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Effects of aging in catastrophe on the steady state and dynamics of a microtubule population
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Several independent observations have suggested that the catastrophe transition in microtubules is not a
first-order process, as is usually assumed. Recent in vitro observations by Gardner et al. [M. K. Gardner et al., Cell
147, 1092 (2011)] showed that microtubule catastrophe takes place via multiple steps and the frequency increases
with the age of the filament. Here we investigate, via numerical simulations and mathematical calculations, some
of the consequences of the age dependence of catastrophe on the dynamics of microtubules as a function of the
aging rate, for two different models of aging: exponential growth, but saturating asymptotically, and purely linear
growth. The boundary demarcating the steady-state and non-steady-state regimes in the dynamics is derived
analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show
that aging leads to nonexponential length distributions in steady state. More importantly, oscillations ensue
in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the
autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that the
age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a

microtubule population, distinct from hitherto identified ones.
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I. INTRODUCTION

The dynamic instability in microtubules [1,2], in particular,
the catastrophe transition by which a growing filament abruptly
starts shrinking, has been the subject of extensive experimental
and theoretical studies over several decades. The recently
discovered phenomenon of aging in microtubule catastrophe
by Gardner et al. [3] brings to light some new aspects of the
catastrophe transition. Contradicting the long-standing view
that (in the absence of depolymerizing proteins) a filament is
equally likely to undergo catastrophe at any instant of time, it
was observed that the probability of a microtubule to undergo
catastrophe depends on how long it has been growing; the
older the microtubule is, the higher the probability to undergo
switching. Irrespective of tubulin concentration, the measured
catastrophe frequency exhibited a nonlinear dependence on
the age of the microtubule, increasing linearly during the early
stage of growth and then approaching a steady state (Fig. 3
E of Ref. [3]). Also, the presence of depolymerizing proteins
was observed to affect the aging process; for example, Kip3p
accelerated the rate of aging, while in the presence of MCAK
catastrophe was observed to become a first-order process. Until
this observation was made, it was generally believed that the
microtubule catastrophe is a single-step stochastic event with
no memory associated with it and hence usually modeled as a
first-order process. Within this framework, many theoretical
models have been set up in an attempt to understand the
intrinsic dynamics of microtubules [4—7]. It has been shown
by Verde et al. [4] that the microtubule length distribution
follows a simple exponential decay in the bounded growth
regime when the switching rates are constants.

Available experimental and simulation studies suggest that
the origin of the aging phenomenon lies in the multifilament
structure of a microtubule [3,8]. A microtubule typically
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consists of 13-14 protofilaments wrapped in a cylindrical
structure. During the early stages of growth, when all the
protofilaments are of nearly equal length, the entire filament is
structurally stable because of strong lateral bonding between
protofilaments. As the filament grows longer, the tip of the
microtubule becomes more and more tapered, weakening the
lateral bonding between protofilaments, and makes the fila-
ment more susceptible to undergo catastrophe. In this regard,
the structural defects responsible for the switching of the
filament grow with time, until finally the filament undergoes
catastrophe. An alternate view is that catastrophe requires the
loss of a guanosine triphosphate (GTP) tip in a minimum
number of protofilaments and hence its kinetics could be
visualized as a multistep process, each step requiring the
completion of the previous one for its materialization [3,9,10].

The possibility that the kinetics of the plus end in micro-
tubule dynamics may be non-first-order was suggested first by
Odde et al. nearly two decades ago [11] and more recently by
Stepanova et al. [12]. In Ref. [11], based on a probabilistic
analysis of the experimentally observed growth time distribu-
tions, the authors showed that the plus and minus ends of a
microtubule follow different kinetics. For the minus end, the
growth time distribution could be described as exponential
decay, characteristic of first-order kinetics, whereas for the
plus end, it turned out to be nonexponential; the experimental
data in this case fitted well gamma distribution. Since the
gamma distribution characterizes a multistep process, it was
inferred that a growing microtubule (at the plus end) has to
go through a sequence of events in order for catastrophe to
occur. A new parameter was introduced to describe dynamic
instability, apart from v, (catastrophe frequency), v, (rescue
frequency), v, (growth velocity), and vy (shrinking velocity),
viz., the shape parameter r of the growth time (or, equivalently,
time until catastrophe, hence also called catastrophe time)
distribution (gamma distribution). The value of the shape
parameter that gave a reasonably good fit to the experimental
dataisr ~ 3, suggesting that catastrophe takes place in a series
of three steps, with each individual step being characterized by
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FIG. 1. (Color online) Fit of the experimental data given in
Fig. 1D in Ref. [3], using the expression for the age-dependent
catastrophe frequency given by Eq. (1). A simpler linear fit given
by Eq. (7) is also shown (see Sec. II for a discussion). The best-fit
parameter values for the nonlinear curve given by Eq. (1) are
v™* = 0.3 min~! and A = 0.273 min~!, while for the linear curve
B =0.038 min~2 and A = 0.0072 min~".

rate constant § ~ 1.67 min~'. Later, Odde and Buettner [13]
showed that oscillations in state (growth and shrinkage) arise
as a natural consequence of the non-first-order kinetics of
catastrophe and rescue processes.

In the present paper we develop a mathematical model
of dynamic instability, wherein the evolution of catastrophe
frequency with the age of the filament is explicitly taken into
account. Motivated by experimental observations of Gardner
et al. [3], we assume here that the age-dependent catastrophe
frequency is given by the phenomenological expression

Ve(T) = V(1 — e7T), (1)

where v is the asymptotic value, A is referred to as the aging

rate, and 7 is the age, i.e., the time spent by the filament in
the growing state after the last rescue event. In this sense, we
assume the age of a filament as being given by an internal
clock in the filament, the reading of which is reset to zero at
every catastrophe and which starts “ticking” as soon as rescue
happens. For simplicity, and for lack of strong evidence to
the contrary, we assume that rescue events follow first-order
kinetics characterized by a rate v,. A fit of Eq. (1) to the
experimental data in [3] is shown in Fig. 1.

