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Possible role of electrodynamic interactions in long-distance biomolecular recognition
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The issue of retarded long-range resonant interactions between two molecules with oscillating dipole moments
is revisited within the framework of classical electrodynamics. By taking advantage of a theorem in complex
analysis, we present a simple method to calculate the frequencies of the normal modes, which are then used to
estimate the interaction potential. The possibility that such interactions play a non-negligible role in ensuring
the effective functioning of the biomolecular functions is investigated. On the basis of experimental results
reported in the literature and simple numerical estimates, it is found that long-range interactions involving
electromagnetic fields of frequencies 0.1–1 THz could be temporarily activated despite radiation losses and
solvent dissipation. Moreover, the theoretical background used to derive the mentioned interactions sheds light
on Fröhlich’s theory of selective long-range forces between biomolecules. At variance with a long-standing belief,
we show that sizable resonant long-range interactions may exist only if the interacting system is out of thermal
equilibrium.
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I. INTRODUCTION

For several decades now, understanding biomolecular dy-
namics and general mechanisms of protein-protein or protein-
DNA recognition has become a diverse and fascinating topic
which still generates much interest in the biophysics commu-
nity. Not only does this area of research seem unavoidable
to explain the characteristic synergy within most biological
organisms but it can also be applied, e.g., to investigate
the microscopic origin of infectious diseases as well as to
the design of new drugs whose efficiency depends on how
fast the synthesized proteins find their biological target [1].
When dealing with biomolecular recognition, it is suitable to
distinguish between the phase during which (globular) proteins
need to find their target while freely moving within the aqueous
biological environment (three-dimensional diffusion) and the
phase when the protein and its target, which have finally arrived
in each other’s vicinity, are in close contact. The latter is
characterized by orientational and conformational adjustments
of the biomolecules so that a biochemical reaction can
eventually take place between them. At this stage, molecular
motions are mainly governed by chemical forces of short-range
nature (hydrophilic or hydrophobic interactions, van der Waals
forces, covalent bonds, etc.) besides the traditional Brownian
motion due to thermal fluctuations. Accurate information
regarding the electrostatic charge distribution is needed to
describe the dynamics and to estimate the associated rate
constants. As far as the run-up to molecular encounter is
concerned, the detailed topology of the molecules involved
becomes irrelevant as the protein and its target are supposed
to be far enough from one another. From a point of view of
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the dynamics, intermolecular electrostatic interactions might a
priori play a role as those interactions are inherently of a long-
range kind. However, cell cytoplasm contains considerable
amounts of small ions which tend to screen any static electric
charges at short range. The Debye length is typically smaller
than 10 Å in cellular media. Even though the electrostatic
field is screened at short distance, Debye screening turns out
to be ineffective for electric fields oscillating at large enough
frequencies. Oro showed experimentally that an electrolyte
such as cell cytoplasm behaves like a pure dielectric (i.e.,
free of conducting properties) when acted upon by an electric
field with frequencies larger than 250 MHz [2]. Such a
threshold frequency was originally identified by Maxwell
through analytical arguments in his Treatise on Electricity and
Magnetism [3]. In any case, this suggests that electrodynamic
intermolecular forces, i.e., forces between molecules carrying
oscillating charges, might influence the encounter dynamics of
biological cognate partners. Further theoretical investigations
of these forces are required to probe their real contribution in
a cellular environment.

Long-distance electrodynamic forces between two neutral
atoms or small molecules have been broadly investigated in
quantum electrodynamics (QED) [4]. Those forces typically
arise when one of the atoms is in an excited state, and
the transition frequencies of both atoms are similar. In
quantum terms, this corresponds to the so-called exchange
degeneracy which requires that the atoms remain in a quantum
entangled state so that a net attraction (or repulsion) takes
place [4]. Entangled states are very fragile, and, especially in a
biological context, their existence over long distances could be
questioned because of the noisy cellular environment. Thus,
it is worth investigating long-distance interactions between
biomolecules on a classical electrodynamics basis.

In the present paper, we show that, similarly to QED,
attractive or repulsive long-distance electrodynamic interac-
tions can be activated in conditions of classical resonance
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(see Sec. II). Off-resonance conditions lead to short-distance
interactions. While quantum electrodynamic interactions are
attributed to instantaneous dipole moments resulting from
electronic transitions of the atoms, dipole moments involved
in the classical limit are due to conformational molecular
vibrations. Numerical estimates of resonant and nonresonant
forces in a biological environment, taking into account the
effects of radiation losses and solvent dissipation (viscosity,
absorbance), are performed in Sec. III. We report possi-
ble physiological sources of energy that might trigger the
mentioned forces and, by referring to recent experimental
results—including terahertz detection of vibration modes of
proteins, absorbance of biological tissues—we discuss why
low-frequency electromagnetic signals can be momentarily
sustained despite biological dissipation mechanisms. In such
context, the water molecules surrounding the biomolecular
structures should play an active role as suggested by recent
experiments, especially to contribute and preserve dipolar
protein vibrations. Due to the resonant nature of the forces,
i.e., giving rise to long-range interactions only if the molecular
structures involved vibrate at similar frequencies, attraction or
repulsion between specific biological entities may exist thus
creating order in a cellular environment over distances much
larger than molecular dimensions.

In other words, there are reasons based on physical first
principles to assign an essential role to an electromagnetic
communication among biomolecules to account for the afore-
mentioned highly efficient pattern of biochemical reactions in
cells. This possibility has been hitherto overlooked, mainly
because of two reasons. On the one hand, in the framework
of short-range shape or dynamic complementarity (lock and
key and induced fit) between cognate molecular partners,
diffusion-driven random encounters between biomolecules
seemed a natural and sufficient explanation. On the other
hand, even though the idea of long-distance electromagnetic
interactions between macromolecules has been sometimes
surmised by physicists, the absence of any experimental
strategy to convincingly detect their actual activation has
marginalized this hypothesis. In this respect this work is
motivated by the present day feasibility of experimental tests
to assess whether such interactions could be relevant at the
biomolecular level [5–7], hence the need for a thorough
revisitation of the theoretical framework.

Based on apparently standard computations of classical
electrodynamics, our present work resorts to a powerful
inversion theorem in complex analysis and results in non-
trivial development of a fascinating theory pioneered by
Fröhlich [8–11] shedding light on some of its former results.
In particular, we show that a commonly accepted result at
thermal equilibrium is incorrect, that is, an electrodynamic
interaction potential proportional to −1/r3 (with r denoting
the intermolecular distance) can be activated only out of
thermal equilibrium. Moreover, additional interaction terms
proportional to −1/r2 and −1/r , both modulated in space, are
found as field retardation effects; such terms are well known in
QED, though the spatial modulation is still controversial, but in
our classical framework these interaction terms are not associ-
ated with entanglement, as is the case with QED. A preliminary
account of some of the results reported here was given in
Ref. [12].

II. ELECTRODYNAMIC INTERACTIONS IN CLASSICAL
PHYSICS

In order to assess whether electrodynamic interactions may
play a sizable role in the organization of biomolecular reac-
tions, in particular, by facilitating encounters of biomolecular
cognate partners over long distances, the following sections
are devoted to the investigation of classical electrodynamic
interactions between two oscillating molecular dipoles. We
focus on resonant properties of these interactions so that a
particular biomolecule would be only attracted by its specific
target, and not by other neighboring biomolecules. Field
retardation effects are also taken into account.

A. Equations of motion

The far-field electrodynamic interactions between molec-
ular systems mainly involve their dipole moments, that is,
multipolar contributions can be neglected. Hence, we consider
a simple system of two molecules A and B with dipole
moments μA and μB oscillating with harmonic frequencies ωA

and ωB , respectively. The corresponding equations of motion
are written in the following general form:

μ̈A + γAμ̇A + ω2
AμA = ζA EB(rA,t) + f A(μA,t)

μ̈B + γBμ̇B + ω2
BμB = ζB EA(rB,t) + f B(μB,t). (1)

Since we have adopted the dipole approximation, the
interaction between molecules is mediated by the electric field
EA,B(r,t) created by each dipole, here located at r = rB,A.
Related coupling constants are ζA = Q2

A/mA, where QA and
mA are the effective charge and mass of dipole A, respectively,
and ζB with a similar B-labeled expression. Other quantities
are the damping coefficients γA,B of the dipoles representing
radiation losses, and functions f A,B that describe, from a
general point of view, possible anharmonic contributions of
each dipole as well as possible external excitations.

