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In many real-world complex systems, the time evolution of the network’s structure and the dynamic state of
its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network
which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of
renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model
is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of
interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the
sustainability of the system’s equilibrium state. We derive a macroscopic description of the system in terms of
ordinary differential equations which provides a general framework to model and quantify the influence of single
node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many
fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
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I. INTRODUCTION

Complex network theory has proven to be a powerful tool
for studying properties, dynamics, and evolution of many
real-world complex systems [1,2]. Of particular interest is
the ability to investigate adaptive or temporal networks and
their respective dynamics [3–5]. Typical processes studied in
this field are epidemic spreading [6–8] or opinion formation,
e.g., based on the adaptive voter model [9,10]. Interactions
are modeled by randomly picking a pair of linked nodes and,
with fixed probabilities, either changing the state of one of
the two nodes or modifying their neighborhood structure by
adaptive rewiring. However, recent results have emphasized
that opinion formation and imitation processes in fact do not
take place with fixed probabilities but can depend on the payoff
or performance of different opinion-related choices made by
the agents or nodes involved [11–13].

In addition to the structure and dynamics of networks there
have been a variety of studies on the dynamics on networks,
where nodes in the network represent individual dynamical
systems and links indicate directed or symmetric interactions
between them [14,15]. It has been suggested that the interplay
between the dynamics of and on networks should be much
more thoroughly investigated, since the dynamics of each of
the coupled subsystems is expected to change significantly
when compared to their autonomous time evolution [3].

In this work, we propose a model that combines both
aspects. For this purpose we refine the adaptive voter model so
there is no fixed probability for pairs of nodes to either imitate
each other’s opinion or adaptively rewire their acquaintance
structure. Instead, each node also represents a dynamical
system which, for illustration, is chosen here to be simple and
easily understood if treated in an isolated fashion. In particular,
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we choose a logistic growth model, which is a paradigm
for the dynamics of a bounded renewable resource [16].
Whenever interactions between nodes take place, the states of
the respective dynamical systems are also taken into account.
As a consequence, imitation processes depend explicitly on
the nodes’ states as well as on the current network structure.
At the same time each of the nodes’ opinions influences a
parameter of the local dynamical system.

The proposed model serves as a narrative for possibly
emerging dynamics in coevolutionary human-nature interac-
tions [17–19]. It complements conceptual studies on the effects
of economic growth on the ecospheric state [20,21] as well as
work on resource exploitation models that take into account
the coevolution of stylized resource dynamics with a similarly
paradigmatic population growth model [22,23]. The proposed
model, for the first time, takes into account individual pairwise
interactions of agents on a social network when studying the
stability and dynamics of such intertwined systems.

So far, in the context of sustainability science [24], studies
on the effect of different exploitation strategies on the state
of a certain ecospheric component have been carried out by,
e.g., studying the extraction of water in rivers by a network
of interconnected harvesters [25–27]. However, no systematic
analysis of the underlying network structure and resulting dy-
namics was performed. In addition, no network dynamics, such
as adaptation or imitation processes, were included in these
studies and the focus was mainly set on studying the state of the
ecosphere for different harvesting strategies that were evolving
deterministically in order to optimize all harvesters’ payoffs.

In contrast, imitation dynamics with high numbers of agents
or players have been studied in the context of evolutionary
game theory [12,13,28,29]. However, in no such cases were
the dynamics of resources or other externalities taken into
account and, hence, no coevolution of different subsystems
has been studied. Here, the proposed model serves to illustrate
the rich dynamics that may emerge from the coupling of these
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different subsystems, even though the complexity in each of
the subcomponents remains manageable.

After the introduction of all key components and processes
constituting the model in Sec. II we perform numerical
simulations of the system. In Sec. III we first study the case
of a static network where no adaptation is taking place. We
find that the system converges into either a state where all
logistic growth models, e.g., resources, converge into a state
of full depletion or into a state of positive stock. The latter is
to be interpreted as the more sustainable and, hence, desired
outcome of the model. We uncover that the likelihood to
converge into either of the two states is mainly determined
by the frequency of interactions between nodes.

In Sec. IV we then study the effect of network adaptation
and show that the stability of the system changes in dependence
on the choice of the adaptation frequency. Specifically we
deduce that for each interaction frequency there exists an
appropriate rate of network adaptation such that the system
can be guided into a sustainable state.

Finally, we derive a low-dimensional set of rate equations
for variables that approximate the model’s macroscopic state
in Sec. III B for the static and in Sec. IV for the adaptive
case. These equations are generally applicable to any study of
opinion formation or spreading if the probabilities of changes
in node states by imitation are appropriately chosen. Finally,
conclusion are drawn in Sec. V.

II. MODEL DESCRIPTION

Assume a temporal network G[V,L(t)] consisting of a fixed
set of N nodes V = {v1,v2, . . . ,vN } and an evolving set of
links L(t). It is represented by the time-dependent adjacency
matrix A(t). Each node vi represents a renewable resource
stock si(t) that obeys a logistic growth model and is harvested
with an effort level Ei(t) [16],

d

dt
si(t) = aisi(t)(1 − si(t)/Ki) − qisi(t)Ei(t). (1)

For this study, we set the growth rates ai = 1, capacities
Ki = 1, and catch coefficients qi = 1 for all i = 1, . . . ,N

and measure the time and stocks in dimensionless quantities.
Treating all stocks si as evolving under identical conditions is
a strong assumption of the model but allows us to solely focus
on the interplay between network and stock dynamics and its
dependence on a few key parameters.

