and Z equal and both positive (a = c =
0.5) and (gray) correlations between X and Y and between X and
Z equal and opposite (a = −c = 0.5). (b) Same as (a) but using
information defined as reduction in variance instead of reduction in
Shannon entropy. (c) Synergy according to the MMI PID for the same
parameters as (a). Here the dashed line shows redundancy according
to the MMI PID, which does not depend on the correlation between
Y and Z. (d) Example of net synergy as a function of the correlation
between Y and Z for (black) correlations between X and Y and
between X and Z unequal and both positive (a = 0.25, c = 0.75) and
(gray) correlations between X and Y and between X and Z unequal
and of opposite sign (a = 0.25, c = −0.75). (e) Same as (d) but using
information defined as reduction in variance instead of reduction in
Shannon entropy. (f) Synergy according to the MMI PID for the same
parameters as (d). Here the dashed line shows redundancy according
to the MMI PID, which does not depend on the correlation between
Y and Z. See the text for full details of the parameters. In all panels
dotted vertical lines indicate boundaries of the allowed parameter
space, at which the measures go to infinity, and horizontal dotted
lines indicate zero.

IV. PARTIAL INFORMATION DECOMPOSITION ON
GAUSSIAN SYSTEMS

In this section we first revise the definitions of three
previously proposed PIDs. We note that all of them have
the property that redundant and unique information depend
only on the pair of marginal distributions of each individual
source with the target, i.e., those of (X,Y ) and (X,Z), while
only the synergy depends on the full joint distribution of
all three variables (X,Y ,Z). Bertschinger et al. [10] have
argued for this property by considering unique information
from a game-theoretic view point. We then prove our key
result, namely, that any PID satisfying this property reduces,
for a jointly Gaussian system with a univariate target and
sources of arbitrary dimension, to simply taking redundancy
as the minimum of I (X ; Y ) and I (X ; Z) and letting the other
quantities follow from (1)–(3). We term this PID the MMI PID
and give full formulas for it for the general fully univariate case
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considered in Sec. III. In Sec. V we go on to apply the MMI
PID to dynamical Gaussian systems.

A. Definitions of previously proposed PIDs

Williams and Beer’s proposed PID uses a definition of
redundancy as the minimum information that either source
provides about each outcome of the target, averaged over all
possible outcomes [5]. This is obtained via a quantity called
the specific information. The specific information of outcome
X = x given the random variable Y is the average reduction
in surprise of outcome X = x given Y :

I (X = x; Y ) =
∫

d y p( y|x)

[
ln

1

p(x)
− ln

1

p(x| y)

]
.

(24)

The mutual information I (X ; Y ) is recovered from the specific
information by integrating it over all values of x. Redundancy
is then the expected value over all x of the minimum specific
information that Y and Z provide about the outcome X = x:

R(X ; Y ,Z) =
∫

dxp(x) min
�∈{Y ,Z}

I (X = x; �). (25)

Griffith et al. [6,9] consider synergy to arise from in-
formation that is not necessarily present given the marginal
distributions of source one and target (X,Y ) and source two
and target (X,Z). Thus

S(X ; Y ,Z) =: I (X ; Y ,Z) − U(X ; Y ,Z) (26)

where

U(X ; Y ,Z) =: min
(X̃,Ỹ ,Z̃)

I (X̃ ; Ỹ ,Z̃) (27)

and X̃ , Ỹ , and Z̃ are subject to the constraints PX̃,Ỹ = PX,Y

and PX̃,Z̃ = PX,Z. The quantityU(X ; Y ,Z) is referred to as the
union information since it constitutes the whole information
minus the synergy. Expressed alternatively, U(X ; Y ,Z) is the
minimum joint information provided about X by an alternative
Y and Z with the same relations with X but different relations
to each other. Bertschinger et al. [10] independently introduced
identically the same PID, but starting from the equation

U (X ; Y |Z) =: min
(X̃,Ỹ ,Z̃)

I (X̃ ; Ỹ |Z̃). (28)

They then derive (27) via the conditional mutual information
chain rule (11) and the basic PID formulas (1) and (3).

Harder, Salge, and Polani’s PID [7] defines redundancy
via the divergence of the conditional probability distribution
PX|Z=z for X given an outcome for Z from linear combinations
of conditional probability distributions for X given an outcome
for Y . Thus, the following quantity is defined:

PX ;Z=z→Y = arg min y1, y2,λ∈[0,1]DKL[PX|Z=z||λPX|Y= y1

+ (1 − λ)PX|Y= y2 ], (29)

where DKL is the Kullback-Leibler divergence, defined for
continuous probability density functions P and Q by

DKL(P ||Q) =:
∫

P (x) ln

[
P (x)

Q(x)

]
dmx. (30)

Then the projected information Iπ
X (Z → Y ) is defined as

Iπ
X (Z→Y ) = I (X ; Z)−

∫
d z p(z)DKL[PX|Z=z||PX ;Z=z→Y ]

(31)
and the redundancy is given by

R(X ; Y ,Z) = min{Iπ
X (Z → Y ),I π

X (Y → Z)}. (32)

Thus, broadly, the closer the conditional distribution of X
given Y is to the conditional distribution of X given Z, the
greater the redundancy.