Our goal here is to estimate the mean interaction energy
of the system given by Eqs. (1). To proceed, we calculate
its normal frequencies; starting from the associated harmonic
conservative system:

μ̈A + ω2
AμA = ζA EB(rA,t)

μ̈B + ω2
BμB = ζB EA(rB,t) (2)

the normal frequencies are defined as the frequencies ωN such
that μA,B(t) = μA,BeiωN t are solutions of Eqs. (2). In order
to get ωN , expressions of EA,B(r,t) are computed explicitly.
The computation of the electromagnetic field generated by an
oscillating dipole is detailed in Appendix A. We assume that
the dipole moment μ in Eq. (A10) oscillates harmonically
at frequency ωN , i.e., μ = μA,Bδ(ω − ωN ). Substituting this
relation into Eq. (A10), we get after inverse Fourier transform

EB(rA,t) = χ(r,ωN )μBeiωN t , (3)

where r = |rA − rB | is the intermolecular distance; an analo-
gous expression is given for EA(rB,t). Here χ (r,ω) represents
the susceptibility matrix of the electric field and is derived in
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Appendix A [Eq. (A12)]. For ω ∈ C, one has

χ11(r,ω) = χ22(r,ω) = −e±iω
√

ε(ω)r/c

ε(ω)r3

×
(

1 ∓ iω
√

ε(ω)r

c
− ω2ε(ω)r2

c2

)
, (4a)

χ33(r,ω) = 2e±iω
√

ε(ω)r/c

ε(ω)r3

(
1 ∓ iω

√
ε(ω)r

c

)
, (4b)

with χij (r,ω) = 0 when i �= j ; the ± sign is attributed to
positive or negative values of Im(ω

√
ε(ω)), respectively. We

remark again that the diagonal form of χ is due to the
choice to set the z axis along r . For real values of ωN , each
element χii(r,ωN ) of χ (r,ωN ) is a complex number whose
imaginary part accounts for the dissipation due to the field
propagation [13]. Then, since in computing normal frequencies
one drops dissipation effects, only the real parts of each
element of χ , denoted by χ ′

ii , are considered in what follows.
By substituting into Eq. (2) the assumed harmonic forms

for μA,B(t) and using Eq. (3), one obtains(
ω2

A − ω2
N

)
μA,i = ζAχ ′

ii(r,ωN )μB,i(
ω2

B − ω2
N

)
μB,i = ζBχ ′

ii(r,ωN )μA,i (5)

The existence of solutions of system (5) is ensured by the
vanishing of its determinant, i.e., (ω2

A − ω2
N )(ω2

B − ω2
N ) −

ζAζB[χ ′
ii(r,ωN )]2 = 0. After trivial algebra, we get for each

i two possible solutions for ω2
N that we call ω2

i,+ and ω2
i,−;

these satisfy

ω2
i,± − 1

2

{(
ω2

A + ω2
B

)
±

√(
ω2

A − ω2
B

)2 + 4ζAζB[χ ′
ii(r,ωi,±)]2

} = 0. (6)

By computing the normal frequencies ωi,± of the sys-
tem (2), we can rewrite it as a system of six uncoupled har-
monic oscillators of frequencies ωi,±, i = 1,2,3 and energies
Ei,± = ωi,±Ji,±, with Ji,± the action constants depending on
initial conditions. In Eq. (6), ωi,± is given in a complicated
implicit way. Explicit approximate expressions for ωi,± are
needed to compute the energy and then the interaction energy
of the system of dipoles. In particular, we will see that the
range of the interaction is strongly dependent on whether the
dipoles oscillate at similar frequencies or not.

B. Off-resonance case

When ωA � ωB (or when ωA � ωB), Eq. (6), for all i,
becomes, at lowest order,

ω2
i,± − 1

2

{(
ω2

A + ω2
B

) ± (
ω2

A − ω2
B

) (
1 + 2ζAζB[χ ′

ii(r,ωi,±)]2(
ω2

A − ω2
B

)2

)}
	 0,

which leads to

ω2
i,± − ω2

A,B ∓ ζAζB[χ ′
ii(r,ωi,±)]2

ω2
A − ω2

B︸ ︷︷ ︸
�i,±(r,ωi,±)

= 0 , where ωA,B means

⎧⎨
⎩

ωA for ωi,+

ωB for ωi,−
. (7)

In Appendix B, we show how to solve the above equation by resorting to theorems of complex analysis including the Lagrange
inversion theorem and Rouché’s theorem. At the lowest order, the frequencies of the normal modes are given by the following
formula:

ωi,±(r) 	 ωA,B ± ζAζB(χ ′
ii(r,ωA,B))2

2ωA,B

(
ω2

A − ω2
B

)︸ ︷︷ ︸
	ωA,B,i(r)

. (8)

The normal frequencies are equal to the frequencies of the dipole ωA,B plus a shift due to the interaction. Note that ωA,B

corresponds to ωi,±(r) when μA and μB are not interacting (r → ∞). Let us also note that if the contour C had been chosen on
the left part of the complex plane (complex numbers with negative real parts) when applying the argument principle, we would
find the additive inverse of ωi,± of Eq. (8). Finally, the dipole moments of the molecules, e.g., molecule A, can be given as

μA,i(t) =
∑

i

μ
(1)
A,i,+eiωi,+t + μ

(2)
A,i,+e−iωi,+t + μ

(1)
A,i,−eiωi,−t + μ

(2)
A,i,−e−iωi,−t ,

i.e., a sum of six uncoupled oscillators with frequencies ωi,±, i = 1,2,3 and mean energies ωi,±Ji,± where Ji,± are action
constants depending on initial conditions. Therefore, the total average energy of the system is

Etot =
∑

i

Ei,+ + Ei,− =
∑

i

ωi,+Ji,+ + ωi,−Ji,−

=
∑

i

ωAJi,+ + ωBJi,−︸ ︷︷ ︸
energy of the

uncoupled system

+
∑

i

	ωA,i(r)Ji,+ − 	ωB,i(r)Ji,−︸ ︷︷ ︸
interaction energy U (r)

, (9)
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where the second sum is the interaction energy U (r) of
the system which, according to Eq. (8), scales linearly
with [χ ′

ii(r,ωA,B)]2 in the off-resonance case. Thus, as a
consequence of Eqs. (4), one gets

U (r) ∝ ±[χ ′
ii(r,ωA,B)]2 ∼ ± 1

r6
, (10)

in the limit r � c/ωA,B , i.e., the interaction potential U (r)
becomes short-range in the near zone limit. At very large
intermolecular distance (r � c/ωA,B , i.e., far zone limits),
it oscillates with a 1/r2 envelope. Let us remark that U (r) ∝
1
r6 is a van der Waals–like potential but not a true van der
Waals potential which stems from virtual photon exchange,
whereas our computation corresponds to a real exchange of
electromagnetic energy.

C. Resonant case

When ωA 	 ωB = ω0, Eq. (6) is simply reduced to

ω2
i,± − ω2

0 ∓
√

ζAζBχ ′
ii(r,ωi,±)︸ ︷︷ ︸

�i,±(r,ωi,±)

= 0. (11)

Similarly to the nonresonant case, we can use arguments
of complex analysis shown in Appendix B to estimate the
frequencies of the normal modes at the lowest order:

ωi,±(r) 	 ω0 ±
√

ζAζB

χ ′
ii(r,ω0)

2ω0︸ ︷︷ ︸
	ω0,i(r)

. (12)

The first contribution to the frequency shift is now proportional
to χ ′

ii . In this case, the total energy is

Etot =
∑

i

ω0Ji,+ + ω0Ji,−︸ ︷︷ ︸
energy of the

uncoupled system

+
∑

i

	ω0,i(r)
(
Ji,+ − Ji,−

)
︸ ︷︷ ︸

interaction energy U (r)

.

(13)

Thus, according to Eqs. (12) and (4), U (r) will be a
polynomial in 1/rα with α � 3 (the dimension of physical
space) making the potential long-range at all distance. Hence,
intermolecular electrodynamic interactions between dipoles
oscillating at similar frequencies are expected to have a
much longer range of action with respect to off-resonance
interactions. More specifically, from Eqs. (4) in the limit
r � c/ω0 (near zone limit), and using Eqs. (13) and (12), the
interaction energy as a function of the intermolecular distance
is

U (r) ∝ ±χ ′
ii(r,ωA,B) ∼ ± 1

r3
(14)

because the term 1/r3 is dominant in the expression of χ ′
ii(r,ω)

while in the intermediate and far zone limits the dominant
contribution is a spatially oscillating one with a 1/r envelope
[see the end of Appendix A for the functional form of χ ′

ii(r,ω)].

III. NUMERICAL ESTIMATES OF RESONANT AND
NONRESONANT INTERACTIONS BETWEEN

BIOMOLECULES

A. Susceptibility and frequency shifts

To link up the above analytical results with the question
of long-range molecular recognition in living matter, numer-
ical estimation of resonance and off-resonance interactions
is carried out using parameter values related to standard
biomolecules. As discussed in more detail in the Sec. III C,
there is a large body of literature about experimental evidences
of low-frequency modes of vibration in the Raman and
far-infrared spectra of polar proteins (see for example [14]).
This is in line with our classical description since quantum
effects become relevant when typical frequencies exceed
ω ∼ kBT /� = 3.92 × 1013 Hz, at T = 300 K. For instance,
one can set the resonance frequency ω0 around 1011–1012 Hz,
as also suggested by Fröhlich [10,11]. To compute the coupling
constants ζ = Q2/m, ten elementary charges and a mass of
m = 20 kDa are taken as typical values for dipole moment
and mass of small proteins (the same values are used for
both molecules so that ζA = ζB = ζ ). As a first step in the
estimation of the interaction potential U (r), normal frequency
shifts are computed in both resonant and nonresonant cases.
From Eqs. (8) and (12), one has

	ωA,B,i(r) = ζ 2[χ ′
ii(r,ωA,B)]2

2ωA,B

(
ω2

A − ω2
B

) when ωA � ωB,

	ω0,i(r) = ζ
χ ′

ii(r,ω0)

2ω0
when ωA 	 ωB = ω0,

(15)

where the diagonal elements of the susceptibility matrix
χii(r,ω) are given by Eq. (4) (the prime symbol stands for the
real part). In Fig. 1, we have plotted the real parts of χii(r,ω) as
a function of r for two values of ω, namely, ω = 1012 Hz and
ω = 1016 Hz, below and above the classical-quantum limit,
respectively. We are especially interested in χii(r,ω) when the
intermolecular distance r is much larger than the dimensions
of typical macromolecules, estimated around 5 nm, but less
than cellular dimensions ∼1–5 μm. The dielectric constant
ε also appears in the expression of the susceptibility matrix
as a function of the frequency. The real part of the dielectric
constant of water is 80 in the electrostatic limit, i.e., ω → 0
but for large enough frequencies, typically larger than a dozen
GHz [15], ε′ drops to a few units, more exactly, 2 � ε′ � 10.
As a compromise, we will assume ε′(ω) = 4 for all ω we will
consider in the following. As mentioned above, the elements
of the susceptibility matrix were also plotted at very large
frequency ω = 1016 Hz [Fig. 1(b)]. Even though quantum ef-
fects are important at such a frequency, quantum computations
reveal that the “quantum” susceptibility matrix is the same as
the classical one as well as its mathematical contribution to
the interaction potential [6]. Very high frequencies might be
relevant to account for certain dynamical properties of DNA
molecules since a marked peak is observed in their polar
spectra at wavelengths of 2600 Å, which is equivalent to a
frequency ω ∼ 7 × 1015 Hz. When ω = 1012 Hz, it is seen
from Fig. 1(a) that the χ ′

ii(r,ω)’s are essentially monotonic
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FIG. 1. (Color online) (a) Real part of the electric susceptibility
matrix elements χ ′

ii(r,ω) computed from Eqs. (4) as a function of the
distance r (the index E on χii has been omitted to reduce the amount
of notation). The parameter values are ε′(ω) = 1 and ω = 1012 Hz.
(b) Same as (a) except that ω = 7.24 × 1015 Hz.

in r . The reason is that the intermolecular distance is much
smaller than the characteristic wavelength 2πc/ω of the
electric field. From Eqs. (4), the susceptibility matrix elements
are proportional to 1/r3 when r � c/ω. In Fig. 1(b), the
wavelength is small enough to observe oscillations at relatively
short distances (less than 1 μm). At r = 100 nm, a frequency
of at least ω0 = c/r = 3 × 1013 Hz is needed to observe field
retardation effects.