The motivation for choosing the above expression is
primarily its mathematical simplicity, which makes it suitable
for further calculations. A similar, but not exactly identical,
mathematical form for aging of catastrophe also emerges
naturally within a recently proposed model [10] where the
transition is modeled as a first-passage process such that a
threshold number of protofilaments is required to lose their
individual GTP tips by hydrolysis for it to happen. For details
we refer the reader to Ref. [14]. In Ref. [3], by comparison,
it is assumed that the catastrophe time distribution (to be
discussed in Sec. II) is represented by a gamma distribution,
similar to [11]. Here too the catastrophe transition is visualized
as a first-passage event and requires the occurrence of a
threshold number r of underlying events, but each event is
assumed to occur with the same rate 0. In this case, the
precise nature of the underlying events is not specified in
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detail. Both the exponential aging function in Eq. (1) and the
corresponding function derived from the gamma distribution
fit the experimental data almost equally well; see Fig. 1 in
Ref. [14].

A brief summary of our results is as follows. As a direct
consequence of Eq. (1), the distribution of time intervals
corresponding to the growth phase is found to be nonmono-
tonic (Sec. II). The Fokker-Planck equations for microtubule
dynamics in the presence of aging (set up in Sec. III) lead
to a number of analytical results, presented in Sec. IV. In
particular, the stationary length distribution is nonexponential,
approaching a half-Gaussian form in the limit A — 0, while the
standard exponential decay is recovered in the limit A — oo.
Exact mathematical expressions for the length autocorrelation
function are derived in Laplace space, but, in general, explicit
inversion is found difficult. Numerical simulations (Sec. IV)
show that the autocorrelation function possesses a negative
lobe, signifying oscillatory behavior, the half period of which
is measured as a function of aging rate A, v;™, and v, /vy,
the ratio of growth and shrinkage velocities. The numerically
computed velocity autocorrelation function also shows similar
properties. For near-experimental parameter values, the half
period of length oscillations is found to be in the range of
~5-10 min. In this context, we also make a comparison
with experimental observations of chromosome oscillations
in Sec. V.

II. CATASTROPHE TIME DISTRIBUTION

In this paper we introduce the age of the filament t as
a variable that describes the state of a growing filament
(in addition to its length) irrespective of the origins of the
aging effect. Although rescue events are not reported in the
experiments by Gardner et al. [3], here we take a step a forward:
We assume that if rescue events are present, after every rescue,
a filament starts to grow as a fresh filament without any
structural defects. Age is reset to zero at each catastrophic
event, which again starts to grow linearly with time upon
the rescue of the filament. Since our objective is to explore
the consequences of age-dependent catastrophe on dynamic
instability, we do not consider explicitly microscopic events
such as the addition or removal of monomers and hydrolysis;
these enter the formalism implicitly through catastrophe and
rescue rates [6,10,15,16].

In the present study we use the two-state continuum
approach model proposed by Verde et al. [4], where the
dynamics is captured by a pair of coupled first-order partial
differential equations at a macroscopic level. Many mathe-
matical models have been formulated in the past, based on
this two-state approach to explore dynamic instability and its
applications, e.g., microtubule oscillations [17,18], dynamics
under confinement [19,20], search for targets [20-22], and the
effects of regulators [23,24].

Let us denote by T the time until catastrophe (referred to as
the catastrophe time), starting from a rescue event at 7 = 0.
Then the probability distribution for 7 is given by

T
fe(T) =v.(T)exp <—/ vc(t)dr> . 2)
0
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After substituting Eq. (1) into Eq. (2), we find
f(T) = v;naxea{(l —e*yexp [ — (vé“aXT + ae‘”)]},
(3)

for which the following limiting cases are of special interest:

Sfe(T) ~ vI™e® exp ( - v;na"T), AT > 1 )
flT) ~ BT PP AT <« 1, 5)

where we have defined the parameters

vmax
a=-"-—, B=v%r (6)
A
Note that the latter regime (AT < 1), if extended to all times,
formally corresponds to a linear dependence of catastrophe
frequency on age, i.e.,

ve(7) = BT, (7

which we call the linear model, to distinguish it from the
exponential model given by Eq. (1) (note that even the linear
model fits the experimental data reasonably well; see Fig. 1).
Both models will be studied in this paper. The linear model
turns out to be more amenable to mathematical analysis; see,
for instance, Sec. IV B for an explicit analytical expression for
the length autocorrelation function.

The distributions in Eqs. (3) and (5) are nonmonotonic
functions of T (see Fig. 2), with the maxima, corresponding
to the most probable switching time, located at

1 2a
Tm=—1n exponential model),
A |:1+2a—«/1+4oz:| (exp )
1
Tm = — (linear model). 8)
" VB

In the limit & > 1, the expression for the exponential model
approaches that of the linear model, as expected. The average
time until catastrophe is calculated as

T, = /dT f(TT. 9)
0.4 —
— A=Smin’
== A=0.5 min"
0.3\ |= 2=0.05 min’ ]
o B=0.05 min?| 3T

e
—
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FIG. 2. (Color online) Probability distribution function for catas-
trophe time (growth time) given by Eq. (3) for different A values
with v™* = 0.5 min~'. The dotted curve gives the catastrophe time
distribution for the linear model with 8 = 0.05 min~2. Shown in the
inset is the scaled average catastrophe time for the exponential model,
given by Eq. (10) as a function of «.
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Using Eqgs. (3) and (9), we find, for the exponential model,

aZe? n (—1)a” 1 !
T. = - ’
vénax ; n! |:(Ol —+ n)2 [Ol + (n + 1)]2i|

(10)
with the limiting behavior T, ~ 1/v* as A — oo, corre-
sponding to the constant catastrophe case. For the linear model
in Eq. (7), we find, similarly,

=1/ (11)
c — 4 ﬂ .