B. Common PID for Gaussian systems

While the general definitions of the previously proposed
PIDs are quite distinct, one can note that for all of them the
redundant and unique information depend only on the pair
of marginal distributions of each individual source with the
target, i.e., those of (X,Y ) and (X,Z). Here we derive our
key result, namely, the following. Let X, Y , and Z be jointly
multivariate Gaussian, with X univariate and Y and Z of
arbitrary dimensions n and p. Then there is a unique PID
of I (X; Y ,Z) such that the redundant and unique information
R(X; Y ,Z), U (X; Y |Z), and U (X; Z|Y ) depend only on the
marginal distributions of (X,Y ) and (X,Z). The redundancy
according to this PID is given by

RMMI(X; Y ,Z) =: min{I (X; Y ),I (X; Z)}. (33)

The other quantities follow from (1)–(3), assigning zero unique
information to the source providing the least information about
the target and synergy as the extra information contributed by
the weaker source when the stronger source is known. We
term this common PID the minimum mutual information PID.
It follows that all of the previously proposed PIDs reduce down
to the MMI PID for this Gaussian case.

Proof. We first show that the PID of Griffith et al. [6,9]
(equivalent to that of Bertschinger et al. [10]) reduces to
the MMI PID. Without loss of generality, we can rotate and
normalize components of X, Y , and Z such that the general
case is specified by the block covariance matrix

� =
⎛
⎝1 aT cT

a In BT

c B Ip

⎞
⎠ , (34)

where In and Ip are, respectively, the n- and p-dimensional
identity matrices. We can also without loss of generality just
consider the case |a| � |c|. From (5) we have

�(X|Y ) = 1 − aTa, (35)

�(X|Z) = 1 − cTc, (36)

and hence I (X; Y ) � I (X; Z). Note then that for a (X̃,Ỹ ,Z̃)
subject to PX̃,Ỹ = PX,Y and PX̃,Z̃ = PX,Z,

I (X̃; Ỹ ,Z̃) � max{I (X̃; Ỹ ),I (X̃; Z̃)}
= max{I (X; Y ),I (X; Z)} = I (X; Z). (37)
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Now the covariance matrix of a (X̃,Ỹ ,Z̃) is given by

�̃ =
⎛
⎝1 aT cT

a In B̃T

c B̃ Ip

⎞
⎠ , (38)

where B̃ is a p × n matrix. The residual (partial) covariance
of X̃ given Ỹ and Z̃ can thus be calculated using (5) as

�(X̃|Ỹ ,Z̃) = 1 − (aTcT)

(
In B̃T

B̃ Ip

)−1 (
a
c

)
(39)

= 1 − cTc + (cTB̃ − aT)(In − B̃TB̃)−1(a − B̃Tc).

(40)

It follows from (40) and (36) that if we could find a B̃ that
satisfied B̃Tc = a and for which the corresponding �̃ were
a valid covariance matrix, then �(X̃|Ỹ ,Z̃) would reduce to
�(X|Z) and hence we would have I (X̃; Ỹ ,Z̃) = I (X; Z) and
thus we would have

U(X; Y ,Z) = max{I (X; Y ),I (X; Z)} (41)

by (37) and the definition (27) of U .
We now demonstrate that there does indeed exist a B̃

satisfying B̃Tc = a and for which the corresponding �̃ is
positive definite and hence a valid covariance matrix. First
note that since |a| � |c| there exists a B̃ satisfying B̃Tc = a
for which |B̃Tv| � |v| for all v ∈ Rp. Suppose we have such
a B̃. Then the matrix (

Ip B̃

B̃T In

)
(42)

is positive definite: For any v ∈ Rp, w ∈ Rn,

(vTwT)

(
Ip B̃

B̃T In

)(
v

w

)
= vTv + 2vTB̃w + wTw (43)

� vTv − 2vTw + wTw = (v − w)2 � 0. (44)

Since it is also symmetric, it therefore has a Cholesky
decomposition(

Ip B̃

B̃T In

)
=

(
Ip 0
B̃T P

)(
Ip B̃

0 P T

)
, (45)

where P is lower triangular. Hence, from equating blocks
(2,2) on each side of this equation, we deduce that there exists
a lower triangular matrix P satisfying

B̃TB̃ + PP T = In. (46)

We use this to demonstrate that the corresponding �̃ is positive
definite by constructing the Cholesky decomposition for a
rotated version of it. Rotating (X,Y ,Z) → (Z,X,Y ) leads to
the candidate covariance matrix �̃ becoming

�̃rot =
⎛
⎝ Ip c B̃

cT 1 aT

B̃T a In

⎞
⎠ . (47)

The Cholesky decomposition would then take the form

�̃rot =
⎛
⎝ Ip 0 0

cT q 0T

B̃T rT S

⎞
⎠

⎛
⎝Ip c B̃

0T q r
0 0 ST

⎞
⎠ , (48)

where S is a lower triangular matrix, q is a scalar, and r is a
vector satisfying

cTc + q2 = 1, (49)

cTB̃ + qr = aT, (50)

B̃TB̃ + rTr + SST = In, (51)

these equations coming, respectively, from equating blocks
(2,2), (2,3), and (3,3) in (47) and (48) (the other block equations
are satisfied trivially and do not constrain S, q, and r). There
exists a q to satisfy Eq. (49) since 1 − cTc � 0 by virtue of it
being �(X|Z) (36) and the original � being a valid covariance
matrix. Equation (50) is satisfied by r = 0 since B̃Tc = a.
Finally, Eq. (51) is then satisfied by S = P , where P is that
of (46). It follows that the Cholesky decomposition exists, and
hence �̃ is a valid covariance matrix, and thus (41) holds.