The frequency shifts are estimated from Eq. (15) when the
intermolecular distance is set to r = 10 nm and r = 100 nm.
With the parameter values specified above, the frequency shifts
of the transverse modes (i = 1,2) at resonance (with ω0 =
1011 Hz) are found equal to 8.63 × 108 Hz and 8.63 × 105 Hz

at r = 10 nm and r = 100 nm, respectively. To estimate off-
resonance frequency shifts, a detuning (ωA − ωB)/ωB = 10%,
with ωB = 1011 Hz, is used. Keeping the same values of
the parameters, the frequency shifts of the transverse modes
(i = 1,2) are found equal to 6.453 × 107 Hz and 64.53 Hz at
r = 10 nm and r = 100 nm, respectively. Since the interaction
potential is directly proportional to the frequency shifts in
both resonant and nonresonant cases, it is found that dipolar
interactions at resonance may exceed by several orders of
magnitude off-resonance ones, typically when the distances
become large with respect to biomolecular scale length (around
10–50 Å). This gap even widens by increasing the frequency
of both dipoles.

B. Interaction energy and equivalent dipole overcoming
thermal noise

For the sake of clarity, we will restrict ourselves to the
resonant case. We recall the form of the resonant potential
U (r) derived in the previous sections [Eqs. (13) and (15)]:

U (r) =
3∑

i=1

ζ
χ ′

ii(r,ω0)

2ω0︸ ︷︷ ︸
	ω0,i (r)

(Ji,+ − Ji,−)︸ ︷︷ ︸
	Ji

−−−−→
r�c/ω0

3∑
i=1

ζ
σi

2ε′(ω0)ω0r3
	Ji, (16)

where σ1 = σ2 = −1 (transverse modes) and σ3 = 2 (longi-
tudinal mode), and the right hand side is obtained by using
Eq. (4) when r � c/ω0. From Eq. (4), the potential goes
as 1/r when r � c/ω0 but since r is supposed smaller
than the cellular dimensions and the range ω0 ∼ 0.1–1 THz
is investigated, the limit r � c/ω0 will be considered. The
interaction potential U (r) requires the value of the actions Ji,±
of each normal mode. For a conservative system, actions are
constant quantities which depend on initial conditions, i.e.,
on initial dipole moments and velocities of each molecule.
However, biomacromolecules are nonlinear systems that may
strongly interact with their environment resulting in long-lived
nonequilibrium stationary states. Energy supply could also
be well provided by cellular machinery [16,17] as discussed
in Sec. III C (e.g., the energy released by the adenosine
triphosphate (ATP) or the guanosine triphosphate (GTP)
hydrolysis or the wasted energy released from mitochondria).
Such conditions may lead to metastable states characterized
by Ji,+ very different from Ji,− whose values are not directly
predictable from other physical quantities measured in equi-
librium conditions (e.g., dipole moments of the molecules as
they are estimated by in vitro experiments). Hence, estimating
the exact values of Ji,+ and Ji,− turns out to be a nontrivial
task as it requires further investigation on how the molecules
interact with their surrounding medium as well as a detailed
description of the internal dynamics of the molecules, which
is beyond the scope of this paper.

Even though the interaction energy cannot be estimated in
an exact way, we can still compute it when the difference
in the actions 	J ∼ 	Ji = Ji,+ − Ji,− is of the order of
thermal fluctuations, i.e., 	J = kBT /ω0. This will provide
a lower bound for the interaction potential. From Eq. (16), the
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TABLE I. Numerical estimates of physical quantities connected with the interaction energy of two oscillating dipoles at resonance
(ωA 	 ωB = ω0). Grey columns correspond to parameters that were initially fixed. The temperature T and the dielectric constant ε′ were set
to 300 K and 4, respectively, for each estimate.

Za m (kDa)b ω0 (THz)c r (nm)d 	ω0(r) (Hz)e 	xmax (Å)f μ (D)g P (erg/s)h

10 10 0.1 10 1.7 × 109 17 813 1.6 × 10−12

50 10 0.1 10 4.3 × 1010 3 813 1.6 × 10−12

50 100 0.1 10 4.3 × 109 3 813 1.6 × 10−12

50 10 0.1 50 3.4 × 108 37 9099 2.0 × 10−10

50 10 0.1 100 4.3 × 107 107 25737 1.6 × 10−9

50 10 0.5 10 8.6 × 109 3 813 1.0 × 10−9

50 10 0.5 100 8.6 × 106 107 25737 1.0 × 10−9

10 10 1 10 1.7 × 108 16 813 1.0 × 10−6

50 100 1 100 4.3 × 105 107 25737 1.6 × 10−5

1000 50 0.1 100 3.4 × 109 0 25 1.6 × 10−9

aZ: number of charges with Q = Ze.
bm: mass in kilodaltons (kDa).
cω0: resonance frequency.
dr: intermolecular distance.
e	ω0(r): frequency shift due to dipolar interactions. Computed from Eq. (15).
f	xmax: maximum amplitude that should carry any of the dipoles so that dipole interactions overcome thermal noise at separation r . Computed
from Eq. (19).
gμ = Q	xmax: maximum dipole moment required to overcome thermal noise at r .
hP : Power radiated by one dipole in case interactions overcome thermal noise at separation r . Computed from Eq. (20).

interaction energy becomes U (r) ∼ 	ω0,i(r)kBT /ω0. Using
the estimates of the frequency shifts 	ω0,i(r) found in the
last subsection for the transverse normal modes, we find that
U (r) is equal to 3.57 × 10−16 erg and 3.57 × 10−19 erg, at
r = 10 nm and r = 100 nm, respectively. These values should
be compared with the value of kT = 4.14 × 10−14 erg at
300 K, which reveals that 	J should be at least two orders
of magnitude larger than the Boltzmann action so that dipole
interactions balance exactly thermal energy at r = 10 nm. To
give an idea of what two orders of magnitude means in terms of
action variables, we can compute the dipole moment equivalent
to a given value of 	J . Writing

ω0	J = (	p)2

2m
+ 1

2
mω2

0(	x)2, (17)

where we assumed mA = mB = m for simplicity, the dipole
displacement 	x is maximum when 	p = 0, so that

	xmax =
√

2	J

mω0
. (18)

Again, dipole interactions overcome thermal noise when
U (r) ∼ kBT , that is, 	J = kBT /	ω0(r) where 	ω0(r) is
given by Eq. (16) (the subscripts i are omitted as, roughly
speaking, each component has the same order of magnitude).
Using Eq. (15), the maximum amplitude of the equivalent
dipole is given by

	xmax = 2

√
kBT

Q2χ ′(r,ω0)
−−−−→
r�c/ω0

2

√
kBT r3ε′(ω0)

Q2
, (19)

where we have used ζ = Q2/m and, using Eq. (4), replace
χ ′(r,ω0) by its limit when r � c/ω0. 	xmax can be interpreted
as the maximum amplitude that should exhibit any of the

dipoles so that resonant interactions balance exactly thermal
fluctuations at a given r . Using parameter values introduced
above (Q given by ten elementary charges, ε′(ω0) = 4),
we find that 	xmax = 1.694 × 10−7 cm = 16.9 Å at r =
10 nm. The corresponding dipole moment is μ = Q	xmax =
8.1388 × 10−16 statC cm = 813.88 D. The larger the value of
Q, the smaller the value of the polar amplitude 	xmax. For
instance, when Q is given by 50 elementary charges, 	xmax =
3.389 05 × 10−8 cm = 3.389 05 Å at r = 10 nm while the
equivalent dipole moment μ remains the same. Table I gives
a summary of the numerical estimates discussed so far plus
other estimates obtained by varying parameters such as the
intermolecular distance or the resonance frequency. In a recent
paper [18], molecular dynamics simulations performed for an
ensemble of interacting molecules reveal that 1/r3 resonant
interactions might already have a profound influence on the
diffusion dynamics when the interacting energy is equal to
kT /10 at r = 100 nm. Substituting kT with kT /10 in Eq. (19),
we find that the equivalent dipole moment μ = Q	xmax is
equal to 8138.8 D when r = 100 nm. This value together
with the values of the dipoles moments given in the table
can appear to be very large in comparison with the dipole
moments of a wide class of proteins given around a few
hundred debyes [19,20]. However, a mathematical approach
similar to the one of Sec. II might be applied to estimate
the interaction energy between two sets of oscillating dipoles
instead of two single ones. Since we should take care of
the local density of dipoles, the dynamical variables will
be no longer the dipole moments of the molecules but the
polarization fields, e.g., PA = nA〈μA〉, with nA the number of
dipoles making up the “molecule” A with an average dipole
moment 〈μA〉 (and similarly for the “molecule” B). Assuming
that the dipoles of each molecule oscillate in phase, one
can estimate the maximum amplitude that should carry any
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of the dipoles so that resonant interactions balance thermal
noise at distance r . Similarly to the above computations,
we can show that 	xmax = 2