The nonmonotonic behavior of f.(T), by virtue of the
tightening of the direction reversal times (see Fig. 2), opens
up the possibility of oscillatory dynamics, which we explore
in detail in Sec. IV B later using autocorrelation functions.
Numerical simulations indicate that oscillations occur when
the aging rate (in the exponential model) and rescue frequency
are sufficiently small.

III. CONTINUUM EQUATIONS FOR THE TWO-STATE
STOCHASTIC MODEL

According to the two-state stochastic model, a given
microtubule exists in either the growing state or shrinking state
during its lifetime. A third state, called the pause state, is also
possible where the filament neither grows or shrinks [2]. In the
present study we ignore the existence of the pause state, as well
as the structural details of the filament, although such details
may implicitly affect the catastrophe rate. A microtubule
nucleates from a nucleation center at a rate v (birth) and it
may disappear completely by shrinking to length zero (death).
In between birth and death, a microtubule switches between
growing and shrinking states; switch from growing state to
shrinking state (catastrophe) takes place at a rate v.(7) [given
by Eq. (1), including the limiting linear form] and the reverse
transition takes place at a rate v, (rescue), which is taken to be
a constant. The growth velocity is denoted by v,, the shrinkage
velocity by v, and the length by x.

Let us now denote by G j(x,r,t |x0,0)dxdt the probability
to find a filament in the growing state with length and age
in the ranges [x,x +dx] and [7,7 + dt], respectively, at
time ¢. Similarly, Go;(x,t|xo)dx gives the probability to find
a filament in the shrinking state with length in the range
[x,x + dx] at time ¢. In both cases, x( is the initial length
and j = 1,0 indicates the state of growth or shrinkage at = 0.
Note that the age variable 7 is relevant only in the growing state
and is therefore present only in one set of Green’s functions,
for which the primed notation is used.

The variables x and 7 evolve according to the following
equations:

dx dt I ing state)

— =V, _— = rowing state),

dat % drt g &

dx L

T —v;, T =0 (shrinking state). (12)

The Green’s functions then satisfy the following differen-
tial equations, which suitably generalize the corresponding
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equations for constant catastrophe rate, with aging ab-
sent [4,5,7]:

8G/1j(x,t,t|x0,0)
at
B E)G’lj(x,r,t|xo,0) B BG’lj(x,t,t|x0,O)
- 0x ot
- Uc(f)Gﬁj(X,T,ﬂxo,O) +v,.Goj(x,t|x0)d(tr), (13)
9Go;(x,t]xg) v 0Go;(x,t]x0)
ot ' dx

o0
+ / dt v (1)GY(x,7,1|x0,0)
A .

—1,Goj(x.1]x0). x>0, (14)

Note that resetting of age to zero in the shrinking state
is achieved through the introduction of a delta function in
Eq. (13). The Green’s functions satisfy the normalization
condition [;°[G1;(x,t|x0) + Goj;(x,t|x0)ldx = 1, where

oo
Glj(x,t|x0)5/ G/lj(x,t,r|x0,0)dr. (15)
0

IV. RESULTS
A. Length and age distribution
Many microtubule-dependent functions in the cell depend
on the spatial organization of microtubules and hence a
quantity of primary interest is their length distribution. In the
case of constant switching rates, Verde et al. [4] have shown

that a microtubule population reaches a steady state with a
stationary length distribution when

VeUs > VrUg, (16)

in which case the lengths are exponentially distributed, with
mean length (x) = (v./vy — v, /v5)~'. To understand how
these results are modified in the presence of age dependence
in catastrophes, we start by defining the stationary length
distributions

P/(x,7) = lim G’lj(x,t,t|x0,0),
—>00
Py(x) = lim Go;(x,t]x0), 17
—>00
which satisfy the following steady-state equations, obtained by
setting the left-hand side equal to zero in Eqs. (13) and (14):

dP/(x,7) dP/(x,7)
v = -
£ 9x dt

— V(D) P{(x,7) + v, Po(x)8(7),
(18)

aP()()C) _
ax

To solve Eqgs. (18) and (19) we assume, for simplicity,
that the nucleation rate is very large such that nucleation of a
new filament takes place instantaneously once a microtubule
disappears at that site; hence the net flux at the boundary is
zero. The resulting flux balance condition at the boundary
x = 0 can be written as

Vs Po(x)3(T)|x=0 = Vg Pl/(xyt)|x:0 (20)

_ /OO V(D) P{(x,0)dT + v, Pox).  (19)
0

s
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and we define Jy = vy Po(x)|r=o. We now Laplace transform
x — p in Eqgs. (18) and (19) by defining

oo

o0
Bl(p.1) = / e 7% Pl(x,T)dxs Polp) = / e P Po(x)dx.
0 0

2L

After applying the above transformations in Egs. (18) and (19),
followed by simplifications (see Appendix A for details), we
arrive at the expression

N Jovs
Pl(p,t) = [ 00sP }

Vsp — Vr[1 - é‘(p)]
X eXp (—vgpr - /t vc(r')dr/), (22)
0

where the function ¢ (p) is given by Eq. (A8). After integrating
out t from Eq. (22), we obtain

Jovsp
vp — Ve[l = 2(p)]
where 1(p) is given by Eq. (A9). Similarly,

Jo[1 = ¢(p)]
UspD — Vr[l - ;(p)]

Both Egs. (23) and (24), together with the normalization
property of the probability distribution functions (PDFs), are
used to find the expression for Jy for specific forms of v.(7).