The effort is a time-dependent quantity assigned to each
node vi which defines its current behavioral pattern and
changes through imitation of other nodes. On the one hand,
nodes can adopt a high effort level E+ > 1, causing each
stock to converge to a stable fixed point s+ = 0, implying full
depletion of the resource. Alternatively, nodes can choose a
low effort level E− ∈ (0,1) providing less harvest per unit time
initially but avoiding depletion of the resource stocks since
each individual stock si then converges to a stable positive
fixed point s− = 1 − E− > 0. The two possible choices of
effort level, E− (low) and E+ (high), are the same for all nodes
and are parameterized by �E ∈ (0,1) such that E− = 1 − �E

and E+ = 1 + �E. At each time t there are N−(t) nodes with
Ei(t) = E− and N+(t) = N − N−(t) nodes with Ei(t) = E+.
The effort then yields for each node vi an individual harvest
hi(t) = si(t)Ei(t), which constitutes the second term in Eq. (1).

From now onward we omit the explicit time dependence of the
stocks si , efforts Ei , the adjacency matrix A, and the number
of low- and high-effort nodes N± in our notation.

Initially, for each node vi , an individual waiting time Ti is
drawn at random from a Poissonian distribution with density

p(Ti) = T −1 exp(−Ti/T ), (2)

which is a typical choice for modeling interaction rates in
social systems [30]. T denotes the expected waiting time
between two interactions initiated by the same node vi . Starting
from this:

(i) The system as given in Eq. (1) is integrated forward in
time for the minimum of all current waiting times Ti . Then, for
the corresponding node vi (with the smallest Ti), a neighboring
node vj is drawn uniformly at random.

(ii) If the efforts Ei and Ej of vi and vj differ:
(a) With a rewiring probability 0 � φ � 1, vi breaks its

link with vj such that Aij = 1 becomes Aij = 0. Then a
new link between vi and another randomly drawn node vk

with the same effort level (Ei = Ek) is established such that
Aik = 0 becomes Aik = 1. This network adaptation process
mimics generally observed tendencies to form clusters of
individuals with similar behavior or social traits. Note that,
in contrast to earlier work, rewiring only takes place if a
randomly drawn neighbor vj of vi shows a different effort,
e.g., behavioral pattern [10].

(b) If vi does not adapt its neighborhood, imitation may
happen instead (with probability 1 − φ). The difference in
current harvest �hij = hj − hi is computed and the node vi

imitates the current effort level of vj with a probability given
by a sigmoidal function p(Ei → Ej ) = p(�hij ) which
generally is required to be monotonic and continuously
differentiable. Additionally, it must fulfill p(�hij ) → 0
for �hij → −∞ and p(�hij ) → 1 for �hij → ∞ and
p(0) = 0.5. This represents the increasing likelihood of
imitation processes to take place with an increase in the
expected payoff difference [13]. For our model we set
p(Ei → Ej ) = 0.5(tanh �hij + 1) which obeys all of the
above requirements.
(iii) A new waiting time Ti is drawn at random for vi

according to Eq. (2) and step (i) is repeated as long as the
model has not reached a steady state.

(iv) The model reaches (with probability one) a steady state
at some time tf when the network divides into one or more
components in each of which only one choice of effort level is
left.

Initially, the two possible effort levels are distributed evenly
among the nodes with ratios n−(0) = N−(0)/N = n+(0) =
N+(0)/N = 0.5. Initial stocks are set to si(0) = 1 for all
i = 1, . . . ,N . In the following, we consider initially Erdős-
Rényi random networks with N = 400 nodes and a linking
probability of ρ = k/(N − 1), where k = 20 is the average
degree of nodes in the network.

III. STATIC NETWORK

We first study the case of a static network structure with φ =
0 [hence, modeling step (ii)(a) is not implemented at first] and
simulate the model numerically for different combinations of
T and �E. From this, we derive a macroscopic approximation
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of the model constituted from a set of three coupled differential
equations and show its good agreement with the numerical
results.

A. Numerical simulations

Numerical simulations for different combinations of T and
�E provide insights into the system’s dynamics. Figure 1(a)
shows the fraction f−(tf ) of model runs that converge to a state
where all nodes show a low effort Ei(tf ) = E− ∀ i = 1, . . . ,N

(using an ensemble of n = 500 simulations). For small T

(fast interactions) there is a high probability for the system
to converge to a state where only nodes with a high effort level
E+ are present. In this case all resource stocks converge to
the stable fixed point s+ = 0 and become fully depleted. With
increasing T , the system’s expected equilibrium state under-
goes a phase transition in f−(tf ). For sufficiently large T (slow
interactions), the system is likely to converge to a state where
all nodes adopt the effort level E− and all stocks converge
to a stable fixed point s− = 1 − E− > 0. This indicates that
the rate of interactions between nodes plays a crucial role in
determining the system’s expected equilibrium state.

The resulting dynamics can be qualitatively understood
by considering the limiting cases of T → 0 and T → ∞.
In the first case, interactions between nodes are expected
to happen very fast. Given that initially all stocks carry the
same value si(0) = s0 we expect that for t � 1 the harvest
h− (h+) of nodes with low (high) effort follows h−(t � 1) ∝
E−s0 [h+(t � 1) ∝ E+s0]. This implies that the difference in
harvest between the two different types of nodes is expected
as h+(t � 1) − h−(t � 1) ∝ (E+ − E−)s0 = 2�Es0. If in-
teractions happen very fast, the system likely converges into
its equilibrium state at tf � 1. Since in this situation we expect
h+ > h−, nodes with low effort are more likely to imitate the
high effort rather than the other way around and, hence, we
expect f−(tf ) → 0 for T → 0 [as can be seen in Fig. 1(a)].