√
kBT r3ε′(ω0)/n2Q2, where we

have supposed that the number of dipoles composing each
molecule was approximatively the same (nA 	 nB = n). In
this case, the average dipole amplitude is n times less than
the amplitude required by single dipoles, which might lead
to more realistic values of the dipole moments when n is
large. At the same time, the frequency shifts in the case of
two interacting sets of dipoles should be computed according
to Eq. (15) with coupling constants given by ζ = nQ2/m

instead of Q2/m. A possible value for n could be well
given by the number of water molecules surrounding protein
structures [21]. It has been recently demonstrated by the work
of Pollack [22] that hydrophilic surfaces have long-range
effects on aqueous solutions containing solute molecules. The
so-called “exclusion zone” (EZ) is created by repulsive forces
extending over distances of many Debye lengths, possibly
on the μm scale. Since proteins are typically structured
with a hydrophobic core and a hydrophilic exterior surface,
it is expected that similar EZ effects occur in the case of
proteins and protein aggregations. One of the characteristics
of the water molecules surrounding biomolecules such as
proteins and DNA is the formation of several ordered layers
of water surrounding a biomolecule [23]. These layers exhibit
electrostatic ordering and also structural organization, possibly
involving a hexatic lattice [24]. These phenomena may all be
linked and can be interpreted in the spirit of the Mercedes-Benz
model of water [25] whereby a charged (hydrophilic) surface
such as that of a protein attracts the oppositely charged orbital
of a water molecule leaving the remaining three orbitals
free to explore rotational freedom in the plane approximately
parallel to the charged surface of the protein. The so-formed
hexatic arrangements of water orbitals resemble helicopter
blades or the logo of Mercedes-Benz, hence the name of
the model. This suggests a very interesting phenomenon
since these positionally localized water molecules possess a
dipole moment that is free to rotate around the axis roughly
perpendicular to the protein surface. These rotating dipole
moments should undergo precessional motion if there is a
sufficiently strong electric field created, for example, by the
charge distribution of the protein. For instance, in the case of
tubulin, its net dipole moment is of the order of 1000–5000
D [26] depending on the tubulin isoform. This then leads to a
dynamic picture of thousands of water molecules with their
dipole moments precessing at a frequency in the 1011-Hz
domain which is sensitive to the electric field generated by
the biomolecular surface. The latter should also depend on
the environmental conditions (pH, ion concentrations, salt
concentration, and so on). Moreover, conformational changes
in the states of a protein still affect the magnitude and
direction of the electric field that drives the dynamics of
these precessing dipoles. Therefore, this could serve as a
mechanism for selective generation of attractive or repulsive
forces between interacting proteins (with their water of
hydration). The electric field of the protein may additionally
exhibit vibrational modes due to collective excitation modes,
E = E0 + E1e

iωt . This, through coupling with dipole moments
of the water molecules, will result in the slaving of water
dynamics to the collective dynamics of the protein and

generate coherent vibrational dynamics of dipole moments.
This scenario offers a possible role of water dynamics in living
processes.

C. The question of damping

Different physical processes may lead to a partial or
complete dissipation of an electrodynamic signal in a solvent
and therefore should be discussed openly to assess the role
of long-range electrodynamic forces between biomolecular
structures. As discussed in the Introduction, an electrolyte
such as the cell cytoplasm behaves as a pure dielectric when
electromagnetic fields with frequencies larger than 250 MHz
are involved. In this context, the origin of the damping of
electrodynamic forces is threefold:

(1) Radiation losses.
(2) Dielectric absorption.
(3) Solvent viscosity.
Radiation losses. The total instantaneous power P radi-

ated by an oscillating charge Q is given by the Larmor
formula [27,28]

P = 2

3

Q2|ẍ|2
c3

, (20)

where Q = Ze and the acceleration is given by ẍ = −ω2
0x.

The maximum amplitude 	xmax of a dipole such that the
interaction energy is approximately kBT at separation r is
given by formula (19). Substituting x for 	xmax in the last
equation, we get

P = 8

3

kBT r3ω4ε′(ω)

c3
. (21)

The last column of Table I gives numerical estimates of P

typically when ω ∼ 0.1–1 THz and r ∼ 10–100 nm. Those
values of P should be compared for example with the power
potentially available from ATP hydrolysis in the cell. The
typical intracellular concentration of ATP molecules is given
around 1 mM implying that a protein molecule in the cell
undergoes around 106 collisions with ATP molecules per
second [29]. Given the standard free energy obtained from ATP
hydrolysis estimated around 50 kJ mol-1 = 8.306 × 10−13 erg,
we can assume that 1% of the collisions with ATP will
provide energy, which corresponds to a power supply of
8.306 × 10−9 erg s−1 potentially available. From Table I, we
see that some parameter values are not suitable to sustain
electrodynamic interactions over long distances. Clearly,
when ω = 1 THz, the power radiated becomes very large
even at smaller separations r = 10 nm. When r = 10 nm,
P = 1.636 × 10−8erg s−1 whereas when r = 100 nm, P =
1.636 × 10−5erg s−1 which is much larger than the power
supplied by ATP hydrolysis. On the other hand, when ω =
0.1 THz, P is estimated less than or around 10−9 erg s−1 up to
r = 100 nm, which is still in support of long-range electrody-
namic interactions. At intermediate frequencies ω = 0.5 THz,
electrodynamic interactions can be still considered when inter-
molecular distances are given around r = 10 nm but not when
r = 100 nm. Typical frequencies above which electrodynamic
interactions between single dipoles are hardly maintainable
because of radiation losses (i.e., P > 10−8 erg s−1) are 1.501
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and 0.266 THz when r = 10 nm and r = 100 nm, respectively.
Besides ATP hydrolysis, other possible forms of energy supply
should be considered in a cellular environment. In Ref. [16],
a detailed analysis of possible sources of energy to excite
and sustain coherent vibrations in microtubules is given, for
example, the energy transferred from moving of motor proteins
along microtubules with a power supply estimated around
4 × 10−8 erg s−1, or the energy released from mitochondria as
“wasted” energy in the course of a citric acid cycle with a power
supply given around 10−7 erg s−1. Both sources of energy
might well be enough to excite long-range biomolecular forces
as the corresponding powers are around or larger than the
power considered above for ATP hydrolysis.

One may consider the possibility that long dipolar interac-
tions would drive specific biomolecular encounters in response
to a particular external excitation thus requiring that resonant
forces are only active during a short period of time. Hence,
occasional energy supply rather than constant energy inputs
would be enough to sustain the large dipole moments needed.
An estimate of the typical encounter time of two biomolecular
structures driven by an intermolecular potential U (r) can be
directly deduced from the association rate ka of molecules in
a solution of initial concentration C, where C = 1/r3 and r is
the range of intermolecular distances of interest. ka is given by
the Smoluchovski-Debye formula [30,31]:

ka = 4πR∗(DA + DB),

R∗ = 1∫ ∞

(RA+RB )/2

eU (x)/kT

x2
dx

, and DA,B = kT

γA,B

. (22)

As usual, the friction coefficient γA,B of each molecule can
be approximated from Stokes law: γA,B = 6πηRA,B where
η 	 10−2 g cm−1 s−1 is the dynamic viscosity of water at
300 K. We also set RA = RB = 1 nm as a typical radius for
small proteins and U (x) is given from Eq. (16) so that U (x =
r) 	 kT . Similarly to the computations done so far, we set
U (x) = 	ω0,i(x)kT /	ω0,i(r) = −kT (r/x)3. The character-
istic half-life of the A-B reaction can be written as τ = 1/kaC.
Using Eq. (22), C = 1/r3 and the values of the parameters
introduced above, we find that τ = 1.617 × 10−8–1.617 ×
10−6 s when r = 10–100 nm, respectively [note that in the
Brownian case, U (x) = 0, τ = 9.05 × 10−8–9.05 × 10−5 s,
respectively]. Assuming that we provide to each molecule
involved an energy equivalent to a single ATP hydrolysis, i.e.,
	EATP = 8.306 × 10−13 erg [32], we find a power equivalent
to PATP = 	EATP/τ = 5.136 × 10−7 erg/s when r = 100 nm.
Comparing with the power radiated by one dipole (last column
of Table I), we see that dipoles oscillating with a frequency
less than ∼1 THz use a power much smaller than PATP, thus
showing that an energy equivalent to a single ATP hydrolysis
for each protein is more than enough to compensate radiation
losses during the typical encounter time of biological partners.

Among possible sources of energy, ultraweak photons
constitute ideal candidates. At the cellular and subcellular
level, living systems are known to emit ultraweak endogenous
photons without the need for external excitation [33–41].
This is only dependent on the presence of metabolic activity.
These electromagnetic excitations are produced via various
biochemical reactions, but principally from bioluminescent

radical recombination reactions involving the very numerous
reactive oxygen and nitrogen species which results in a
subsequent relaxation of excited states giving rise to photon
emission. The oxidative phosphorylation metabolism taking
place in the mitochondria of living cells and lipid peroxidation
appear to be a primary source for this activity [42,43].
Oxidative phosphorylation is the most common form of
energy production in dividing cells. Neurons also continuously
produce photons during their ordinary metabolism [44,45],
and it has been shown in vivo that the intensity of photon
emission from rat brain correlates well with cerebral energy
metabolism, electrical activity, blood flow, and oxidative
stress [37,46]. Moreover, Sun et al. [47] demonstrated that
ultraweak bioluminescent photons can propagate along neural
fibers and can be considered a means of neural communication.
Also of interest is the reported radical recombination within
mitochondria which can emit photons in the UV range required
to excite the chromophoric network within microtubules [48].