Exponential aging. We use the form of v.(t) givenin Eq. (1)
to calculate ¢ (p) and n(p) from the integrals given by Eqs. (A8)
and (A9). The expression for Jy, fixed using normalization, i.e.,
Z;’:o,l P;(0) = 1, turns out to be

Pi(p) = [ }7(17), (23)

Py(p) =

(24)

5= Vg — v ve[1 + ea ¥y (a + 1,a)]
O (vl + ey (e + L]

(25)

Here y(o + 1,&) is the lower incomplete gamma function,
defined [25]

Z
y(a,z) = / et dr, (26)
0

and the dimensionless constant « is defined in Eq. (6). In the
limitoe — 0 (L — 00), the term in square brackets approaches
unity. A steady state is guaranteed only if the numerator of
the expression in Eq. (25) is positive, thus for age-dependent
catastrophe of the form in Eq. (1), the condition given by Verde
et al. [4] is modified as

Vs > v [1 4+ e*a "y (o + La)l. 27

c

max

In the limit A — oo the above condition reduces to v

Vg

6nfortunately, it is not possible to invert the Laplace trans-
formsin Egs. (23) and (24) explicitly, except for the special (but
experimentally relevant) case v, = 0. After substitution of the
required ¢ (p) and n(p) from Eqgs. (B1) and (B2), respectively,
we find that the length distribution P(x) = ) j=0.1 P;(x) has
the form (for details see Appendix B)

Vg >

max

P(x) = Aexp <— be

Vg

X — ae(_'\/"g)x> , (28)
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with the normalization constant given by

vmaxea

A= ¢ . 29
Ve[l +eay(a + 1,0)] @)

The state-specific distributions are given by P;(x) = ¢ P(x)
and Py(x) = (1 — ¢)P(x), where ¢ = v, /(v + vy). The var-
ious limiting behaviours of the distribution in Eq. (28) are as
follows:

Apax
P(x) cxexp| — X7 ]
2vg

P(x) x exp |:— (vc x + e("l-"‘“/vg)x>:| . A=ur (30)

Vg

max
vl )
X,
Vg

The first two moments of the distribution in Eq. (28) are of

interest: These are
-1 )n 1 (3 | )
(a +n)?

sz ad
2Av* > (- 1)" " 1
<) Z [(a +n)? } G2

- )\2 Z
Linear aging. It is also interesting to study separately the
implications of a linear increase in catastrophe with age. In
this case, the current at the boundary turns out to be

P VVen/T /2B
O o FvVA2B

The inverse Laplace transform of Egs. (23) and (24), with n(p)
and ¢(p) given by expressions (B7) and (B8), respectively,
leads to the length distribution (in this case, half Gaussian)

2
PQ) = /32 o~ B/ (34)
\ 702

which is identical to the first limiting case in Eq. (30).

Some parallels with the related problem of length-
dependent catastrophe are worth mentioning here. In the
absence of rescue, the length of a filament is given by
VT, i.e., x o7, suggesting that in this case, the age-
dependent and length-dependent catastrophes are effectively
the same, although the underlying mechanisms are quite
different. Experimental evidence suggests that the intrinsic
dynamics of microtubules can be regulated by the presence of
microtubule-associated proteins. A special class of proteins
known as depolymerizing proteins is capable of enhanc-
ing the catastrophe rate. A widely studied example is the
microtubule depolymerizer Kip3p, belonging to the kinesin
8 family, which is known to increase the catastrophe rate
in a length-dependent manner [26]. Several authors have
studied deploymerizer-induced length-dependent depolymer-
ization and catastrophe [24,27-30]. Tischer et al. [24] have
shown that in the presence of length-dependent transition rates
(both rescue and catastrophe) the length distribution develops
apeak, implying a tighter regulation of lengths. In fission yeast

)\, << v;nax

P(x) x exp (— A > v,

and

(33)
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experiments reported in Tischer et al. [31] where rescue was
found to be absent but catastrophe increases nearly linearly
with the length of the filament, it was predicted that the length
distribution is half Gaussian, identical to Eq. (34).

Age distribution. The steady-state age distribution in the
growing state is defined as

o0
p(r) = / P{(x.0)dx, (35)
0
where P[(x,7) is given by the inverse Laplace transform of

Eq. (22) with respect to p. The result (which is independent
of v,)is

ra exp( v — oce’“) .
p(t) = (exponential model)
y(a,0)
(36)
with limiting behaviors
p(t)oxe ™ T, ar>1
p(t) e P72 AT <« 1. (37)

In the linear model, the age distribution is half Gaussian at all
times, consistent with Eq. (34):

o(t) =,/ %e’ﬁrz/z (linear model). (38)

B. Autocorrelation functions

We will now investigate further the effects of aging, as well
as the consequent change in the catastrophe time distribution,
on correlation functions. In general, we expect that the
observed peak in the distribution of catastrophe time (Fig. 2)
would make the catastrophe transition more deterministic and
predictable and hence may confer an oscillatory nature to
microtubule dynamics. Microtubule oscillations are a well-
studied phenomenon experimentally [32-36], but here the
oscillations generally refer to periodic changes in free tubulin
concentration due to polymerization and depolymerization
of filaments. The exception is the work by Odde and Buet-
tner [13], in which the authors considered dynamic instability
as a two-state jump process with gamma distributed residence
times in each state. The autocorrelation function for the growth
state was shown to exhibit oscillations.

In this study we first look at the autocorrelation in length
of a microtubule assembly. In terms of the Green’s functions
Gi; (13) and (14) and probability distributions P; defined in
Secs. III and IV A, respectively, the partial autocorrelation
functions for length is defined as

(x(0)x (1)) /dxo / dx xoxG;j(x,t|xo) Pj(x0). (39)
Next, by summing Eq. (39) over all the initial and final states,
we define

Ci(t) =Y _(x(0)x (1)) (40)
i,j
in terms of which the normalized autocorrelation is given by
Cr(t) = (x)°
Ci(0) = T (4D

X
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where 02 = (x?) — (x)? is the variance in length. The normal-
ization ensures that C,(0) = 1.

The calculations of the autocorrelation function for the
exponential model turned out to be cumbersome, and hence
explicit results were derived only in the limit A — oo (constant
catastrophe). For the linear model, explicit results could be
obtained in Laplace space. We present our results for these
cases Now.