In contrast, for T → ∞, we expect updates between nodes
to happen preferably at times t � 1. In this case, the stocks of
nodes with high (low) effort can be assumed to have already
converged to a fixed point of s+ = 0 (s− = 1 − E+ = �E)

(a) (b)

FIG. 1. (Color online) (a) The fraction f−(tf ) of numerical sim-
ulations that converge to a state where all nodes show a low effort
level Ei(tf ) = E− ∀ i = 1, . . . ,N computed over n = 500 runs for
different choices of T and �E for a static network with φ = 0. (b)
The value n−0 of the stable fixed point for the fraction n− of nodes
with effort level E− computed from Eqs. (16)–(18). The dashed line
indicates the critical expected waiting time Tc which separates the
two regimes (predominance of nodes using E+ [yellow (light)] and
E− [red (dark)].

as interactions between nodes start to take place. Hence, the
difference in harvest is expected as h−(t � 1) − h+(t � 1) =
�E − �E2. Thus, for all �E ∈ (0,1) the harvest of low-effort
nodes exceeds that of nodes with high effort and the system is
likely to converge into a state where all nodes show the low
effort and, hence, f−(tf ) → 1 [red (dark) area in Fig. 1(a) for
high values of T ].

We note that h−(t � 1) − h+(t � 1) = �E − �E2 varies
with �E. Specifically, in the limiting cases �E = 0 and
�E = 1 we find that the difference h−(t � 1) − h+(t � 1) =
0 vanishes and, hence, the system becomes equally likely to
converge into either a state with only low-effort nodes or only
high-effort nodes present [see lower right corner and the shift
of the transition point towards higher T with increasing �E

in Fig. 1(a)].

B. Macroscopic approximation

Abstracting from pairwise microscopic interactions, we
now look at the system from a macroscopic point of view.
Assuming the network to be large and fully connected at first,
the time evolution of the system’s state can be characterized
by rate equations for three quantities: (1) the fraction of
nodes n− with effort level E−, (2) the mean resource stock
μ− = 〈si |Ei = E−〉i of nodes with effort level E−, and (3)
the mean resource stock μ+ = 〈si |Ei = E+〉i of nodes with
effort level E+. The fraction of nodes n+ with effort level E+
follows from n+ = 1 − n−.

The time evolution of n− is governed by nodes that
change from the low to the high effort level and vice versa.
In particular, in the time interval (t,t + dt) an infinitesimal
fraction of dn−→+ (dn+→−) nodes change their effort from
E− (E+) to E+ (E−), which decreases (increases) the fraction
of nodes with low effort n−,

dn− = dn+→− − dn−→+. (3)

The interactions between nodes that govern the rates of
changes in effort are driven by the following quantities:

(1) The expected waiting time T for a node vi to interact
with a randomly drawn neighboring node vj . Correspondingly,
the rate of node interactions is taken to be τ = 1/T .

(2) If a node vi interacts with its neighboring node vj ,
an imitation of effort only takes place if Ei �= Ej . Hence,
for a node vi with Ei = E− (Ei = E+) there is to define a
probability P +

− (P −
+ ) that a randomly drawn neighboring node

vj has Ej = E+ (Ej = E−). Since a large fully connected
network is assumed, this probability is given exactly by the
current fraction n+ (n−) of nodes with high (low) effort E+
(E−) and, hence, P +

− = n+ (P −
+ = n−).

(3) If a node vi with Ei = E− (Ei = E+) interacts with
a neighboring node vj with Ej = E+ (Ej = E−), there is a
probability p−→+ (p+→−) that vi takes up the effort level Ej

of vj . This probability is governed by the difference in harvest
�hij between vj and vi . For the macroscopic description, the
individual pairwise interactions are replaced by aggregated
quantities. Therefore p−→+ (p+→−) is computed as the
expected probability for a node vi with low (high) effort to
adopt the high (low) effort given that it interacts with a node
vj that currently has Ej = E+ (Ej = E−). This quantity is
then dependent on the expected stocks at nodes with low and
high effort, which is derived below in detail.
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This yields dn−→+ and dn+→− as the product of all three
factors introduced above,

dn−→+ = n−τn+p−→+dt, (4)

dn+→− = n+τn−p+→−dt, (5)

⇒ dn−
dt

= τn−n+(p+→− − p−→+). (6)

The two quantities still remaining to be evaluated are the
expected probabilities p+→− (p−→+) for nodes with a high
(low) effort level to change to the opposite level. It is obtained
as the expected probability for nodes in the network to take up
its neighbor’s effort,

p+→− = 〈p(Ej → Ek)|Ej = E+, Ek = E−〉j,k
= 0.5〈tanh(�hjk|Ej = E+, Ek = E−)〉j,k + 0.5
∼= 0.5〈�hjk|Ej = E+, Ek = E−〉j,k + 0.5

= 0.5(E−〈sk|Ek = E−〉k − E+〈sj |Ej = E+〉j ) + 0.5

= 0.5(E−μ− − E+μ+) + 0.5 (7)

p−→+ = 0.5(E+μ+ − E−μ−) + 0.5. (8)

Here we performed a linear expansion of the hyperbolic
tangent, tanh x = x + O(x3), assuming that differences in
harvest remain small.