Dielectric absorption. So far, only the real part of the
dielectric constant has been considered as it is part of the
expression of the interaction potential U (r). The imaginary
part of ε should be also taken into account to describe the
ability of a dielectric medium to absorb electromagnetic waves.
The absorbance α(ω) is generally used to describe dielectric
losses and is given as 4πn′′(ω)/λ where n′′ is the imaginary
part of the refractive index n(ω) = n′(ω) + in′′(ω). At the same
time, the refractive index is related to the dielectric constant
through the following relations:

ε′(ω) = n′(ω)2 − n′′(ω)2ε′′(ω) = 2n′(ω)n′′(ω), (23)

thus yielding the following expression for the absorbance:

α(ω) = 2ω

c

(√
ε′(ω)2 − ε′′(ω)2 − ε′(ω)

2

)1/2

. (24)

Most experiments done on polar liquids show that the
dielectric spectrum of water is characterized by two relaxation
times τ1 and τ2 and can be easily fitted with a Debye-like
relaxation formula in the far infrared region [49,50]:

ε(ω) = ε∞ + εs − ε1

1 + (iωτ1)
+ ε1 − ε∞

1 + (iωτ2)
. (25)

Here, εs and ε∞ are the static and high-frequency dielectric
constants and ε1 is an intermediate step in the dielectric
constant. For water, the critical frequencies ω1 = τ−1

1 and
ω2 = τ−1

2 are estimated around ω1 = 0.12 THz and ω2 =
5.56 THz, respectively. Investigating the absorbance of water
from Eq. (24) or experimentally, it is found that α(ω) increases
drastically when ω < ω1 or so and increases more slowly when
ω > ω1 (see Fig. 2). Numerical estimates of the absorbance
when ω = 0.1 THz and ω = 1 THz are α = 16.25 cm−1 and
α = 103.125 cm−1, respectively, leading to typical penetration
lengths δ = 1/α equal to 615.3 and 96.9 μm, respectively. A
similar range around 50–150 μm for the penetration length δ

is found for most biological tissues when ω = 0.1–1 THz [51].
Coming back to the problem of long-range intermolecular in-
teractions, typical distances between biopartners are supposed
to be much less than cellular dimension (<1–5 μm). Hence,
damping due to dielectric losses can be neglected in the present
case.
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FIG. 2. (Color online) Absorbance of water in the terahertz do-
main (blue). Penetration length as a function of the frequency (red).

Let us remark that a theoretical result [52] predicts that the
electromagnetic near field of a Hertzian dipole immersed in
a dissipative medium is strongly damped. In other words, a
Hertzian dipole could not sustain, according to the authors of
the mentioned work, its oscillation in a dissipative medium
to maintain a finite field at a distance. This effect stems
from Eq. (10) of Ref. [52]. However, in the absence of
both experimental evidence and a physical explanation of the
singularities shown by this equation, it is still unclear whether
this analysis applies at the molecular level.

Solvent viscosity. Compared with other possible dissipation
mechanisms, the question of the damping of biomolecular
vibrations due to the viscosity with the surrounding medium
is probably one of the most controversial when discussing
possible long-range effects in biological systems. The first
measurements of low-frequency vibrations of proteins in the
Terahertz domain date back to the 1970s and were carried out
via Raman spectroscopy. Although spectral studies of proteins
in their crystal state show significant low-frequency bands
around 1 THz (for example, around 0.75 THz for a protein of
lysozyme or around 0.42 THz for a molecule of bovine serum
albumin (BSA)), the low-frequency Raman bands are hardly
observed when the proteins are immersed in water [53,54].
Based on hydrodynamic arguments, many authors suggest
that the disappearance of the low-frequency Raman band in
solution indicates overdamping of the corresponding oscil-
lations [55]. However, estimates of the damping coefficient
usually employ the Stokes formula, which can hardly be used
when the amplitude of oscillations is comparable with the
linear dimensions of water molecules forming a continuous
medium [56]. Other theoretical studies based on estimates
of a typical absorption cross section of water-protein in-
teractions [32,57,58] also reach the conclusion that protein
vibrations would be strongly damped by contact with their
aqueous biological environment. All the above mentioned
analyses have in common that the solvent is always considered
to play a passive role in the dynamics of the proteins. However,
new experimental techniques based on terahertz spectroscopy
can quantify how water interacts with biomolecules and,
in doing so, show that the dynamics of hydration water
in the vicinity of protein surfaces—the so-called hydration

shell—differs from “bulk” water in that it correlates with
protein motion [59]. Applying hydrodynamic arguments in the
framework of microtubule dynamics, Pokorný showed that if
instead of the commonly used no slip condition at the surface
of molecules, slip boundaries for microtubules’ longitudinal
vibrations are taken into account, vibrations may be still
excited [60]. In the course of considering resonances in the
DNA microwave absorption spectra reported in Ref. [61] and
first interpreted as sound waves, Van Zandt [62,63] revisited
the subject and concluded that a layered structure of water
imposed by the interaction between DNA with polar molecules
of the solvent gives a reduction in the DNA longitudinal sound
damping like that observed in [61]. According to Van Zandt’s
estimates, such vibrations might have a dissipation time of the
order of τ = 5 ns. Since the appearance of new terahertz de-
tection techniques, evidences of underdamped low-frequency
vibration modes of proteins become more and more frequent.
For example, Gruia et al. [64] have reported using femtosecond
coherence spectroscopy that ferric heme proteins exhibit
dominant oscillations near 40 cm−1 = 1.2 THz characterized
by a factor Q of four to five units (the factor Q represents
approximatively the number of oscillations performed by an
oscillator before being completely damped; typically when
Q > 0.5, an oscillation mode can be considered underdamped,
otherwise it is overdamped). Cimei et al. [65] have used
pump-probe experiments to detect underdamped modes of
vibration of azurin, a blue copper protein, in the 30–80-cm−1

region. Using extremely sensitive femtosecond optical Kerr-
effect spectroscopy, Turton et al. have found that underdamped
modes (with a Q factor of a few units) might be involved
in the efficiency of lysozyme-ligand interactions [66]. An
exceptionally long-lived mode of vibration exhibiting around
1500 oscillations (over 500 ps) before complete damping was
observed for the bacteriorhodopsin at frequencies around 2
THz [67]. It should also be mentioned that molecular dynamics
(MD) simulations predict Q factors larger than ten units for
small molecules vibrating in the range of terahertz [56,68].
The smaller the size and mass of the molecules of solvent (or
of their clusters) in comparison with those of the subglobule,
the smaller is the Q factor of the subglobular oscillations.

Summarizing, solvent viscosity turns out to be the most
likely source of damping of electromagnetic signals in a bio-
logical context compared with radiation losses and dielectric
absorption. However, numerous theoretical and experimental
evidences of underdamped modes of vibration of biomolecular
structures are reported in the literature, in which case water
is expected to contribute actively to the dynamics of the
molecules. Among all experimental studies done so far, the
bacteriorhodopsin has been found to exhibit the most persistent
vibrational motion in the terahertz domain over a time of 500 ps
whereas an important variety of other proteins is characterized
by Q factors of a few units associated with low-frequency
vibration modes. Since resonant forces as those derived in
the previous sections occur quasi-instantly when large enough
dipole oscillations are excited, underdamped protein modes
even with small Q might still contribute, even temporarily, to
long-distance intermolecular interactions. In the framework
of biomolecular recruitment to ensure particular cellular
functions, it can be speculated that interactions are activated at
intervals to guide specific proteins to their biological targets.
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Whenever long-distance interactions become inactive due to
the friction with the surrounding medium, local chemical
forces and Brownian motion would entirely contribute to the
diffusion dynamics of the molecules. How often long-range
forces are activated might depend on how often energy is
provided to those systems. In an environment as viscous,
heterogeneous and anisotropic as the cellular environment,
it is not obvious that Brownian motion is sufficient to bring
specific cognate partners at the same place in a time short
enough to meet physiological needs. Long-range forces, even
occasionally active, may be relevant to facilitate and preserve
order in the cell. Detailed investigation on how long-range
electrodynamic forces could improve cellular organization is
beyond the scope of the present paper.

IV. COMPARISON BETWEEN CLASSICAL AND
QUANTUM ELECTRODYNAMIC INTERACTIONS

Now that the interaction energy of system (2) has been
worked out, it is of interest to note that the interaction energies
U± computed from Eqs. (9) or (13) as

U±(r) = �

∑
i

[ωi,±(r) − ωA,B], (26)

i.e., with the substitutions Ji,+ = �, Ji,− = 0, or Ji,+ = 0,
Ji,− = �, respectively, correspond exactly to the interaction
energy (due to real photons) between two neutral atoms when
one of them is in an excited state. This is fully consistent
with the idea that atoms and the radiation field mediating
the interaction are generally described as an ensemble of
coupled oscillators whereas normal modes and susceptibilities
are the same for classical and quantum oscillators. However,
despite this remarkable analogy, of course, the origin of the
interactions is totally different. Whereas atomic dipoles in
the QED framework are associated with electronic transitions,
the classical computations mainly apply to dipole oscillations
associated with conformational vibrations of macromolecules.
In what follows, the classical-quantum correspondence of
electrodynamic interactions is given more explicitly in both
nonresonant and resonant cases.