1. Case 1: Constant catastrophe . — oo

When we set A = oo strictly, the Green’s functions G ;
depends only on x and not on t. Then Eqgs. (13) and (14)
reduce to

3Gy ntix) | 9GHEIX0)  max (o)
= c A

ot 8 ox
+v,Goj(x,t]x0), (42)
0Go:(x.t 0Goj(x,t
Oj(x |x0) = v, Oj(x |x0) + \;ZnaXGlj(X,ﬂXo)
ot 0x
— eroj(X,ﬂxO)- (43)

Equations (42) and (43) are solved by taking the Laplace
transform with respect to both time and space [see Egs. (C1)
and (C2)]. Using Eq. (41) and setting v, = 0 in Egs. (C1)
and (C2), after a series of calculations we arrive at the
following simple expression for the length autocorrelation
function:

max
t

vse—u;““z _ vge—(vx/vg)vc

Cx(t) =

(v, =0). (44)

Vg — Vg
In particular, in the limit vy, — v, this expression becomes

Ci(t) = e " (1+vM™1) (v = 0,0, = vy). (45)

2. Case 2: Linear aging v.(t) = Bt

Equations (13) and (14) are solved by taking transforms,
with v.(7) given by Eq. (7) (see Appendix C). By setting v, = 0
in Egs. (C9) and (C10) and using Eq. (40), we find the Laplace
transform of the unnormalized correlation as

2 2.2 2
~ v e erf 2 v, S 2
C.(s) = £ 4 —v;ebz 5 erfe(as) Vg, | — — 8 e’ erfc(cs)
sB s%ePs” erfc(bs) B P

Vs Vg 2 Ug 22 2.2
— — + —= [—e"" erfc(as)e’ erfc(ces),
s2 \ 7B 28
(46)
where the constants a, b, and ¢ are defined as
1 Vg
a= c= b=a+c.

V2B’ vs/2B°
As a consistency check for the expression in Eq. (46), we note
that

2

lim sC..(s) = lim(x(0)x(?)) = (x*) = vg, , 47)
§— 00 t—0 )\,])éndx
while
- 202
limsC.(s) = lim (x(0)x(1)) = (x)* = £ (48)
s—0 t—00 7[)\\)2“3’(

PHYSICAL REVIEW E 91, 052704 (2015)

both of which agree with direct calculations, starting from the
distribution in Eq. (34).

It turns out being difficult to extract more information about
the time dependence of the function C.(¢) from the transform
in Eq. (46), as the latter does not have a standard form that
can be explicitly inverted. Therefore, to understand it better,
we turn to numerical simulations; the results are presented in
the next section.

Finally, the velocity autocorrelation (numerical results will
be discussed in the next section) is studied by defining a
state variable S(¢), which takes value 41 or —1 depending
on whether the filament is in a growing or a shrinking state,
respectively, at time . Then the instantaneous velocity of the
filament is

v(t) = v, <@> — v (#) (49)

and the variable S(#) switches from +1 to —1 at an age-
dependent rate v.(7) and the reverse transition occurs at a
rate v,. Therefore, the velocity autocorrelation can be easily
expressed in terms of the state autocorrelation functions,
defined as

Cl(1) — (S)?
Cs(t) = D (SO)S1))j. Cs(t) = G0 — 1

o
ij S

. (50)

where 082 = 1 — (S)?isthe variance in S(¢). In particular, when
Vg = Vg, v(f) =, S(¢) and hence the normalized velocity
autocorrelation C,(t) = Cs(t) itself.

C. Numerical simulations

Given the difficulties in inverting the Laplace transforms,
it became necessary to carry out stochastic numerical sim-
ulations to complete our study. A fixed time step (rather
than Gillespie [37]) algorithm is used in simulations as the
distribution of catastrophe time is nonexponential when aging
is present. In the simulations, each of the microtubules is
allowed to evolve until a maximum time, independently of
the others. We choose a time step dt such that 0 < Rdr < 1,
where R can be v.(7), v,, and v. The nucleation rate is chosen
to be very large compared to the other rates in the simulation
in order to achieve the boundary condition given by Eq. (20).
A microtubule in the growing (shrinking) state persists in that
state and elongates by v,d (shrinks by v,dt) until it encounters
catastrophe (rescue).

We study length distribution, average length, and length
and velocity autocorrelation functions. Both exponential and
linear catastrophes are studied. From the experiments reported
in [3], for a tubulin concentration of 12 uM, we estimate that
A~ 0.273 min~! and v™* =~ 0.3 min~!, obtained by fitting
the experimental data to the function in Eq. (1) (see Fig. 1).
Keeping these values as a reference point in the parameter
space, in the simulations, we vary A (keeping v"™** fixed at
0.5 min~!) in the range 0.05-5 min~!. For simulations with
the linear aging model, we vary B in Eq. (7) in the range
0.05-5 min~2. Although rescue events were not observed in
the experiments reported in [3], we consider the effects of
nonzero rescue separately. The simulation results are discussed
in detail now.

052704-6



EFFECTS OF AGING IN CATASTROPHE ON THE STEADY ...

0.05 17T
B-8-0.5 min”| 0.015 Frrrerrrrereey ]
0G-0 )\=5 min"' [ — Analytical result ]

0.041" A-Av=0.1 min’' ]

S N 2 0.01F 6-0V=0

£10.03f 3 .
S ]
§ [ £ 0.005 ]
£ 0.02 b
= [ ]
3 10 20 01
0.01 - length (um) .
e iy .

0 10

4 6
length (um)
FIG. 3. (Color online) Microtubule length distribution for the
exponential model. The parameter values are v = 6 min~!, v, =
0, V™ =0.5min"', v, =1 ummin~', and v, = 1.5 pummin~".
Shown in the inset is a comparison of the length distribution for
v, = 0and 0.1 min~! for A = 0.05 min~'. The line is shown for the
analytical result given by Eq. (28).