The time evolution of either of the two average stocks μ−
and μ+ is governed by two terms. First, each individual stock
si follows the logistic growth model and so do the average
quantities. Second, the value of each of the two average stocks
changes according to the fact that the nodes modify their effort
from E− to E+ and vice versa during the time interval (t,t +
dt). This yields

dμ− = d〈sk|Ek = E−〉k
= 〈dsk|Ek = E−〉k
= dt 〈sk(1 − sk) − Eksk|Ek = E−〉k + δ−
= dtμ− − dt〈s2

k |Ek = E−〉k − dtE−μ− + δ−

= dt(μ−(1 − μ− − E−) − μ
(2)
− ) + δ− (9)

dμ+ = dt(μ+(1 − μ+ − E+) − μ
(2)
+ ) + δ+. (10)

Here μ
(2)
− and μ

(2)
+ denote the variances in the two types

of stocks. δ− (δ+) indicate the net change in the average
stock as nodes with high (low) effort change their effort to
the opposite choice during (t,t + dt). The fraction of nodes
dn+→− (dn−→+) that change their effort from E+ to E− (E−
to E+) during (t,t + dt) is assumed to be small compared
to the fraction of nodes which already hold the low (high)
effort, dn+→− � n− (dn−→+ � n+). Hence, the respective
contribution to the dynamics of μ− (μ+) as nodes change
their effort is also assumed to be small, dn+→−μ+ � n−μ−
(dn−→+μ− � n+μ+). This allows for a first-order expansion
of the stock’s time evolution, such that

μ− + δ− = (n− − dn−→+)μ− + dn+→−μ+
n− − dn−→+ + dn+→−

∼= (n− − dn−→+)μ− + dn+→−μ+
n− − dn−→+ + dn+→−

∣∣∣∣
(dn−→+,dn+→−)=(0,0)

+ −μ−(n− − dn−→+ + dn+→−) + ((n− − dn−→+)μ− + dn+→−μ+)

(n− − dn−→+ + dn+→−)2

∣∣∣∣
(dn−→+,dn+→−)=(0,0)

dn−→+

+ μ+(n− − dn−→+ + dn+→−) − ((n− − dn−→+)μ− + dn+→−μ+)

(n− − dn−→+ + dn+→−)2

∣∣∣∣
(dn−→+,dn+→−)=(0,0)

dn+→−

= n−μ−
n−

+ −μ−n− + n−μ−
n2−

dn−→+ + μ+n− − n−μ−
n2−

dn+→− = μ− + μ+ − μ−
n−

dn+→− (11)

⇒ δ− = (μ+ − μ−)n+τp+→−dt (12)

δ+ = (μ− − μ+)n−τp−→+dt. (13)

Putting this back into (9) and (10) yields

dμ− = dt(μ−(1 − μ− − E−) − μ
(2)
− ) + dt(μ+ − μ−)n+τp+→− (14)

dμ+ = dt(μ+(1 − μ+ − E+) − μ
(2)
+ ) + dt(μ− − μ+)n−τp−→+. (15)

In the scope of this work, in to order to close the set of equations that describe the systems dynamics, we assume the respective
variances μ

(2)
− and μ

(2)
+ to vanish. Taking into account higher moments in the dynamics of the stocks and investigate its influence

on the resulting fixed points remains as a task for future research.
In summary, we find a set of three coupled ordinary differential equations that define the time evolution of the static network

model:
dn−
dt

= τn+n−(p+→− − p−→+) (16)
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dμ−
dt

= μ−(1 − μ− − E−) + τ (μ+ − μ−)n+p+→− (17)

dμ+
dt

= μ+(1 − μ+ − E+) + τ (μ− − μ+)n−p−→+. (18)

C. Fixed points and stability

We obtain all fixed points Pi = (n−0,μ−0,μ+0) of the dynamical system given in Eqs. (16)–(18) as:

P1 =
(

n−0 = 0, μ−0 = 1 − E− − 0.5τ

1 + 0.5τE−
, μ+0 = 0

)
, (19)

P2 =
(

n−0 = 1, μ−0 = 0, μ+0 = 1 − E+ − 0.5τ

1 + 0.5τE+

)
, (20)

P3 =
[
n−0 =

2
(
E− 1−0.5τ

E−+E+
+ E+ − 1

)
τ
(

E+
E−

− 1
) , μ−0 = E+

1 − 0.5τ

E− + E+
, μ+0 = E−

1 − 0.5τ

E− + E+

]
, (21)

P4 =
⎡
⎣n−0 = 1, μ−0 = 1 − E−, μ+0 = −b

2a
+

√(
b

2a

)2

+ c

a

⎤
⎦ , (22)

P5 =
⎡
⎣n−0 = 1, μ−0 = 1 − E−, μ+0 = −b

2a
−

√(
b

2a

)2

+ c

a

⎤
⎦ , (23)

a = 0.5(−2 − E+τ )

b = 1 − E+ + 0.5τ [(1 − E−)E+ + E− − E2
− − 1]

c = 0.5τ (1 − E−)(E− − E2
− − 1).

In addition, there exists a manifold which also satisfies dn−
dt

= dμ−
dt

= dμ+
dt

= 0 and is defined by

Pα = (n−0 = α, μ−0 = 0, μ+0 = 0), α ∈ [0,1]. (24)

For all fixed points given above we compute the largest eigenvalue λ1 of the corresponding Jacobian matrix evaluated at the
respective point. Only the two fixed points P3 and P4 have a negative largest eigenvalue λ1 < 0 and, hence, are stable for choices
of parameters �E and T > 0.5 (note that, again, E− = 1 − �E, E+ = 1 + �E, and τ = 1/T ) (Fig. 2).