A. Off-resonance case

Off resonance, the normal frequencies are given by Eq. (8)
so that U± reads as

U+(r) = �

2ωA

ζAζB

ω 2
A − ω2

B

∑
i

(χ ′
ii(r,ωA))2 (27)

and

U−(r) = �

2ωB

ζAζB

ω 2
B − ω2

A

∑
i

(χ ′
ii(r,ωB))2. (28)

Again, the components of the electric susceptibility χii (r,ω)
are given by Eq. (4) but have not been made explicit here for
the sake of clarity. Even if Eqs. (27) and (28) were obtained
classically, U±(r) would be equivalent to the energy shifts due
to the interaction between two atoms A and B with distinct
transition frequencies ωA �= ωB when one of the atoms is in
an excited state [U+(r) is the energy shift when the atom A

is excited whereas U−(r) is when the atom B is excited].

The analogy is better seen writing α
A,B
class.(ω), the classical

polarizabilities of each dipole, such that

α
A,B
class.(ω) := ζA,B

ω 2
A,B − ω2

. (29)

In this case, U±(r) has exactly the same form as the quantum
shifts computed, for example, by Gomberoff et al. [see Eq. (44)
in Ref. [69]; see also [70]] in the context mentioned above.
U+ is the energy shift associated with the (approximated)
wave function |ψ+〉 = |eA,gB〉 whereas U− is the energy
shift associated with |ψ−〉 = |gA,eB〉 (here we have noted
eA or gA when the atom A is excited or is in its ground
state, respectively, the atoms A and B being uncoupled, and
similarly for B). Finally, we should remark that the classical
computations carried out above do not allow us to reproduce
the QED contribution in the energy shift due to virtual photons,
i.e., which accounts for the interaction between the ground
states of two atoms. As shown explicitly in Ref. [71], such a
contribution purely arises from vacuum fluctuations. A fully
quantum description is then needed to derive the corresponding
potential (see also Refs. [72] for other derivations of van der
Waals forces between two ground state atoms).

B. Resonant case

At resonance, i.e., when ωA 	 ωB = ω0, the normal fre-
quencies are given by Eq. (12) so that U± is simply

U±(r) = ± �

2ω0

√
ζAζB

∑
i

χ ′
ii(r,ω0). (30)

Here, U±(r), with χii(r,ω) given from Eq. (4), is the classical
equivalent of the interaction energy between two two-level
atoms in an excited state with a common transition frequency
ω0. The quantum result is usually given in terms of the
off-diagonal elements of the dipole operator in the unperturbed
state μ

ge

A = 〈gA|μ̂A|eA〉 and μ
ge

B = 〈gB |μ̂B |eB〉 (here we
have supposed a condition of isotropy for the dipole moment
of both atoms). In addition, let us remind that the quantum
polarizability αquant. depends on these elements such that

α
A,B
quant.(ω) := 2

3�

ωA,B

(
μ

ge

A,B

)2

ω 2
A,B − ω2

. (31)

Thus comparing Eqs. (31) and Eqs. (29) in the resonant case,
one gets the following classical/quantum equivalence:

ζA,B � 2

3�
ω0
(
μ

ge

A,B

)2
,

with ωA 	 ωB = ω0, so that the quantum version of U± can
be easily derived:

U±(r) = ± �

2ω0

√
ζAζB

∑
i

χ ′
ii(r,ω0)

︸ ︷︷ ︸
classical

� ±1

3
μ

ge

A μ
ge

B

∑
i

χ ′
ii(r,ω0)

︸ ︷︷ ︸
quantum

.
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The last term corresponds exactly to the quantum energy shifts
given for example by Eq. (5) in Ref. [4] [see also Eq. (2.27) in
Ref. [4]] whose approximated eigenstates are

|ψ+〉 = 1√
2

[|eA,gB〉 − |gA,eB〉] and

|ψ−〉 = 1√
2

[|eA,gB〉 + |gA,eB〉], (32)

for U+ and U−, respectively. Again, let us emphasize that
the interaction potential at resonance is of a much longer
range than the off-resonance one. From a biological point
of view, such frequency-selective interactions could be of
utmost importance during the approach of a molecule toward
its specific target as mentioned in the Introduction. On the
other hand, quantum states given by Eqs. (32), as entangled
(excitonic) states are fragile. In living matter, a noisy cel-
lular environment could be sufficient to entail decoherence
over long distances making long-range interactions between
atoms not very probable in this case. In this way, classical
computations have the advantage of getting rid of the problem
of quantum coherence, since, in this case, dipole moments
of biomolecules are associated to classical conformational
vibrations rather than electronic transitions. Again, this is
in line with the experimental observations of low-frequency
oscillations modes in the Raman and far-infrared spectra of
polar proteins. These spectral features are commonly attributed
to collective oscillation modes of the whole molecule (protein
or DNA) or of a substantial fraction of its atoms.

V. LONG-RANGE ELECTRODYNAMIC INTERACTIONS
AT THERMAL EQUILIBRIUM

Long-range interactions between two biological dipoles
were originally considered by Fröhlich [8,11]. Fröhlich em-
phasized, inter alia, that long-range interactions may occur at
resonance even though the system of dipoles is close to thermal
equilibrium. In a biological context this could be problematic
as switching on and off long-range recruitment forces seems
more fit to explain activation and inhibition processes at
work at the molecular level in living matter. To clarify this
point, let us consider the dipoles μA and μB of system (2)
in thermal equilibrium and suppose that �ωA,B � kBT so
that classical effects are dominant (as discussed in Sec. III,
this implies frequencies less than kBT /� = 3.92 × 1013 Hz at
T = 300 K, which is in agreement with experimental evidence
of marked peaks in the vibration spectra of many proteins [14]).
For a system interacting with a thermal bath, the interaction
energy is best described by the difference of free energies
between the interacting system and the noninteracting one:
U (r) = F (r) − F (∞) = −kBT ln [Z(r)/Z(∞)], where Z(r)
is the partition function of the system when the dipoles are
separated by a distance r . In thermal equilibrium, the partition
function is computed from Boltzmann weights. This can be
easily calculated in the space of the normal modes as those are
equivalent to uncoupled harmonic oscillators:

Z(r) =
3∏

i=1

∫
· · ·

∫
dπi,+dπi,−dμi,+dμi,− exp

[
−π2

i,+ + ω 2
i,+(r)μ2

i,+
2kBT

]

× exp

[
−π2

i,− + ω 2
i,−(r)μ2

i,−
2kBT

]
=

3∏
i=1

(2πkBT )2

ωi,+(r)ωi,−(r)
, (33)

where πi,± and μi,± stand for the components of normal coordinates related to momenta and positions, respectively. Possible
nonlinear contributions of the potential due to dipole anharmonicities, as mentioned at the beginning of Sec. II, have been omitted
as they are supposed to be negligible compared with the harmonic part of the potential.

Thus the free energy difference is given by (see also Ref. [11])

U (r) = kBT
∑

i

ln

[
ωi,+(r)ωi,−(r)

ωAωB

]
, (34)

with lim
r→+∞ ωi,±(r) = ωA,B , ∀i. To derive Fröhlich results, we consider the resonant case ωA 	 ωB = ω0, and substitute ωi,±(r)

in Eq. (34) with their implicit form [Eq. (11)]. At long distances, we can use Taylor expansion: ln(1 + x) ∼ x. One gets the
formula of the interaction energy given by Fröhlich by making explicit the susceptibility matrix elements χii from Eq. (4) when
r � c/ω0. One obtains

U (r) 	 kBT
√

ζAζB

2ω2
0

1

r3

∑
i

σi

{
1

ε′(ωi,+)
− 1

ε′(ωi,−)

}
, (35)

with σ1,σ2 = −1, σ3 = 2. Here the a priori noncancellation of the term in brackets was emphasized by Fröhlich as involving
long-range 1/r3 interactions between the dipoles even when the system is in thermal equilibrium. However, this form of U (r)
arises simply as the implicitness has not been solved yet. By using the Lagrange inversion theorem [we substitute g of Eq. (B10)
with 1/ε′ and report the formula in Eq. (35)], one gets immediately that the term in brackets in Eq. (35) vanishes at first order.
Expansion of the Lagrange theorem to second order shows that this term goes as 1/r3, making U proportional to 1/r6, i.e., a
short-range contribution. Fröhlich’s statement on the existence of long-range resonant interactions even at thermal equilibrium
is thus incorrect. To compute the complete form of U in thermal equilibrium, one can start from Eq. (34) and use the explicit
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form of ωi,±(r) derived in Appendix B [Eq. (B9)]:

U (r) = kBT
∑

i

ln

[(
1 +

√
ζAζB

2ω2
0

χ ′
ii(r,ω0) + ζAζB

ω0

d

dω

[(
χ ′

ii(r,ω0)

ω + ω0

)2
]

ω0

)
·

×
(

1 −
√

ζAζB

2ω2
0

χ ′
ii(r,ω0) + ζAζB

ω0

∂

∂ω

[(
χ ′

ii(r,ω0)

ω + ω0

)2
]

ω0

)]

= kBT
∑

i

ln

[
1 − ζAζB

4ω4
0

(χ ′
ii(r,ω0))2 + ζAζB

ω0

(
∂χ ′

ii(r,ω0)

∂ω

χ ′
ii(r,ω0)

2ω2
0

− (χ ′
ii(r,ω0))2

4ω3
0

)]
.

Using the relation ln(1 + x) ∼ x valid at large r , the interaction
potential becomes

U (r)	 kBT

2ω4
0

ζAζB

∑
i

(
ω0

∂χ ′
ii(r,ω0)

∂ω
χ ′

ii(r,ω0)−(χ ′
ii(r,ω0))2

)
.