1. Length distribution and mean length

The length distribution for exponential (Fig. 3) and linear
(Fig. 4) aging models are shown, along with the corresponding
analytical results. The main plots show the results with zero
rescue; the effect of including small nonzero rescue frequency
can be seen in the insets.

The time evolution of the average length is shown in Fig. 5
(exponential) and Fig. 6 (linear). As expected intuitively, the
average length increases with the increase in the memory of
catastrophe (smaller A or ). Itis shown in these plots that aging
results in nonmonotonic time evolution of average length for
sufficiently small A (or 8, in the linear model), indicating the
possibility of oscillations. For the linear case, the peak in the
curve remains noticeable even for large values of B (Fig. 6).

2. Length autocorrelation

Simulation results show that, in the presence of aging
in catastrophe, the length autocorrelation has a pronounced

015 77T 7T

B8 B=(.5 min|0.02 pr—rrorrr e
0 — Analytical result [{ 1

[0 ©9B=5 min’ = 1
[ 9 0.015F AAv=01min' ]
01F © : b N, [0V 1

[ 2
E‘ | _‘é 0.01F 11
g ? g 3 ]
S 5 0.005f ]
— ‘\ n
80,05y o x

0 5 10 1 (0
length (um) ]

FIG. 4. (Color online) Microtubule length distribution for the
linear model. The parameter values are v = 6 min~', v, =0, v, =
1 ummin~!, and v, = 1.5 ummin~!. Shown in the inset is a
comparison of the length distribution for v, = 0 and 0.1 min~! for
B = 0.05 min~2. The line is shown for the analytical result given by
Eq. (34).
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FIG. 5. (Color online) Time evolution of the average microtubule
length for the exponential model, with the inset showing the time
evolution of standard deviation in length. The parameter values
are v=6min~!, v, =0, V™ = 0.5 min"!, v, = 1 ummin~!, and

vy = 1.5 pummin~!.

(negative) minimum, followed by much weaker higher-order
extrema, characteristic of damped oscillations (see Figs. 7
and 8). For the exponential model (see Fig. 7), the minimum
loses depth and eventually disappears with increasing A (e.g.,
for V™™ = (.5 min~!, almost no trace of oscillations can
be seen for A > 0.5 min~!). For the linear model, however,
oscillations in the autocorrelation are apparent for a wide range
of B values studied, spanning three orders of magnitude.
When rescue is switched on, the autocorrelation function
loses its oscillatory character gradually in both models.
This is shown in Fig. 9 for exponential (main plot) and
linear models (inset), respectively. In the exponential model,
given the parameters vy, = 1 um min~!, v, = 1.5 um min~!,
yMX — (0.5 min~!, and A = 0.05 min~!, the autocorrelation
correlation appears to follow multiexponential decay (without
the negative lobe) when the rescue frequency v, is nearly

0.05 min~"'; in the linear model, this occurs at v, = 0.1 min~!,

given B = 0.05 min~2.
We also estimate the half period of the oscillations in length

(about its mean value) from the autocorrelation function as

10 [~~~ 1T T 4' L
8:‘ - B=0.05 min” 35 é ]
[ - - B=0.5 min™ o ]
- N - B=5 min’
E oF
3_ [
o4k
o —
: )“r __________________________
F e o .
0 PRI S S S S A ST S S S S S
0 5 10 15 20

time (min)

FIG. 6. (Color online) Time evolution of the average microtubule
length for the linear model, with the inset showing the time evolution
of standard deviation in length. The parameter values are v =

6min~', v, =0,v, =1 pummin~', and v, = 1.5 ummin~".
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FIG. 7. (Color online) Microtubule length autocorrelation func-
tion for the exponential model. The parameter values are v =
6 min~!, v, =0, V™ =0.5min"!, v, =1 pummin~', and v, =
1.5 ummin~'. Highlighted in the inset is the oscillatory behavior
of the autocorrelation function corresponding to the parameter value
) = 0.05 min~!.

the position of the first minimum in C,(¢), determined from
simulation results. Figure 10(a) shows the dependence of the
half period on the aging rates A and 8 (inset): The logarithmic
plots reveal that the half period is proportional to ~!/2 in the
linear model, which is expected. Based on the expression for
autocorrelation function in Eq. (46), we propose the following
scaling law for the linear model, when v, = 0:

T, = Lf(”—g> 51)
o \/B US )

where T, is the half period of oscillations. It is clear that f(x)
is an increasing function of x; as vy — oo, the microtubule
will crash to the origin as soon as it undergoes catastrophe
and the period is determined by average time spent in the
growing state, specified by Eq. (10). As vy is reduced, this
time interval increases, which adds to the oscillation period.
This is confirmed in simulations. Figure 10(b) shows the half
period plotted as a function of v, /v, in both exponential and
linear models, which shows that the half period (for fixed A
and f) is an increasing function of v, /vy.

G-0 B=5 min”
@8 $=0.5 min
© 0 B=0.05 min’]

time (min)

PRI PRI T T SN SR SR SR SR N T T T T A S S S
0 5 10 15 20 25
time (min)

FIG. 8. (Color online) Microtubule length autocorrelation func-
tion for the linear model. The parameter values are v = 6 min~!,
v, =0, v, = 1 pummin~!, and v; = 1.5 ummin~'. Shown enlarged

in the inset are oscillatory parts of the autocorrelation functions.
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FIG. 9. (Color online) Effect of rescue frequency on the length
autocorrelation function. The main plot shows the exponential model
(A = 0.05 min~! and v™™* = 0.5 min~"') and the inset shows the linear

model (B8 = 0.05 min~2). The parameter values are v = 6 min~!,

ve = 1 pmmin~!, and v; = 1.5 ummin~".

For the exponential model, scaling considerations suggest

that
1 AU
T, = ﬁg<vmax’v_$) (52)

such that lim, .o g(x,y) = f(y) for consistency with Eq. (51).
Oscillations are present only when A/vI™* is sufficiently
small. A few sample trajectories of a microtubule undergoing
dynamic instability, under the age-dependent catastrophe, are
shown in Fig. 11.