Now, given the definition (26) for the union information
and our expression (41) for it we have

I (X; Y ,Z) − S(X; Y ,Z) = max{I (X; Y ),I (X; Z)}. (52)

Thus, by the expression (4) for synergy minus redundancy in
terms of mutual information we have

R(X; Y ,Z) = S(X; Y ,Z) − I (X; Y ,Z) + I (X; Y ) + I (X; Z)

(53)

= − max{I (X; Y ),I (X; Z)} + I (X; Y ) + I (X; Z)

(54)

= min{I (X; Y ),I (X; Z)} (55)

and hence we have reduced this PID to the MMI PID.
Now to show that this is the only PID for this Gaussian

case satisfying the given conditions on the marginals of (X,Y )
and (X,Z) we invoke Lemma 3 in Ref. [10]. In the notation
of Bertschinger et al. [10], the specific PID that we have been
considering is denoted by tildes, while possible alternatives
are written without tildes. It follows from (55) that the source
that shares the smaller amount of mutual information with
the target has zero unique information. However, according
to Lemma 3 this provides an upper bound on the unique
information provided by that source on alternative PIDs.
Thus alternative PIDs give the same zero unique information
between this source and the target. However, according to
Lemma 3, if the unique information is the same, then the
whole PID is the same. Hence, there is no alternative PID.
Q.E.D.

Note that this common PID does not extend to the case of a
multivariate target. For a target with dimension greater than 1,
the vectors a and c above are replaced with matrices A and C

with more than one column [these being, respectively, �(Y ,X)
and �(Z,X)]. Then, to satisfy (41) one would need to find a
B̃ satisfying B̃TC = A, which does not in general exist. We
leave consideration of this more general case to future work.

C. The MMI PID for the univariate jointly Gaussian case

It is straightforward to write down the MMI PID for the
univariate jointly Gaussian case with covariance matrix given
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by (15). Taking without loss of generality |a| � |c|, we have
from (17)–(19) and (33)

RMMI(X; Y,Z) = I (X; Y ) = 1

2
ln

(
1

1 − a2

)
, (56)

UMMI(X; Y ) = 0, (57)

UMMI(X; Z) = I (X; Z) − I (X; Y ) = 1

2
ln

(
1 − a2

1 − c2

)
,

(58)

SMMI(X; Y,Z) = 1

2
ln

(
(1 − b2)(1 − c2)

1 − (a2 + b2 + c2) + 2abc

)
.

(59)

It can then be shown that SMMI → ∞ (and also �I → ∞)
at the singular limits b → ac ±

√
(1 − a2)(1 − c2) and also

that, at b = a/c, SMMI reaches the minimum value of 0.
For all in between values there is positive synergy. It is
intuitive that synergy should grow largest as one approaches
the singular limit, because in that limit X is completely
determined by Y and Z. On this PID, plots of synergy against
correlation between sources take the same shape as plots of
net synergy against correlation between sources, because of
the independence of redundancy from correlation between
sources [Figs. 3(c) and 3(f)]. Thus, for equal (same sign) a

and c, SMMI decreases with correlation between sources, for
equal magnitude but opposite sign a and c, SMMI increases with
correlation between sources and for unequal magnitude a and
c, SMMI has a U-shaped dependence on correlation between
sources.

V. DYNAMICAL SYSTEMS

In this section we explore synergy and redundancy in
some example dynamical Gaussian systems, specifically mul-
tivariate autoregressive (MVAR) processes, i.e., discrete-time
systems in which the present state is given by a linear
combination of past states plus noise.2 Having demonstrated
(Sec. IV) that the MMI PID is valid for multivariate sources,
we are able to derive valid expressions for redundancy and
synergy in the information that arbitrary length histories of
sources contain about the present state of a target. We also
compute the more straightforward net synergy.

A. Example 1: Synergistic two-variable system

The first example we consider is a two-variable MVAR
process consisting of two variables X and Y , with X receiving
equal inputs from its own past and from the past of Y

[see Fig. 4(a)]. The dynamics are given by the following

2These are the standard stationary dynamical Gaussian systems. In
fact, they are the only stationary dynamical Gaussian systems if one
assumes that the present state is a continuous function of the past
state [14].

X Y X Y

X

Y Z

(a) (b) (c)

FIG. 4. Connectivity diagrams for example dynamical systems.
Variables are shown as circles and directed interactions as arrows.
The systems are animated as Gaussian MVAR processes of order 1.
(a) Example 1. In this system X receives input from its own past
and from the past of Y . There is positive net synergy between the
information that the immediate pasts of X and Y provide about the
future of X, but zero net synergy between the information provided
by the infinite pasts of X and Y about the future of X. (b) Example
2. In this system there is bidirectional connectivity between X and
Y . There is zero net synergy between the information provided by
the immediate pasts of X and Y about the future of X and negative
net synergy (i.e., positive net redundancy) between the information
provided by the infinite pasts of X and Y about the future of X. (c)
Example 3. Here Y and Z are sources that influence the future of X.
Depending on the correlation between Y and Z, there can be synergy
between the information provided by the pasts of Y and Z about the
future of X (independent of the length of history considered).

equations:

Xt = αXt−1 + αYt−1 + εX
t , (60)

Yt = εY
t , (61)

where the ε are all independent and identically distributed
Gaussian variables of mean 0 and variance 1. The variables
X and Y have a stationary probability distribution as long
as |α| < 1. The information between the immediate pasts of
X and Y and the present of X can be computed analytically
as follows. First, the stationary covariance matrix �(Xt ⊕ Yt )
satisfies

�(Xt ⊕ Yt ) = A�(Xt ⊕ Yt )A
T + I2, (62)

where I2 is the two-dimensional identity matrix and A is the
connectivity matrix

A =
(

α α

0 0

)
. (63)

This is obtained by taking the covariance matrix of both sides
of (60) and (61). Hence

�(Xt ⊕ Yt ) = 1

1 − α2

(
1 + α2 0

0 1 − α2

)
. (64)

The one-lag covariance matrix �1(Xt ⊕ Yt ) =: �(Xt ⊕
Yt ,Xt−1 ⊕ Yt−1) is given by

�1(Xt ⊕ Yt ) = A�(Xt ⊕ Yt ) = α

1 − α2

(
1 + α2 1 − α2

0 0

)
.