In particular, in the limit r � c/ω0, we have from Eqs. (4)

χ ′
ii(r,ω0) = σi

ε′(ω0)r3

∂χ ′
ii(r,ω0)

∂ω
= σi

r3

(
− 1

[ε′(ω0)]2

dε′(ω0)

dω0

)
with σ1,σ2 = −1, σ3 = 2. The interaction potential U (r) reads
as

U (r) = − 3kBT ζAζB

ω 4
0 [ε′(ω0)]2

1

r6

{
1 + ω0

d ln[ε′(ω0)]

dω0

}
. (36)

Here, the short-range nature of the potential is due to the
use of the Boltzmann distribution which equally weights the
normal mode energies. The cancellation of equal long-range
contributions with opposite sign [see Eq. (12)] follows. De-
spite resonance, we conclude that electrodynamic interactions
would have negligible effects with respect to Brownian motion,
so that electrodynamic interactions at thermal equilibrium are
not expected to play a significant role in the dynamics of
biomolecules.

VI. EXPERIMENTAL TESTS

As we have shown throughout the present work, from the
first principles of electromagnetism we can deduce the exis-
tence of electrodynamic interactions among biomolecules due
to the vibrations of their electric dipole moments. However, we
have also seen that this raises some important questions: (i)
Are these electrodynamic interactions sufficiently intense to
have any possible biological relevance? (ii) Are the different
attenuation mechanisms always so strong as to necessarily
suppress even intense electrodynamic interactions? In the
end, reliable answers to these questions will be obtained by
specific experimental tests. Notice that, following Fröhlich, in
order to excite sizable electrodynamic intermolecular forces
the excitation of collective molecular vibrations is needed to
bring about large vibrating dipole moments, and, moreover,
this can affect the biochemical reaction rates [9]. Thus, in
two recent papers [5,18] we have suggested how to test
the theory given in the present work by means of in vitro
experiments. Our proposal is to study how the diffusion
properties of biomolecules in electrolytic solution vary as a
function of the mean intermolecular distance (concentration)
once one has excited their collective vibrations. The numerical

simulations reported in Ref. [18] have been worked out for
physical parameters typical of biomolecules like proteins or
small fragments of nucleic acids and have shown a sharp
transitional phenomenon occurring at some critical (model
dependent) concentration. It has been found that this transition
happens at length, time, and concentration scales that allow
the application of several available experimental techniques
like forced Rayleigh scattering (FRS), fluorescence recovery
after photobleaching (FRAP), and fluorescence correlation
spectroscopy (FCS), to mention only a few. These kinds of ex-
periments could be performed by using identical molecules, or
the cognate partners of some ligand-receptor (protein-protein)
or DNA-protein interactions. In any case a crucial point is to be
able to excite some out-of-equilibrium collective vibration of
the biomolecules under investigation. In fact, as we have shown
in the present paper, and contrary to previous predictions [73],
electrodynamic interactions are not compatible with thermal
equilibrium. The lack of clarity on this point has most probably
been the reason why the long-range electrodynamic forces we
are after have hitherto eluded observation in spite of many
studies on the diffusion behavior of biomolecules in solu-
tion. An independent and complementary experimental test
would consist in verifying the activation of out-of-equilibrium
collective vibrations through spectroscopic techniques. These
collective excitations are expected, as already recalled in
the Introduction, in the 1011–1012-Hz frequency domain; this
domain is nowadays better accessible thanks to new terahertz
sources available [59]. In conclusion, an experimental proof
of concept would be obtained if, under ascertained out-of-
equilibrium collective excitation of some given biomolecules
(obtained, for example, by external energy pumping), the
above mentioned transitional phenomenon for the diffusion
coefficient would be observed. A more complex and still wide
open question is how to check the theory in some relevant
biological setup. However, there are already some interesting
possibilities available. For instance, in [74] the authors show a
blue-light-induced dimerization of proteins arabidopsis CIB1
and cryptochrome 2 (CRY2), and have tested the CIB1-CRY2
interaction in mammalian cells finding that after an initial pulse
of blue light a mutated version of CRY2 “rapidly translocated
to the plasma membrane.” The authors reported also the ability
of the CRY-CIB modules to induce activation of transcription
and of DNA recombination. These kind of in vivo experiments,
together with in vitro diffusion experiments performed on the
same molecules, are examples of prospective candidates to test
the possible biological relevance of the matter discussed in the
present work.
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VII. CONCLUDING REMARKS

In this paper, long-range electrodynamic interactions
(EDIs) between molecular systems have been investigated
within a classical framework. Our prime motivation concerns
biomolecular dynamics in a cellular environment. Poten-
tial functions, i.e., force fields, used in standard molecular
dynamics software packages [75,76] usually involve short-
distance two-body interaction potentials—i.e., which have
minimum influence beyond the Debye length—including
screened electrostatic Coulomb forces whose short-range
nature is explained by the large amount of ionic entities
located in the cell. However, Debye screening only applies
for static charges as it becomes inefficient when electric fields
with large enough frequency are involved, as was shown by
Oro [2]. Since proteins and DNA and RNA molecules are
characterized by high-frequency vibrational motions in the
terahertz domain or above [14], it is worth investigating how
forces of electrodynamic nature may influence the dynamics
of biomolecules, especially over long distances. EDIs are
well known in QED whereas almost no literature is available
on classical interactions. In this paper, we reported that
classical EDIs show similar properties as quantum interac-
tions in the dipole limit, i.e., at distances much larger than
the dimensions of the molecules involved. Whenever the
dipole moments of the molecules oscillate with the same
frequency, long-range resonance interactions proportional to
1/r3 are activated. Nonresonant conditions lead to short-
range interactions proportional to 1/r6. Numerical estimates
regarding resonance and off-resonance EDIs, e.g., the normal
frequency shifts or the equivalent dipoles, were provided in
Sec. III. The dipole moments needed to overcome thermal
noise at large distance could appear large compared to dipole
moments of small standard proteins. However, as suggested
by several authors, water ordering of the hydration layers
around proteins is expected to lead to more realistic values
of their effective dipole moments, whence stronger dipole
oscillations and enhanced resonant EDIs occur. Then, despite
damping mechanisms prevailing in a biological environment,
we have shown that a domain of physical parameters exists
for which electrodynamic interactions could be temporarily
sustained; this suggests that EDIs could be involved at some
stage of biomolecular dynamical organization. In Sec. IV,
comparison between classical and quantum EDIs was made.
In Sec. V, we emphasize why resonant interactions between
biomolecules need nonequilibrium to be effective at a long
distance, i.e., the excitation of one normal mode of the
interacting system should be statistically “favored” (far beyond
Boltzmann fluctuations) compared with other(s) modes. The
same conclusion was reached by Tuszynski et al. [77] from
numerical estimates. In Sec. II, normal modes have been
computed from equations of motion (1) omitting anharmonic
contributions, dissipative effects, as well as possible external
excitations of the oscillating dipoles. Dipole anharmonicities
would give rise to nonlinear interactions in normal coordinates.
In this case, one might expect long-lived nonequilibrium
states lacking energy equipartition among normal modes as,
for example, in the case of nonlinearly coupled harmonic
oscillators [78]. If so, in a biological context, metabolic energy
supply could be of utmost importance to maintain a high

degree of excitation in a specific mode despite energy losses.
This scenario was originally suggested by Fröhlich [79] who
proposed a dynamical model to account for such nonthermal
excitations in biological systems. In particular, he showed that
a set of coupled normal modes can undergo a condensation
phenomenon characterized by the emerging of the mode of
lowest frequency containing, on the average, nearly all the
energy supply [79]. In the case of two interacting molecules,
such a process could ensure the action constant of the
lowest frequency mode to be much greater than the action
constant(s) related to other mode(s). Of course, this would
result in an effective attractive potential whose amplitude is
dependent on the “stored” energy. Finally, it is worth noting
that retardation effects at large r bring about interactions with
a 1/r dependence [last terms in Eqs. (4)], i.e., of much longer
range with respect to the interactions proposed by Fröhlich.
This last result could be relevant for a deeper understanding
of the highly organized molecular machinery in living matter,
as emphasized in the Introduction and in Sec. VI.

ACKNOWLEDGMENT

This work was supported by the Seventh Framework
Programme for Research of the European Commission under
FET-Open grant TOPDRIM (Grant No. FP7-ICT-318121).

APPENDIX A: ELECTROMAGNETIC FIELD GENERATED
BY A TIME-VARYING SOURCE IN A MEDIUM

For the sake of clarity we outline below how the derivation
proceeds of Eqs. (4). The starting point is the D’Alembert
wave equation for the vector potential A in Fourier space (in
Lorenz gauge):[

k2 − ω2

c2
ε(ω)

]
A(k,ω) = 4π

c
J(k,ω). (A1)

Here, the dielectric constant ε(ω) is simply due to the
constitutive relation linking the displacement field D and
the macroscopic electric field E in a homogeneous isotropic
dielectric medium: D(k,ω) = ε(ω)E(k,ω). From Eq. (A1),
A(r,ω) can be computed by inverse Fourier transform:

A(r,ω) = 4π

c

[
1

(2π )3

∫
d3k

J(k,ω)

k2 − ω2ε(ω)/c2
eik·r

]
,

and by convoluting with the inverse Fourier transform of J we
get

A(r,ω) = 4π

c

∫
d3r ′

[
1

(2π )3

∫
d3k

eik·(r−r ′)

k2 − ω2ε(ω)/c2

]

× J(r ′,ω). (A2)

The kernel is computed using spherical coordinates and
integrating over the angles:

I (r,ω) ≡ 1

(2π )3

∫
d3k

eik·r

k2 − ω2ε(ω)/c2

= 1

(2π )3

∫ ∞

0
k2dk

∫ π

0
sin(θ )dθ

×
∫ 2π

0
dϕ

eik cos(θ)r

k2 − ω2ε(ω)/c2
,
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where, without loss of generality, the z axis of the Cartesian
coordinate system has been taken along r , so that k · r =
k cos(θ )r . We show that I (r,ω) satisfy

I (r,ω) = −i

(2π )2r

∫ ∞

0
dk

k

k2 − ω2ε(ω)/c2
[eikr − e−ikr ].