To investigate the system’s dynamics in the regime T < 0.5, the stability on the one-dimensional manifold defined by all
points that fulfill Eq. (24) is assessed. Analytically computing the three eigenvalues of the Jacobian matrix on the manifold as a
function of the parameter α yields

λ0 = 0, (25)

λ±(α) = 1 − E+ + E−
2

− τ

4
± 1

2

√
2αE+τ − 2αE−τ + E2+ − 2E+E− − E+τ + E2− + E−τ + τ 2

4
. (26)

A first observation is that λ+(α) � λ−(α) holds. Since λ0 = 0,
it is obvious that not all eigenvalues can be negative. However,
if λ0 = 0 is the largest eigenvalue of the system, all choices of
α for which λ+(α) � λ0 define a center manifold,

λ+(α) � 0 if α � 1
2 − T �E. (27)

Hence,

ν(α) = (n−0 = α,μ−0 = 0,μ+0 = 0)

α ∈ [
0, 1

2 − T �E
]

(28)

defines a center manifold where the system’s stability cannot
be assessed by linear stability analysis. A detailed study of
the system’s stability in this regime is beyond the scope
of this work and not necessarily needed to understand the
general dynamics of the macroscopic description proposed
here. Numerically integrating the system for choices of
parameters taken from the center manifold, however, reveals
good agreement between the microscopic and macroscopic
model representation (Fig. 1). An investigation by means of a
higher-order stability analysis might yield further insights into
the processes that cause both resource stocks μ−0 = μ+0 = 0
to be fully depleted in the regime of the center manifold.

052801-5



WIEDERMANN, DONGES, HEITZIG, LUCHT, AND KURTHS PHYSICAL REVIEW E 91, 052801 (2015)

(a) (b)

(c) (d)

FIG. 2. (Color online) The largest eigenvalue λ1 for the two fixed
points P3 (a) and P4 (c) [see also Eqs. (21) and (22)] depending on
�E and T . The black area in (b) indicates the domain in parameter
space for which λ1 computed for P3 is negative and, hence, P3 is
stable. (d) shows the same properties for P4. The regimes for which
either of the two fixed points is stable are complementary. Further
it should be noted that for T < 0.5 neither of the two fixed points
is stable, but the center manifold as given in Eq. (28) exists in this
regime.

In conclusion, we note that for each choice of parameters
only one of the fixed points P3 and P4 can be the unique stable
fixed point of the system (Fig. 2). Figure 1(b) displays the value
of the stable fixed point’s n−0 component as a function of T

and �E. The results are in good agreement with the numerical
findings [Fig. 1(a)]. Due to the first-order approximation, the
transition from a predominance of nodes with E+ to nodes
with E− with increasing T is not as sharp as for the numerical
simulations. However, a good estimate for the critical value Tc

of T at which the transition takes place can be found by setting
n−0(Tc) = 0.5 in Eq. (21) which yields Tc(�E) = 1+�E2

2−2�E2

(dashed line in Fig. 1).

IV. ADAPTIVE NETWORK

In the following, we consider additionally network adapta-
tion processes with φ > 0 [hence, modeling steps (ii)(a) and
(ii)(b) both take place with a relative frequency depending on
the rewiring probability φ]. For all results presented from here
onward, the two available choices of effort levels are fixed by
setting �E = 0.5.

A. Numerical simulations

Numerical simulations with the same initial conditions
as in the static case for different combinations of φ and
T reveal a division of the parameter space into regimes of
different expected outcomes as the model reaches its steady
state [Fig. 3(a)]. In contrast to the static case nodes no longer
necessarily all carry the same effort as the model reaches its
equilibrium state, due to the possibility for the network to
fragment into smaller components. Hence, from now on f−(tf )
denotes the mean fraction of nodes with effort level E− as the
model reaches consensus. As for φ = 0, fast interactions (i.e.,

(a) (b)

FIG. 3. (Color online) (a) Mean fraction of nodes f−(tf ) with
effort level E− = 1 − �E = 0.5 for different choices of T and φ

obtained from an ensemble of n = 500 simulations as the system
reaches its steady state. (b) Value of the stable fixed point for the
fraction of nodes with effort level E− computed from the set of
differential equations (59)–(63).

low values of T ) lead to a large fraction of nodes carrying
E+. The transition between the two behavioral patterns with
increasing T remains sharp. However, depending on the choice
of φ, the value of the critical waiting time Tc, at which the
system transfers from a state with a predominance of nodes
with low effort to a state with a predominance of nodes
with high effort decreases with increasing φ. Conversely, this
implies that for all T � 0.3 there is an appropriate choice of
φ ∈ [φc1 ,φc2 ] so that all nodes are likely to adopt the effort level
E−. In the limiting case of φ = 1 the expected fraction of nodes
with E− equals the initial fraction n−(0) = 0.5 for all choices
of T due to the network’s fragmentation into components of
nodes sharing the same effort.