3. Velocity autocorrelation

The normalized velocity autocorrelation function, com-
puted from the simulations, also shows oscillatory behavior
(Fig. 12) for sufficiently small values of A (and all values of 8
studied in this paper). Also, increasing v, lifts up the negative
lobe, weakening the oscillations. Interestingly, a comparison
with Fig. 9 reveals that, for the same value of A, the threshold
rescue frequency for disappearance of oscillations is higher

1000: 4 20-' T I Trorr I TrrT I Trr '-
,,,.E\ E I @ -0 Exponential g
é [ [ (b) [©-O Linear __-m
B 0 i >~ J115F e ]
Swof o] i f e :
B b e ]
vg B \\ﬂ\ B (min”) 1 : ’_e‘—"/—_”-

10 i el B T B S T T T
0.001 0.01 0.102 04 06 038 1
A (min_l) Vg/VS

FIG. 10. (Color online) Half period of length from the auto-
correlation function. (a) Half period as a function of A, with the
inset showing the same for the linear model as a function of
B. The parameter values are v =6 min~!, v, = 1 ummin™', v, =
1.5 pmmin~!, and for the exponential model v™ = 0.5 min~"'. The
dashed line is a fit of ~!/2 [Eq. (51)]. (b) Half period as a function
of v, /v,. The parameter values are v = 6 min™!, V™ = (.5 min™',
A =0.05min~" (exponential model), and B8 = 0.05 min~?(linear
model).
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FIG. 11. Microtubule trajectories from the stochastic simulation
for (a), (c), and (e) v, = 0.01 min~' and (b), (d), and (f) v, =
0.1 min~!, with the dashed horizontal line denoting the average
length in the respective models studied: (a) and (b) the exponential
model with A = 0.05 min~! and v™* = 0.5 min~!, (c) and (d) the
linear model with 8 = 0.05 min~2, and (e) and (f) the A — oo
case with v™ = 0.5 min~'. All the trajectories are simulated by
fixing v, = 1 ummin~' and v; = 1.5 ummin~'. Only (a) and (c)
correspond to oscillatory dynamics, as characterized by the negative
lobe in the autocorrelation function.

for the velocity autocorrelation when compared to length,
implying that for a certain range of parameter values, direction
reversals are more regularly spaced in time when compared to
excursions of length above and below the mean.

Our results for velocity or state correlation are similar to
the results reported by Odde and Buettner [13]. In that paper
the authors modeled dynamic instability as a two-state jump
process, but switching from one state to another state takes
place in a sequence of steps such that residence times in both
the states are characterized by (identical) gamma distributions.
Qualitatively, the effects of age-dependent (studied here) and
multistep (studied in Ref. [13]) catastrophes are similar;
however, in our model, only catastrophe is assumed to be
age dependent, while rescue is treated as a first-order process.

1
E 6-0V,=0
0.75R

B-0v,=0.01 min’

[& .
re OOv; —0.05 min’ ,

&

[ &

F g
0.25F &
3 %
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FIG. 12. (Color online) State autocorrelation function Cg(t) vs
time ¢ with a boundary at x = (. The main plot shows the linear model
with 8 = 0.05 min~2 and the inset shows the exponential model with
X = 0.05 min~"'. The other parameter values are v = 6 min ™!, V"™ =
0.5min"!, v, =1 pmmin~!, and v, = 1 ummin~".
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V. CONCLUSION

Motivated by recent experimental observations on aging in
microtubule catastrophe, in this paper we have formulated
a mathematical model to investigate how the statistical
properties of a microtubule population gets modified by it.
Aging is characterized by a parameter A, with units of inverse
time, which we refer to as the aging rate in our model. Our
results show that aging affects statistical properties of a micro-
tubule population in important ways. The steady-state length
distribution is no longer a simple exponential decay as in the
constant catastrophe case, while the condition for its existence
is altered. The length and velocity autocorrelation functions
develop a negative lobe for sufficiently small aging and rescue
rates, which signifies oscillatory dynamics in the population.
We characterized the oscillations using analytical calculations
and scaling arguments and checked their consistency with
numerical simulations. Velocity (or growth state) oscillations
in microtubule dynamics were studied earlier by Odde and
Buettner [13] using a model with identical gamma distributed
residence times in each state (i.e., both catastrophe and rescue
were assumed to undergo aging in a similar way). Our study
is similar in spirit, but with the following differences: (i) Two
different forms of aging are used for catastrophe, while rescue
is treated as a first-order process (in the absence of evidence
to the contrary), (ii) we study how the steady-state length
distribution is modified in the presence of aging, and (iii) the
length autocorrelation function is studied in detail and we have
derived an explicit mathematical expression for the same (in
the linear aging model) in Laplace space.

Microtubule length oscillations are likely to be relevant in
the context of the well-known phenomenon of chromosome
oscillations, although the latter is certainly a more com-
plex process involving many other proteins and regulatory
mechanisms. Nevertheless, it is interesting to make a broad
comparison of our results with experimental observations on
chromosome oscillations. In eukaryotic cells, soon after the
onset of mitosis, each chromosome pair exists in a mono-
oriented state for a while, i.e., pulled or pushed only from one
side of the mitotic spindle [38—40] by microtubules attached to
it through macromolecular structures called kinetochores. A
successful and efficient mitosis requires all the chromosomes
to be bi-oriented (i.e., bound to microtubule bundles emanating
from the opposite poles simultaneously) at the spindle equator
before segregation. It is known from experimental observa-
tions that both mono-oriented and bi-oriented chromosomes
undergo regular oscillatory motion.