(65)

From these quantities we can obtain the following variances:

�(Xt ) = 1 + α2

1 − α2
, (66)

�(Xt |Xt−1) = 1 + α2, (67)
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�(Xt |Yt−1) = 1 + α4

1 − α2
, (68)

�(Xt |Xt−1,Yt−1) = 1. (69)

Then from these we can compute the mutual information
between the present of X and the immediate pasts of X and Y :

I (Xt ; Xt−1) = 1

2
ln

(
1

1 − α2

)
, (70)

I (Xt ; Yt−1) = 1

2
ln

(
1 + α2

1 + α4

)
, (71)

I (Xt ; Xt−1,Yt−1) = 1

2
ln

(
1 + α2

1 − α2

)
. (72)

Thus, from these we see that there is net synergy between the
immediate pasts of X and Y in information about the present
of X:

�I (Xt ; Xt−1,Yt−1) = 1
2 ln(1 + α4) > 0. (73)

The infinite pasts of X and Y do not, however, ex-
hibit net synergistic information about the present of
X. While �(Xt |X−

t ) = �(Xt |Xt−1) and �(Xt |X−
t ,Y−

t ) =
�(Xt |Xt−1,Yt−1), we have �(Xt |Y−

t ) �= �(Xt |Yt−1). This is
because the restricted regression of X on the past of Y is of
infinite order:

Xt =
∞∑

n=1

αnYt−n +
∞∑

n=0

αnεX
t−n. (74)

Hence,

�(Xt |Y−
t ) = Var

(
αnεX

t−n

) =
∞∑

n=0

α2n = 1

1 − α2
. (75)

Therefore,

I (Xt ; X−
t ) = 1

2
ln

(
1

1 − α2

)
, (76)

I (Xt ; Y−
t ) = 1

2
ln(1 + α2), (77)

I (Xt ; X−
t ,Y−

t ) = 1

2
ln

(
1 + α2

1 − α2

)
, (78)

and

�I (Xt ; X−
t ,Y−

t ) = 0. (79)

Thus the synergy equals the redundancy between the infinite
pasts of X and Y in providing information about the present
state of X.

According to the MMI PID, at infinite lags synergy is the
same compared to that for one lag, but redundancy is less. We
have the following expressions for redundancy and synergy:

RMMI(Xt ; Xt−1,Yt−1) = 1

2
ln

(
1 + α2

1 + α4

)
, (80)

SMMI(Xt ; Xt−1,Yt−1) = 1

2
ln(1 + α2), (81)

RMMI(Xt ; X−
t ,Y−

t ) = SMMI(Xt ; X−
t ,Y−

t ) = 1

2
ln(1 + α2).

(82)

B. Example 2: An MVAR model with no net synergy

Not all MVAR models exhibit positive net synergy, for
example [see Fig. 4(b)],

Xt = αYt−1 + εX
t , (83)

Yt = βXt−1 + εY
t , (84)

where again the ε are all independent identically distributed
random variables of mean 0 and variance 1 and |α|,|β| < 1 for
stationarity. A calculation similar to that for example 1 shows
that the one-lag mutual information satisfies

I (Xt ; Xt−1) = 0, (85)

I (Xt ; Yt−1) = 1

2
ln

(
1 + α2

1 − α2β2

)
, (86)

I (Xt ; Xt−1,Yt−1) = 1

2
ln

(
1 + α2

1 − α2β2

)
(87)

and thus synergy and redundancy are the same for one-lag
mutual information

�I (Xt ; Xt−1,Yt−1) = 0. (88)

For infinite lags one has

I (Xt ; X−
t ) = 1

2
ln

(
1

1 − α2β2

)
, (89)

I (Xt ; Y−
t ) = 1

2
ln

(
1 + α2

1 − α2β2

)
, (90)

I (Xt ; X−
t ,Y−

t ) = 1

2
ln

(
1 + α2

1 − α2β2

)
, (91)

and thus

�I (Xt ; X−
t ,Y−

t ) = −1

2
ln

(
1

1 − α2β2

)
< 0, (92)

so there is greater redundancy than synergy.
For the MMI decomposition we have for one lag

RMMI(Xt ; Xt−1,Yt−1) = SMMI(Xt ; Xt−1,Yt−1) = 0, (93)

while for infinite lags

RMMI(Xt ; X
−
t ,Y−

t ) = 1

2
ln

(
1

1 − α2β2

)
, (94)

SMMI(Xt ; X
−
t ,Y−

t ) = 0. (95)

It is intuitive that for this example there should be zero synergy.
All the information contributed by the past of X to the present
of X is mediated via the interaction with Y , so no extra
information about the present of X is gained from knowing
the past of X given knowledge of the past of Y .
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It is interesting to note that for both this example and
example 1 above,

�I (Xt ; Xt−1,Yt−1) > �I (Xt ; X−
t ,Y−

t ). (96)

That is, there is less synergy relative to redundancy when one
considers information from the infinite past compared with
information from the immediate past of the system. This can
be understood as follows. The complete MVAR model is order
1 in each example (that is, the current state of the system
depends only on the immediate past), so I (Xt ; X−

t ,Y−
t ) =

I (Xt ; Xt−1,Yt−1), but restricted effective regressive models of
X on just the past of X or just the past of Y are generally
of infinite order (that is, one can often obtain lower residual
noise in X when regressing on the entire infinite past of just X

or just Y compared to when regressing on just the immediate
past of just X or just Y ). Hence I (Xt ; X−

t ) � I (Xt ; Xt−1) and
I (Xt ; Y−

t ) � I (Xt ; Yt−1) for such two-variable order-1 MVAR
systems. For the two examples, both of these inequalities are
strict and hence the relation (96) follows.