B. Macroscopic approximation

The macroscopic approximations (16)–(18) can be ex-
tended to also include the effects of network rewiring. For
this, we introduce two additional variables describing the
macroscopic state of the network. The time evolution of the
fraction of nodes n− with low effort is recalled [analogously
to Eq. (6)] as

dn−
dt

= τ (n+P −
+ p+→− − n−P +

− p−→+). (29)

Given that a node vi initializes an interaction and the randomly
drawn neighboring node vj employs a different effort, Ei �=
Ej , there exists the adaptive rewiring probability φ ∈ [0,1]
for vi to break its connection with vj and establish a link
with another randomly drawn node vk in the network that
is employing the same effort as vi (Ek = Ei) and is not yet
connected to node vi . With probability 1 − φ, imitation of
efforts takes place which has already been implemented in the
macroscopic description of the static network. To account for
the adaptive rewiring process, the interaction rate τ needs to
be refined such that it no longer represents the rate of node
interactions alone, but the rate of interactions which lead to
imitation,

τ = 1 − φ

T
. (30)
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Likewise the ratio ρ of all node interactions that lead to
adaptive rewiring needs to be defined. Since each node is
expected to interact at a rate 1/T it follows that

ρ = φ

T
. (31)

For adaptive rewiring to take place, the network cannot be fully
connected. Therefore, the previous definitions of P −

+ = n− and
P +

− = n+ for two nodes of different effort to interact no longer
hold for the derivations to be performed here.

The total number of M links in the network splits into M−
(M+) links connecting two nodes with low (high) effort and
M+− links connecting two nodes of different efforts, such that

M = Nk

2
= M− + M+ + M+− (32)

⇒ dM

dt
= dM−

dt
+ dM+

dt
+ dM+−

dt
= 0. (33)

Additionally, let

K−
− = 2M−

N−
(34)

denote for nodes with low effort the average number of
neighbors with the same effort. Likewise,

K+
− = M+−

N−
(35)

represents for nodes with low effort the average number of
neighbors with high effort. These two quantities constitute the
average degree of nodes with low effort as

K− = K−
− + K+

− = M+− + 2M−
N−

. (36)

Likewise, the average degree K+ of nodes with high effort is
obtained from

K+
+ = 2M+

N+
, (37)

K−
+ = M+−

N+
, (38)

K+ = M+− + 2M+
N+

. (39)

For a node vi currently having a low effort Ei = E− the
probability P +

− (vi) to draw a neighbor vj with different effort
at random is given as

P +
− (vi) = k+

−(vi)

k(vi)
, (40)

where k+
−(vi) is the number of neighbors of node vi that

employ the high effort and k(vi) denotes the degree of
node vi . Since for the macroscopic description the pairwise
microscopic interactions between nodes are approximated by
the average dynamics, we compute the average probability
P +

− for a node vi with low effort to interact with a node
employing the high effort. Since the network is initialized
as an Erdős-Rényi random network and it is further equally
likely for all nodes with the same effort to connect to or
disconnect from other nodes by random rewiring, we perform

a heterogeneous mean-field approximation and assume the
degree k(vi) to be the same for all nodes with low effort,
k(vi) = K− ∀ i ∈ {1, . . . ,N |Ei = E−} [31,32]. Thus

P +
− = 〈P +

− (vi)|Ei = E−〉i =
〈
k+
−(vi)

k(vi)

∣∣∣∣ Ei = E−

〉
i

=
〈
k+
−(vi)

K−

∣∣∣∣Ei = E−

〉
i

= K+
−

K−

= M+−
2M− + M+−

. (41)

Instead of the actual number of M links in the network we
define the corresponding per node link density

m = M

N
= M+−

N
+ M−

N
+ M+

N

= k

2
= m+− + m− + m+, (42)

which is independent of the number of nodes N . k denotes the
average degree of nodes in the network, which is set to k = 20
in accordance with the numerical simulations. The probability
for a node with low (high) effort to interact with a node of high
(low) effort is then given by

P +
− = m+−

2m− + m+−
, (43)

P −
+ = m+−

2m+ + m+−
, (44)

and is fully determined by the per node densities of links m+−,
m+, and m−.

Generally, the time evolution of the total number of links
between nodes of low effort is governed by imitation and
adaptation. First, we focus on the process of adaptation. Since
links between nodes of the same effort can only be established
but not removed via the process of adaptation, the contribution
of this process to the total number of links between low-effort
nodes M− only causes it to increase. This positive contribution
is

dM−
dt

∼ ρN−P +
− (45)

and is explained as follows: In each time interval (t,t + dt)
there is a total number of N− nodes which with probability ρ

initiate an interaction that leads to adaptive rewiring. Adaptive
rewiring then takes place if a randomly drawn neighbor vj

of the considered node vi employs a high effort. As defined
above, this happens with probability P +

− .
The second contribution to the time evolution of M− is

given by imitation, which takes place at rate τ . Generally, there
is one term causing an increase in links between nodes with
low effort and one term causing its decrease. First, assume
a node vi with Ei = E+ to imitate the low effort E− from
one of its neighboring nodes vj with Ej = E−. The number
of links between nodes of low effort then increases by the
number k−

+(vi) of all neighbors of node vi that employ the low
effort (Fig. 4). Again, by performing a heterogeneous mean-
field approximation and assuming the number of neighbors for
individual nodes to be represented by the respective average
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FIG. 4. (Color online) Illustration of the influence of the imita-
tion of effort on the different numbers of link types in the network.
A node vi with the high effort Ei = E+ [indicated in yellow (light)]
interacts with a node vj with low effort Ej = E− [red (dark)]. Node
vi may then imitate the effort of node vj , Ei → E−. The number of
links between nodes with low (high) effort M− (M+) then increases
(decreases) by the number k−

+(vi) [k+
+(vi)] of neighbors of vi that

show the low (high) effort.

number of neighbors, we set

k−
+(vj ) = K−

+ = M+−
N+

. (46)

Now, each of the N+ nodes with high effort interacts with a
node of low effort with probability P −