In order to use the residue theorem, k is substituted with −k

in the second term of the integrand to give

I (r,ω) = −i

(2π )2r

∫ ∞

−∞
dk

k

k2 − ω2ε(ω)/c2
eikr .

Then the function

f (z) = zeizr

(
z2 − ω2

c2
ε(ω)

)−1

,

is integrated on the semicircular contour of the upper complex
plane which includes the real axis. In this case, |zf (z)|
approaches zero as |z| approaches +∞. Of the two simple
poles of f at z = ±z0 = ±ω

√
ε(ω)/c only one of them is

located inside the contour. When Im(ω
√

ε(ω)) > 0, the pole
will be +z0, and vice versa. Hence, I is simply found to be

I (r,ω) = 1

4πr
e±iω

√
ε(ω)r/c, (A3)

when Im(ω
√

ε(ω)) is positive or negative, respectively, and
Eq. (A2) yields

A(r,ω) = 1

c

∫
d3r ′ e

±iω
√

ε(ω)||r−r ′||/c

||r − r ′|| J(r ′,ω). (A4)

Assuming the current J(r ′,ω) is due to a molecule whose
center of mass is far from where the field is measured, one can
take r � r ′ and ||r − r ′|| can be approximated as

||r − r ′|| = r

√
1 − 2 r ′ · r

r2
+
(

r ′

r

)2

	 r − r ′ · n + · · ·

where we have let n ≡ r/r . Thus

e±iω
√

ε(ω)||r−r ′||/c

	 e±iω
√

ε(ω)r/c

(
1 ∓ iω

√
ε(ω)

c
r ′ · n + · · ·

)
. (A5)

Likewise, one has

1

||r − r ′|| = 1

r

(
1 − 2 r ′ · r

r2
+
(

r ′

r

)2
)−1/2

	 1

r
(1 + r ′ · n + · · · ). (A6)

1. Dipole approximation

Considering only the first terms of the expansion in
Eqs. (A5) and (A6), as a first approximation, one gets

A(r,ω) 	 e±iω
√

ε(ω)r/c

cr

∫
d3r ′ J(r ′,ω)

	 −e±iω
√

ε(ω)r/c

cr

∫
d3r ′ r ′(∇ · J(r ′,ω)).

Making use of the continuity equation, one finds

A(r,ω) = − iω

cr
e±iω

√
ε(ω)r/c μ(ω), (A7)

where μ(ω) = ∫
d3r ′r ′ρ(r ′,ω) is the (macroscopic) dipole

moment associated with the distribution of charge ρ of
a molecule. Using (macroscopic) Maxwell equations B =
∇ × A and ∇ × B = J − iωε(ω)E/c, we can easily find
the magnetic and electric components of the radiation field:

B(r,ω) = iω
√

ε(ω)

c

e±iω
√

ε(ω)r/c

r2
(n × μ(ω))

×
(

1 ∓ iω
√

ε(ω)r

c

)
, (A8)

E(r,ω) = − ic

ωε(ω)
J(r,ω) − e±iω

√
ε(ω)r/c

ε(ω)r3

×
{

[μ(ω) − 3n(n · μ(ω))]
(

1 ∓ iω
√

ε(ω)r

c

)

× −[μ(ω) − n(n · μ(ω))]
ω2ε(ω)r2

c2

}
. (A9)

Again, let us stress that these equations are valid for r large
with respect to the size of the molecule. Hence, we can assume
J(r,ω) = 0 in Eq. (A9) and write the electromagnetic field in
the compact form

B(r,ω) = χB(r,ω)μ(ω),
(A10)

E(r,ω) = χE(r,ω)μ(ω),

where χB(r,ω) and χE(r,ω) are the susceptibility matrix of
the magnetic and electric fields. In particular, χB(r,ω) and
χE(r,ω) can be given in a diagonal form by taking the z axis
along n. In this case,

χB
12(r,ω) = χB

21(r,ω)

= iω
√

ε(ω)

c

e±iω
√

ε(ω)r/c

r2

(
1 ∓ iω

√
ε(ω)r

c

)
,

and χB
ij (r,ω) = 0 elsewhere, (A11)

regarding the magnetic field, and

χE
11(r,ω) = χE

22(r,ω) = −e±iω
√

ε(ω)r/c

ε(ω)r3

×
(

1 ∓ iω
√

ε(ω)r

c
− ω2ε(ω)r2

c2

)
,

χE
33(r,ω) = 2e±iω

√
ε(ω)r/c

ε(ω)r3

(
1 ∓ iω

√
ε(ω)r

c

)
, and

χE
ij (r,ω) = 0 for i �= j, (A12)

regarding the electric field.
Equation (A12) is the same as Eq. (4) of Sec. II where

we considered two harmonic dipoles A and B, so that μ in
Eq. (A10) should be replaced by μ(ω) = μA,Bδ(ω − ωN ).
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APPENDIX B: USE OF COMPLEX ANALYSIS TO
ESTIMATE OFF-RESONANCE AND RESONANT

FREQUENCY SHIFTS

1. Off-resonance case

To find explicit solutions of Eq. (7), we apply the Lagrange
inversion theorem of complex analysis which states the
following [80]:

Let C be a contour in the complex plane, and let f a
function analytic inside, and on C . Let � be another function
which is analytic inside it and on C except at a finite number
of poles. Noting a1, . . . ,an the zeros of f in the interior of C ,
of degree of multiplicity r1, . . . rn, and b1, . . . ,bm the poles of
f of degree of multiplicity s1, . . . ,sm, one has the following
formula:

n∑
j=1

rjf (aj ) −
m∑

k=1

skf (bk) = 1

2iπ

∮
C

dzf (z)∂z ln �(z).

(B1)
In the present context, if C is a contour on and inside which

�i,± is analytic, and that contains only one solution ωi,±(r)
of Eq. (7), f can be taken as the identity function and � as
�i,±(r,ω), so that

ωi,±(r) = 1

2iπ

∮
C

dz z ∂z ln �i,±(r,z). (B2)

Now, regarding the contour, we choose C on the right part of
the complex plane (complex numbers with positive real values)

and we suppose that the inequality

ζAζB(χ ′
ii(r,z))2

ω2
A − ω2

B

<
∣∣z2 − ω2

A,B

∣∣ (B3)

holds for all z on the perimeter of C . On the other hand, since
each χ ′

ii , i = 1,2,3, is a sum of inverse power laws of r , we
can assume that, for large r , relation (B3) is satisfied. In this
case, by applying Rouché’s theorem, it is seen that ωA,B is
located inside C . Thus, by inserting Eq. (7) into Eq. (B2), one
has

ωi,±(r) = 1

2πi

∮
C

dz z ∂z ln
[
z2 − ω2

A,B

]
︸ ︷︷ ︸

ωA,B

+ 1

2πi

∮
C

dz z ∂z

× ln

[
1 ∓ ζAζB(χ ′

ii(r,z))2(
z2 − ω2

A,B

) (
ω2

A − ω2
B

)
]

. (B4)

The second integral is computed by integration by parts.
After Taylor expansion of the logarithm, one gets

ωi,±(r) 	 ωA,B ± 1

2πi

∮
C

dz
ζAζB(χ ′

ii(r,z))2(
z2 − ω2

A,B

) (
ω2

A − ω2
B

) ,
(B5)

at lowest order. On the other hand, since the function
ζAζB(χ ′

ii(r,z))2/(z + ωA,B)(ω2
A − ω2

B) is analytic everywhere
inside C , we can make use of Cauchy’s integral formula to
find exactly Eq. (8).

2. Resonance case

Similarly to the nonresonant case, we find that if �i,±(r,z) of Eq. (11) is analytical inside and on a contour C around ωi,±,
and for which the inequality

√
ζAζBχ ′

ii(r,z) <
∣∣z2 − ω2

0

∣∣ , (B6)

is valid for all z on C , then ω0 is also located inside the contour and the solution ωi,±(r) may be given by

ωi,±(r) = 1

2πi

∮
C

dz z ∂z ln
[
z2 − ω2

0

]
︸ ︷︷ ︸

ω0

− 1

2πi

∮
C

dz ln

[
1 ∓

√
ζAζBχ ′

ii(r,z)

z2 − ω2
0

]
. (B7)

In comparison with Eq. (7), Eq. (11) is exact, so it makes sense to write the complete series expansion of the logarithm:

ωi,±(r) = ω0 +
∞∑

n=1

(±1)n

2πin

∮
C

dz

{√
ζAζBχ ′

ii(r,z)

z2 − ω2
0

}n

= ω0 +
∞∑

n=1

(±1)n

2πin

∮
C

dz
1

(z − ω0)n

{√
ζAζBχ ′

ii(r,z)

z + ω0

}n

. (B8)

Hence, Cauchy’s integral formula may be applied at all orders to the function in brackets since it is analytic inside and on C :

ωi,±(r) = ω0 +
∞∑

n=1

(±1)n

n!

dn−1

dωn−1

[{√
ζAζBχ ′

ii(r,ω)

ω + ω0

}n
]

ω=ω0

. (B9)

Using similar arguments, it may be shown that any function f analytic on and inside C may be expanded as a power series
in ωi,±(r) through the formula

g(ωi,±(r)) = g(ω0) +
∞∑

n=1

(±1)n

n!

dn−1

dωn−1

[
g′(ω)

{√
ζAζBχ ′

ii(r,ω)

ω + ω0

}n
]

ω=ω0

. (B10)

By considering Eq. (B9) at lowest order, one exactly obtains Eq. (12) of the main text.
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[77] J. A. Tuszyński and E. K. Strong, Application of the Fröhlich
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