An interesting question is whether there exists an MVAR
model for two variables Xt and Yt for which the infinite-lag
net synergy is greater than zero. It is straightforward to
demonstrate that no such system can be found by simple
perturbations of the systems considered here. However, a
full consideration of the most general MVAR model of order
greater than 1 is beyond the scope of the present paper. In any
case, in the next example, we see that for an MVAR system with
three variables, the infinite past of two variables can provide net
synergistic information about the future of the third variable.

C. Example 3: Synergy between two variables influencing
a third variable

The third example we consider is an MVAR process with
Y and Z being (possibly) correlated sources that are each
influencing X [see Fig. 4(c)]:

Xt = 1

�

(
αYt−1 + γZt−1 + εX

t

)
, (97)

Yt = εY
t , (98)

Zt = εZ
t , (99)

where � =
√

1 + α2 + 2αγρ + γ 2 and the ε are Gaussian
noise sources all of zero mean, with zero correlation in time,
but with instantaneous correlation matrix

�(ε) =
⎛
⎝1 0 0

0 1 ρ

0 ρ 1

⎞
⎠ . (100)

Here there is no restriction on connection strengths α or γ ;
stationarity is satisfied for all values. Following the same
method as in examples 1 and 2, we have

�(Xt ⊕ Yt ⊕ Zt ) = A�(Xt ⊕ Yt ⊕ Zt )A
T + �(ε) (101)

and

A = 1

�

⎛
⎝0 α γ

0 0 0
0 0 0

⎞
⎠ , (102)

�(Xt ⊕ Yt ⊕ Zt ) =
⎛
⎝1 0 0

0 1 ρ

0 ρ 1

⎞
⎠ , (103)

�1(Xt ⊕ Yt ⊕ Zt ) = 1

�

⎛
⎝0 α + ργ γ + ρα

0 0 0
0 0 0

⎞
⎠ . (104)

From these quantities we can compute the mutual information

I (Xt ; Yt−1) = 1

2
ln

(
1 + α2 + 2αγρ + γ 2

1 + γ 2(1 − ρ2)

)
, (105)

I (Xt ; Zt−1) = 1

2
ln

(
1 + α2 + 2αγρ + γ 2

1 + α2(1 − ρ2)

)
, (106)

I (Xt ; Yt−1,Zt−1) = 1

2
ln(1 + α2 + 2αγρ + γ 2). (107)

Hence, assuming without loss of generality that |α| � |γ |,
�I (Xt ; Yt−1,Zt−1)

= 1

2
ln

(
[1 + α2(1 − ρ2)][1 + γ 2(1 − ρ2)]

1 + α2 + 2αγρ + γ 2

)
, (108)

RMMI(Xt ; Yt−1,Zt−1)

= 1

2
ln

(
1 + α2 + 2αγρ + γ 2

1 + γ 2(1 − ρ2)

)
, (109)

SMMI(Xt ; Yt−1,Zt−1) = 1

2
ln(1 + α2[1 − ρ2]). (110)

Note that we do not consider the PID for the information
provided by the infinite pasts of Y and Z because it is the same
as that provided by the immediate pasts for this example.

For the case of no correlation between Y and Z, i.e., ρ = 0,
we have

�I (Xt ; Yt−1,Zt−1) = 1

2
ln

(
[1 + α2][1 + γ 2]

1 + α2 + γ 2

)
> 0, (111)

i.e., there is net synergy. For the case ρ = 1 of Y and Z being
perfectly correlated, there is, however, net redundancy, since

�I (Xt ; Yt−1,Zt−1) = 1

2
ln

(
1

1 + (α + γ )2

)
< 0. (112)

This is a dynamical example in which two uncorrelated sources
can contribute net synergistic information to a target. The MMI
PID synergy SMMI behaves in an intuitive way here, increasing
with the square of the weaker connection α, decreasing as
the correlation ρ between the sources Y and Z increases, and
going to zero when α = 0 or ρ = 1, reflecting the strength and
independence of the weaker link.

Considering this system further for the case ρ = 0 and
α = γ , for small α the net synergy is approximately α4/2
and for large α the net synergy is approximately ln(α/

√
2)

(as stated above, α can be arbitrarily large in this model,
since the spectral radius, i.e., largest absolute value of the
eigenvalues of the connectivity matrix, is zero independent of
α). Hence net synergy can be arbitrarily large. The proportion
�I (Xt ; Yt−1,Zt−1)/I (Xt ; Yt−1,Zt−1) also grows with connec-
tion strength α, reaching, for example, approximately 0.1 for
α = 0.5.
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VI. TRANSFER ENTROPY

The net synergy in the example systems of Sec. V affect
transfer entropy and its interpretation. Pairwise (one-lag)
transfer entropy is defined as

T (1)
Y→X =: H (Xt |Xt−1) − H (Xt |Xt−1,Yt−1)

≡ I (Xt ; Xt−1,Yt−1) − I (Xt ; Xt−1). (113)

Typically transfer entropy is interpreted straightforwardly as
the information that the past of Y contributes to the present
of X over and above that already provided by the past of X

[15]. It has sometimes been implicitly assumed to be less than
the lagged mutual information I (Xt ; Yt−1) for simple linear
systems, for example, in constructing measures of the overall
causal interactivity of a system [14]. However, this is not the
case when there is net synergy, since transfer entropy measures
the unique information provided by the past of Y plus the
synergistic information between the pasts of X and Y ,

T (1)
Y→X = U (Xt ; Yt−1|Xt−1) + S(Xt ; Xt−1,Yt−1), (114)

whereas the lagged mutual information I (Xt ; Yt−1) measures
the unique information provided by the past of Y plus the
redundant information provided by the pasts of X and Y :