+ at rate τ . Then, with
probability p+→−, a node with high effort takes up the low
effort. This causes the number of links between pairs of nodes
with low effort to increase by the number of neighbors with
low effort of the formerly high-effort node,

dM−
dt

∼ τN+P −
+ p+→−K−

+ . (47)

A third term that governs the time evolution of M− is given
by its decrease caused by nodes with low effort that imitate the
high effort. If a node vi with the low effort Ei = E− interacts
with a node vj having the high effort Ej = E+ and vi then
imitates the effort of vj , the total number of links connecting
two nodes with low effort decreases by the number of vi’s
neighbors vk that are showing the low effort Ek = E− as well.
Following from an analogous argument as given above, this
number is given by k−

−(vi). Again we assume the number of
neighbors vk with Ek = E− of a node vi with Ei = E− to be
approximated by its average,

k−
−(vj ) = K−

− = 2M−
N−

. (48)

With rate τ each of the N− nodes with low effort interacts with
a node showing the high effort E+ with probability P +

− . With
probability p−→+ a node with low effort imitates the high
effort which causes a decrease in M− by the average number
of low-effort neighbors K−

− of the node that is imitating the
high effort,

dM−
dt

∼ −τN−P +
− p−→+K−

− . (49)

Putting together Eqs. (45), (47), and (49) gives the time
evolution of the number of links between nodes of low effort
as

dM−
dt

= τ (N+P −
+ p+→−K−

+ − N−P +
− p−→+K−

− )

+ ρN−P +
− . (50)

Plugging the definitions of K−
− [Eq. (34)] and K−

+ [Eq. (38)]
into Eq. (50) and normalizing with the total number of nodes
N yields the time evolution of the per node density of links
between nodes of low effort,

dm−
dt

= τ (P −
+ p+→−m+− − 2P +

− p−→+m−) + ρn−P +
− ,

(51)

which is again independent of N . Due to the symmetry of the
system, the time evolution of the per node density m+ of links
between nodes with high effort then immediately follows as

dm+
dt

= τ (P +
− p−→+m+− − 2P −

+ p+→−m+) + ρn+P −
+ .

(52)

For the time evolution of the average stock of nodes with
low and high effort μ− and μ+ we already found in Eqs. (9)
and (10) that

dμ− = dt(μ−(1 − μ− − E−) − μ
(2)
− ) + δ−, (53)

dμ+ = dt(μ+(1 − μ+ − E+) − μ
(2)
+ ) + δ+. (54)

The general forms of δ− and δ+ are [see Eq. (12) and (13)]

δ− = μ+ − μ−
n−

dn+→−, (55)

δ+ = μ− − μ+
n+

dn−→+. (56)

For the case of an adaptive network, dn+→− (dn−→+) is given
by the first (second) term in Eq. (29):

δ− = μ+ − μ−
n−

τn+P −
+ p+→−, (57)

δ+ = μ− − μ+
n+

τn−P +
− p−→+, (58)

with the probabilities P +
− and P −

+ [Eqs. (43) and (44)] as
defined above and p+→− and p−→+ being the same as for the
static model [Eqs. (7) and (8)].

To summarize, the set of five coupled differential equations
that represent the adaptive network model’s macroscopic
dynamics is given as

dn−
dt

= τ (n+P −
+ p+→− − n−P +

− p−→+), (59)

dm−
dt

= τ (P −
+ p+→−m+− − 2P +

− p−→+m−) + ρn−P +
− ,

(60)

dm+
dt

= τ (P +
− p−→+m+− − 2P −

+ p+→−m+) + ρn+P −
+ ,

(61)

dμ−
dt

= μ−(1 − μ− − E−) + τ
n+
n−

(μ+ − μ−)P −
+ p+→−,

(62)

dμ+
dt

= μ+(1 − μ+ − E+) + τ
n−
n+

(μ− − μ+)P +
− p−→+.

(63)
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It is important to note that in most previous works on adaptive
networks a closed set of macroscopic equations is obtained
by assuming that links in the network are drawn at random
and interactions take place between nodes that are connected
by them [6,33]. In this work nodes, not links, are randomly
drawn and initiate an interaction with neighboring nodes. This
subtle difference changes the effective time scale of the system.
Specifically, in our model only a maximum of N out of all M

links are affected by interactions between nodes during the
same time as all M links would be considered if interactions
take place by randomly drawing links in the network. In other
words, in our model it takes M/N times longer to achieve the
same number of updates, as one would obtain by considering
per-link interactions.

For the above system, the stable fixed point’s n−0 compo-
nent can be obtained numerically for different combinations of
φ and T [Fig. 3(b)]. The results are again in good agreement
with the numerical simulations and imply that for every
choice of T > 0 there actually exists an appropriate choice
of φ ∈ [φc1 ,φc2 ] so all nodes are likely to adopt the effort
level E−. The lower bound of the optimal rewiring probability
φc1 can be obtained by utilizing Eq. (21) and the linear
relationship between φc1 and T for a fixed rate of social
updates τ that lead to imitation as given in Eq. (30). We thus
find φc1 (T ,�E) = φc2 (1 − 2−2�E2

1+�E2 T ) ∀ 0 < T < 1+�E2

2−2�E2 and
φc1 (T ,�E) = 0 otherwise. The upper bound φc2 at which the
network fragments is obtained from a numerical bifurcation
analysis as φc2 ≈ 0.89. The result is in good agreement with
previous findings on the fragmentation threshold in adaptive
networks for similar average degree k [34,35]. We find,
however, that the computed fragmentation threshold φc2 is
larger than what is expected from the numerical simulations
[Fig. 3(a)]. This can either be due to the fact that moment
closure as well as mean-field approximations are known to
provide only rough estimates of the fragmentation threshold
[33] or because finite-size effects in the numerical simulations
cause the system to fragment for smaller values of φ than it
would be expected for the limiting case N → ∞ that is con-
sidered in the macroscopic approximations. A more detailed
study of the network fragmentation and the corresponding
threshold φc2 is a subject of future research.