I (Xt ; Yt−1) = U (Xt ; Yt−1|Xt−1) + R(Xt ; Xt−1,Yt−1). (115)

Specifically, for example 1,

T (1)
Y→X = 1

2
ln(1 + α2), (116)

T (1)
Y→X − I (Xt ; Yt−1) = 1

2
ln(1 + α4) > 0. (117)

The situation can be different when infinite lags are
considered:

T (∞)
Y→X =: H (Xt |X−

t ) − H (Xt |X−
t ,Y−

t ). (118)

For example 1, considering infinite lags, the transfer entropy
T (∞)

Y→X and the lagged mutual information I (Xt ; Y−
t ) are equal

because the net synergy between complete past histories of X

and Y is zero. From (70)–(72) and (76)–(78) we have

T (∞)
Y→X = T (1)

Y→X, (119)

T (∞)
Y→X − I (Xt ; Y−

t ) = 0. (120)

Conditional transfer entropy T (∞)
Y→X|Z (infinite lags) is

defined as

T (∞)
Y→X|Z =: H (Xt |X−

t ,Z−
t ) − H (Xt |X−

t ,Y−
t ,Z−

t ). (121)

It has sometimes been assumed that the conditional transfer
entropy is less than nonconditional transfer entropy, i.e.,
T (∞)

Y→X|Z is less than T (∞)
Y→X [14,16]. This is because the pasts of

Y and Z might contribute redundant information to the future
of X, but as for pairwise nonconditional transfer entropy,
synergy is usually not considered important for continuous,
linear unimodal systems such as those considered in this paper.
However, for example 3 this is not always true. Considering

the net synergistic case of ρ = 0, α = γ ,

TY→X = 1

2
ln

(
1 + 2α2

1 + α2

)
, (122)

TY→X|Z = 1

2
ln(1 + α2), (123)

TY→X|Z − TY→X = 1

2
ln

(
1 + α4

1 + 2α2

)
> 0. (124)

Here the number of lags is left unspecified because these
quantities are the same for any number of lags. Thus
conditional transfer entropy can be affected by synergy
even when infinite lags are considered. In this example,
because X has no self-connection and thus the past of X

contributes no information to the future of X, TY→X reduces
to U (Xt ; Yt−1|Zt−1) + R(Xt ; Yt−1,Zt−1) and TY→X|Z to
U (Xt ; Yt−1|Zt−1) + S(Xt ; Yt−1,Zt−1). Nonconditional minus
conditional transfer entropy has been applied to assess the
balance between synergy and redundancy (i.e., net synergy)
among neuroelectrophysiological variables in [17].

Since transfer entropy is equivalent to the linear formulation
of Granger causality for jointly Gaussian variables [13], the
above conclusions pertain also to interpretations of Granger
causality. Granger causality quantifies the extent to which the
past of one variable Y predicts the future of another variable X

over and above the extent to which the past of X (and the past
of any conditional variables) predicts the future of X [18,19].
In the usual linear formulation, the prediction is implemented
using the framework of linear autoregression. Thus, to measure
the Granger causality from predictor Y to predictee X given
conditional variables Z, one compares the following MVAR
models:

Xt = A · [
X (p)

t ⊕ Z(r)
t

] + εt , (125)

Xt = A′ · [
X (p)

t ⊕ Y (q)
t ⊕ Z(r)

t

] + ε′
t . (126)

Thus the predictee variable X is regressed first on the previous
p lags of itself plus r lags of the conditioning variables Z
and second, in addition, on q lags of the predictor variable
Y (p, q, and r can be selected according to the Akaike or
Bayesian information criterion [20]). The magnitude of the
Granger causality interaction is then given by the logarithm of
the ratio of the residual variances

FY→X|Z =: ln

(
�(εt )

�(ε′
t )

)
= ln

(
�(Xt |X−

t ,Z−
t )

�(Xt |X−
t ,Y−

t ,Z−
t )

)
,

(127)

where the final term expresses Granger causality in terms of
partial covariances and hence illustrates the equivalence with
transfer entropy for Gaussian variables (up to a factor of 2)
[13]. It follows that pairwise Granger causality FY→X (no
conditional variables) should be considered as a measure of
the unique (with respect to the past of X) predictive power
that the past of Y has for the future of X plus the synergistic
predictive power that the pasts of X and Y have in tandem
for the future of X. Meanwhile, conditional Granger causality
FY→X|Z should be considered as a measure of the unique (with
respect to the pasts of X and Z) predictive power that the past
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of Y has for the future of X plus the synergistic predictive
power that the pasts of X and Y ⊕ Z have in tandem for the
future of X.

VII. IMPLICATIONS FOR MEASURES OF OVERALL
INTERACTIVITY AND COMPLEXITY

The prevalence of synergistic contributions to information
sharing has implications for how to sensibly construct mea-
sures of overall information transfer sustained in a complex
system, or the overall complexity of the information transfer.
One such measure is causal density [14,16,21]. Given a set
of Granger causality values among elements of a system
M, a simple version of causal density can be defined as the
average of all pairwise Granger causalities between elements
(conditioning on all remaining elements)

cd(M) =:
1

n(n − 1)

∑
i �=j

FMj →Mi |M [ij ] , (128)

where M [ij ] denotes the subsystem of M with variables Mi

and Mj omitted and n is the total number of variables. Causal
density provides a principled measure of dynamical complex-
ity inasmuch as elements that are completely independent will
score zero, as will elements that are completely integrated
in their dynamics. High values will only be achieved when
elements behave somewhat differently from each other, in
order to contribute novel potential predictive information,
and at the same time are globally integrated, so that the
potential predictive information is in fact useful [16,22].
In the context of the current discussion, however, causal
density counts synergistic information multiple times, while
neglecting redundant information. For instance, in example 3
above, the nonzero contributions to causal density are

cd = 1
6 [FZ→X|Y + FY→X|Z] (129)

= 1
3 [U (Xt ; Yt−1|Zt−1) + U (Xt ; Zt−1|Yt−1)

+ 2S(Xt ; Yt−1,Zt−1)]. (130)

In spite of this apparent overcounting of synergistic informa-
tion, the resultant formula is

cd = 1
6 {ln[1 + α2(1 − ρ2)] + ln[1 + γ 2(1 − ρ2)]}, (131)

which is after all a sensible formula for the overall level
of transfer of novel predictive information, increasing with
connection strengths α and γ , decreasing with the correlation
ρ between the source variables, and going to zero if either both
α and γ are zero or if ρ → 1.

An alternative to causal density is the global transfer
entropy [23,24] Tgl, defined as

Tgl(M) =:
1

n

∑
i

TM→Mi
, (132)

i.e., the average information flow from the entire system to
individual elements. This may be considered a measure of
gross past-conditional statistical dependence of the elements
of the system, insofar as it vanishes if and only if each system
element, conditional on its own past, does not depend on
the past of other system elements. Unlike causal density, this
measure assigns equal weight to contributions from unique,

redundant, and synergistic information flow. However, it
is not sensitive to whether the information flow occurs
homogeneously or inhomogeneously; it is not concerned
with the distribution among sources of the information
that flows into the targets. It should thus be interpreted as
operationalizing a different conceptualization of complexity
to causal density. For example 3 above, the only nonzero
contribution to this global transfer entropy arises from
I (Xt ; Yt−1,Zt−1). Thus, from Eq. (107), it is given by

Tgl = 1
6 ln(1 + α2 + 2αγρ + γ 2). (133)

This quantity is actually increasing with correlation ρ between
sources, reflecting explicitly here that this is not a measure of
complexity that operationalizes inhomogeneity of information
sources. That the information flow into the target is greatest
when sources are strongly positively correlated is explained
as follows: Fluctuations of the sources cause fluctuations of
the target and fluctuations coming from positively correlated
sources will more often combine to cause greater fluctuations
of the target than of sources, whereas fluctuations coming
from uncorrelated sources will more often cancel out at the
target. Thus the relative variance of the target before compared
with after knowing the pasts of the sources is greatest when
sources are strongly positively correlated.

Conceptualizing complexity as having to do with a whole
system being greater than the sum of its parts, average
synergistic information contributed by the past of a pair of
variables to the present of a third variable could form a
measure of complexity, by measuring the extent to which joint
information contributed by two sources exceeds the sum of
information contributed by individual sources. Thus we could
define the synergistic complexity CS as

CS(M) =:
2

n(n − 1)(n − 2)

∑
i,j,k

S(Mi,t ; M−
j,t ,M−

k,t ). (134)

For example 3, this leads via Eq. (110) to

CS(M) =: 1
6 ln(1 + α2[1 − ρ2]) (135)

for the case |α| � |γ |, reflecting the strength and level of
independence of the weakest connection. This is in the spirit
of what the � measures of integrated information [21,25,26]
are supposed to capture (in some cases of high synergy �

measures are unsuccessful at doing this [27]). One could also
conceive an analogous measure based on net synergy, but this
does not lead to a formula that summarizes the complexity
of example 3 in any straightforward conceptualization [see
Eq. (108) for the nonzero term].

To fully understand the pros and cons of these various
measures of complexity, they should be considered on systems
composed of many (i.e., much greater than three) elements.
While there have been studies of causal density [21] and global
transfer entropy [24], the synergistic complexity is a different
measure, which should be explored in controlled comparison
with the other measures. One could further imagine, for general
systems of n variables, a complexity measure based on the
synergistic information contributed to one variable from the
pasts of all n − 1 other variables. We do not attempt to consider
such a measure here, since consideration of PIDs for more than
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two source variables is beyond the scope of this paper. This
will also be an avenue for future research.

VIII. DISCUSSION

A. Summary

In this paper we have carried out analyses of partial informa-
tion decompositions for Gaussian variables. That is, we have
explored how the information that two source variables carry
about a target variable decomposes into unique, redundant, and
synergistic information. Previous studies of PIDs have focused
on systems of discrete variables and this study focuses on
continuous random variables. We have demonstrated that net
synergy (i.e., the combined information being greater than the
sum of the individual informations) is prevalent in systems of
Gaussian variables with linear interactions and hence that PIDs
are nontrivial for these systems. We illustrated two interesting
examples of a jointly Gaussian system exhibiting net synergy:
(i) a case in which the target is correlated with both sources,
but the two sources are uncorrelated [Fig. 2(a)], and (ii) a case
in which the target is only correlated with one of two sources,
but the two sources are correlated [Fig. 2(b)]. Further we have
shown that, depending on the signs of the correlations between
sources and target, net synergy can either increase or decrease
with (absolute) correlation strength between sources (Fig. 3).
Thus, redundancy should not be considered a reflection of
correlation between sources.

Our key result is that for a broad class of Gaussian systems,
a broad class of PIDs leads to (i) a definition of redundancy
as the minimum of the mutual informations between the target
and each individual source, and hence they take redundancy as
totally independent of the correlation between sources, and (ii)
synergy being the extra information contributed by the weaker
source when the stronger source is known. Specifically, this
holds for a jointly Gaussian system with a univariate target
and sources of arbitrary dimension, and any PID for which
the redundant and unique information depend only on the pair
of marginal distributions of target and source 1 and target
and source 2. This property has been argued for in [10] and
covers three previously proposed PIDs [5–7,10], which all
operationalize distinct conceptualizations of redundancy (see
Sec. IV A). Thus it would be reasonable to apply this formula
for redundancy to any data that are approximately Gaussian.
Note however, there is still debate about the list of axioms
a PID should satisfy beyond the minimal ones described in
the Introduction [9], so it is still possible that an alternative
PID is constructed for which the formula does not hold. We
have termed the obtained decomposition the MMI PID. Most
usefully, it is applicable in a multivariate-time-series analysis
to the computation of synergistic and redundant information
arising in an arbitrary length past history of two variables
about the present state of a third variable, i.e., to analyses of
information transfer.