C. Consistency between approximations

To illustrate the consistency of the set of differential
equations describing the static setting (16)–(18) and the
adaptive case (59)–(63), we set φ = 0 in the latter, compute
its fixed points numerically and compare them with the static
setting’s fixed points (21) and (22). Figures 5(a)–5(c) show the
different components of the stable fixed points as a function of
the control parameter T for a fixed �E = 0.5. The components
n−0, μ+0, and μ−0 align perfectly well for the static and the
adaptive case. The gray shaded area in Fig. 5(a) indicates the
center manifold (28) for which the system’s stability cannot
be assessed by standard linear stability analysis. However,
numerically integrating the set of differential equations yields
the expected behavior of n−(0) → 0 as T → 0. Figure 5(d)
displays again the n−0 component of the adaptive model’s
stable fixed point for φ = 0 and different combinations of T

and �E. The results match those of Fig. 1(b). Hence, the

(a)

(b)

(c)

(d)

FIG. 5. (Color online) [(a)–(c)] The dependence of the adaptive
(solid lines) and static model’s (transparent scatter) stable fixed point
on the expected waiting time T for fixed parameters φ = 0 and �E =
0.5. (d) The adaptive model’s stable fixed point’s n−0 component
indicating the fraction of nodes with effort E− in the consensus state
as a function of the two parameters T and �E for φ = 0. The dashed
line indicates the value of the critical waiting time Tc obtained from
the set of differential equations (16)–(18).

system of dynamic equations (59)–(63) can be interpreted as
a consistent generalization of Eqs. (16)–(18).

V. CONCLUSIONS

We have introduced a model to describe emerging structure
formation from the interplay of dynamics of and on networks
manifested by the coevolution of social dynamics on the
one hand and resource dynamics on the other hand. An
adaptive voter model has been coupled to a set of logistic
growth models, such that the state of the dynamic variables
influences the imitation (i.e., social trait adoption) processes
in the underlying social network which take place according to
differences in harvest or payoff. We have derived rate equations
for the system’s macroscopic variables and demonstrated that
the resulting system of differential equations yields stable fixed
points which are in good agreement with the results from
numerical simulations.

Our paradigmatic example illustrates that the interplay
between both types of network dynamics gives rise to a variety
of new phenomena, which have not been observed so far when
only studying either of the two aspects. We have mainly found
that the rate of interactions in the network determines the
expected linear stability of the growth model’s fixed points.
However, for each choice of interaction rate there exists an
appropriate range of the adaptive rewiring frequency so that
the expected fraction of, e.g., nodes with effort E− can be
maximized. Notably, the subset of differential equations (59)–
(61) provides a general description of imitation and adaptation
dynamics on a social network with binary states of nodes and
symmetric imitation rules. Hence, it is applicable to study
many other problems as long as the imitation probabilities
p−→+ and p+→−, which do not have to be constant for all
times, are chosen appropriately.

The proposed model also raises questions that need to be
addressed in future research. In the course of the macroscopic
approximation we have assumed all moments of higher order
in stocks and network structure to vanish such that the set of
differential equations could be closed. The results have been
shown to be in good agreement with numerical simulations.
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However, a more in-depth analysis of whether the inclusion of
higher-order moments would enable us to reproduce the steep
transition between the two regimes of predominance of low-
or high-effort nodes remains a relevant research questions.
We also aim to estimate more thoroughly the critical waiting
time Tc at which the observed phase transition takes place
and therefore investigate the expected time at which the low
effort provides more harvest than the high effort given that
no interaction between the nodes took place so far. Finally,
we aim to obtain data from agricultural studies on, e.g., water
usage or harvest exploitation of resources to test the findings
and insights that we have obtained from our coevolutionary
model with respect to real-world phenomena.
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[12] G. Szabó and C. Tőke, Evolutionary prisoner’s dilemma game
on a square lattice, Phys. Rev. E 58, 69 (1998).

[13] A. Traulsen, D. Semmann, R. D. Sommerfeld, H.-J. Krambeck,
and M. Milinski, Human strategy updating in evolutionary
games, Proc. Natl. Acad. Sci. USA 107, 2962 (2010).

[14] P. Ji, Thomas K. DM. Peron, P. J. Menck, F. A. Rodrigues, and
J. Kurths, Cluster explosive synchronization in complex net-
works, Phys. Rev. Lett. 110, 218701 (2013).

[15] A. Arenas, A. Dı́az-Guilera, J. Kurths, Y. Moreno, and C.
Zhou, Synchronization in complex networks, Phys. Rep. 469,
93 (2008).

[16] R. Perman, Natural Resource and Environmental Economics
(Pearson Education, Harlow, 2003).

[17] H. J. Schellnhuber, Discourse: Earth System analysis—The
scope of the challenge, in Earth System Analysis (Springer,
Berlin, 1998), pp. 3–195.

[18] H. J. Schellnhuber, ‘Earth system’ analysis and the second
Copernican revolution, Nature 402, C19 (1999).

[19] S. J. Lade, A. Tavoni, S. A. Levin, and M. Schlüter, Regime
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