That there can be net synergy when sources are uncorrelated
implies that simple dynamical Gaussian systems can exhibit
net synergy when considering the past of two variables as the
sources and the present of one variable as the target. Indeed, we
have demonstrated this explicitly via some simple examples.
We analyzed an MVAR model on which the pasts of two
sources influence the present of a target [Fig. 4(c)] and showed

that the synergistic information of the past of the sources about
the target, as obtained via the MMI PID, increases mono-
tonically with the weaker connection strength and decreases
monotonically with correlation between sources (110). Thus,
while redundancy does not provide us with distinct knowledge
of the system, above and beyond mutual information between
individual sources and target, synergy provides an intuitive
formula for the extent of simultaneous differentiation (between
sources) and integration (of information from both sources).

B. Application to neuroscience

Information-theoretic analyses are increasingly popular in
neuroscience, notably for analyzing the neural encoding of
stimuli or for analyzing brain connectivity via quantification
of information transfer between pairs of brain variables
(especially if one considers Granger causality [18,19] as a
measure of information transfer based on its correspondence
with transfer entropy [13,28,29]); see [30] for a recent review.
There have been several studies in which net synergy or redun-
dancy has been computed empirically on neurophysiological
data sets, e.g., [17,31–36]. In neural coding, net synergy
(�I > 0) has been observed in the information successive
action potentials carry about a stimulus [31]. In most studies,
information transfer between electroencephalogram (EEG)
variables has tended to exhibit net redundancy (i.e., �I < 0),
although recently net synergy (�I > 0) has been observed in
information transfer among some intracranial EEG variables in
an epileptic patient [37]. A pair of recent studies has associated
certain pathological brain states with increased net redundancy
in information transfer: among electrocorticographic time
series (contacts placed intracranially on the surface of the
cortex) during seizure onset in an epileptic patient [17]
and among scalp EEG time series from traumatic brain
injury patients in the vegetative state, compared to analogous
recordings from healthy controls [36].

Usually net redundancy has been assumed to arise due to
common sources and hence correlation between variables.
However, as mentioned above, the results here suggest that
this is not always the case. For the Gaussian case we have
considered, this holds for positive correlation between sources
and an equal correlation between the target and each of the
sources, but not more generally (see Fig. 3).

The canonical example scenario for net synergy takes
one of the sources to be a suppressor variable, entering a
regression via a multiplicative term with the other source [37].
Such nonlinear systems are non-Gaussian, so PID on systems
with suppressor variables is beyond the scope of this paper.
However, our demonstration of cases of net synergy for linear
Gaussian systems suggests that observing net synergy does
not necessarily imply the presence of a suppressor variable.
Further, in concordance with the nonstraightforward relation-
ship found here between net synergy and correlation between
sources, it has been shown in [38,39] that net synergy is not
a useful measure for assessing the importance of correlations
between neurons (or neural populations) for successful stim-
ulus decoding. Using the MMI PID, redundancy and synergy
can now be computed separately on neurophysiological data
sets on which a Gaussian approximation is valid to bring more
detailed insight into information-theoretic analyses.

052802-12



EXPLORATION OF SYNERGISTIC AND REDUNDANT . . . PHYSICAL REVIEW E 91, 052802 (2015)

C. Final remarks

We found that if one were to quantify information as re-
duction in variance rather than reduction in entropy for jointly
univariate Gaussian variables, then the net synergy would be
precisely zero for uncorrelated sources (see Sec. III). Since
it is counterintuitive that synergy should arise in the absence
of interactions between sources, this suggests that perhaps
reduction in variance is a better measure of information for
Gaussian variables than mutual information based on Shannon
entropy, which results in information being based on the
concave logarithmic function and leads to a distorting effect
when comparing combined information from two sources
with the sum of information from each source on its own
in the formula for net synergy. Since Shannon information
between continuous random variables is more precisely based
on differential, as opposed to absolute, entropy (see Sec. II),
its interpretation in terms of reduction of uncertainty is in any
case somewhat ambiguous, in spite of being widely used. One
would, however, lose the symmetry of information if redefining
it as reduction in variance. Angelini et al. [12] made a similar
observation for Granger causality: A formula based solely on
variances, without taking logarithms, results in the Granger
causality from a group of independent variables being equal
to the sum of Granger causalities from the individual variables
(assuming linearity). Future studies of synergy might benefit
from further consideration of alternative measures of basic
mutual information for continuous random variables.

The MMI PID constitutes a viable candidate PID for
information sharing and transfer among a group of three jointly

Gaussian variables. This will be useful given that the Gaussian
approximation is so widely used when analyzing continuous
time-series. There is, therefore, the possibility of application
of the MMI PID to a broad range of complex systems,
opening up the opportunity to explore relations between any
macroscopic phenomenon and the distinct categories of infor-
mation sharing (redundant, unique, and synergistic) among
triplets of continuous time-series variables. The isolation
of synergistic information from the other categories could
be useful for measuring complexity, by quantifying more
correctly than difference in mutual information alone the extent
to which information from multiple sources taken together is
greater than that from individual sources taken separately (see
Sec. VII). A challenge for future work is to obtain a more
general framework for PIDs on continuous random variables:
for variables following other distributions and for the scenario
of more than two source variables.
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