Skibbens et al. [38] have showed that mono-oriented chro-
mosomes in Newt lung cells exhibit nonsinusoidal oscillatory
motion with a time period of 200-300 sec. Similar oscillations
were also observed in bi-oriented chromosomes, with a smaller
period. In PtK1 cells, the to and fro motion in mono-oriented
chromosomes was observed to last for ~1200 sec [40], but the
observed motion does not show the same degree of regularity
as in the previous example. In HeLa cells, the autocorrelation
function of translational movement of sister kinetochores was
experimentally measured more recently; the half period of
oscillations, measured as the position of the first minimum, was
found to be in the range ~10—40 sec [41,42]. With the available
information, it is unclear whether aging and related effects
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in microtubule catastrophe play a role in these phenomena;
however, given the fact that the observed period of oscillations
of mono-oriented chromosomes [38,40] is close to the what
was found in our simulations (Fig. 10), further investigation in
this direction could be worthwhile.
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APPENDIX A: PROBABILITY DISTRIBUTION
FUNCTIONS IN TRANSFORMED SPACE

On taking the Laplace transform of Egs. (18) and (19) with
respect to x, we get

aP! 5 )
% + [ng + Vc(f)]Pl/(p,‘L') = S(T)[vrPO(p) + J()],
(AD
~ J _ CI)
Pop) = 20— 2P) a2
Usp — Vr

where ®(p) = [~ vo(t)P{(p,T)dT. Substituting for Py(p)
from Eq. (A2) in Eq. (A1),

dP/(p,7)

. + [vgp + ve(D]P{(p,7) =5(T)[

Up =V

(A3)

Equation (A3) is a first-order nonhomogeneous partial differ-
ential equation in . We assume a solution of the form

Isf(p,r) = h(p,T)exp <—vgpr — /T ])C(T/)d‘[,>. (A4)
0

After substituting Eq. (A4) in Eq. (A3) we get
JOUsp — Vr CD(P)

h(p,t) = (AS)
Usp = vy
Therefore, the total solution to Eq. (A3) is given by
- Ji —-v,®
Bl(pt) = [ ovsp — v (p)}
UsP — Vr
T
X exp <—vgp1: - / Vc(t’)df’>. (A6)
0
Using this equation we get
< Jovs p¢(p)
b(p)= —— (A7)

vp — v (1= ¢(p)]’

where

¢(p) = /OO v(T) exp (—vgpt — /T vc(r/)dt’)dr. (A8)
0 0

Jovsp - Vr(b(l?)]
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The function n(p), which appears in Eq. (23), is defined as
n(p) = / exp (—vgpr - / vc(r/)dt/>dt. (A9)
0 0

As mentioned in the main text, all further analysis is done by
setting v, = 0. In this case, Eqgs. (23) and (24) become

Pi(p) = Jon(p) (A10)

and
1 —2(p)

s

Py(p) = Jo (ALD)

APPENDIX B: LENGTH DISTRIBUTION

1. Exponential aging

In this case, ¢(p) and n(p) are evaluated from the
integrals given by Eqgs. (A8) and (A9), respectively, with v.(7)
substituted from Eq. (1),

max

¢(p) = < -

Vg p + v

ng o
Ve p + v

max

xa@x“”f““)“y(—vgpﬂc +1,a), (B1)

1 max max
n(p) = Xe“a’("gp”‘ Wy(%,a). (B2)

Using the recurrence relation [25]

y(a + 1,b) = ay(a,b) — b®e?, (B3)
we get a relation between ¢ (p) and n(p) as given by
¢(p) =1 —=vgpn(p). (B4)
Therefore, Eq. (A11) can be rewritten as
Po(p) = £ Jon(p). (BS)

s

Using the inverse Laplace transform
L7Ma Py (pa)] = e, (B6)

we find the Laplace inverse of Egs. (A10) and (B5) with n(p)
substituted from Eq. (B2). The resulting expression for the
total PDF is given by Eq. (28).

2. Linear aging

The integrals given by Egs. (A8) and (A9) are evaluated
using Eq. (7). The expressions for ¢(p) and n(p) are,
respectively, given as

(p)=1- /%vgpe”ﬁpz/zﬁ erfc [%} (B7)

n(p) = /%evﬁﬂz/zﬂ erfe [%] (B8)

From Eqgs. (B7) and (B8) it can be seen that Eq. (B4) holds true
in the linear model as well. A useful inverse Laplace transform
to invert Egs. (A10) and (A11) in this case is given as [25]

—x2/4a?

ay/m

and the final expression for the P(x) is given by Eq. (34).

£ [e“zp2 erfc(ap)] =

(B9)
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APPENDIX C: LENGTH AUTOCORRELATION
1. Constant catastrophe: The limit A — oo

Conditional probabilities obtained from Eqs. (42) and (43) after taking the Laplace transform with respect to space and time
are given by

e P[(s —vgp)d1; + vr] + vs(s — vy p)Goj(x = 0,5]x0)
(s —Up+ V) +vep + vém‘x) — pmaxy,

Gij(p,slxo) = ) (CDhH

e™P% (s + vg p)oj 4+ V] — vy(s + ve p)Goj(x = 0,5]x0)

C2
(s —vsp+ v,)(s +vep + v;“ax) — pmaxy, €2)

Goj(p.slxo) =

We use the convergence property of the conditional PDFs to find Go;(x = 0,s|xg). Thus, at the boundary, expressions for the
Green’s functions are given by

(s +veBo)doj + V™ 44,

Goi(x =0,s|x9) = C3
0/ x0) 025 + 0 By) (C3)
where g, = — 29 4 JAGY 1 B(5), with
As) = S0 T V) F ORI 7 Vg (C4)
Vg Vs
s(s +v™* 4y,
B(s) = y (C5)
Vg Vs
In the limit v, = 0, Eq. (C3) becomes
s 6 . s max _
Gy = 0,51)xg) = S0 e)d0) VoV oy (C6)
sus(vy + vg)
In the steady state, the PDFs take the simple form
J max
Pi(x) = e, (C7)
Vg
J max
Po(x) = =2, (C8)
Vg
where Jy = vl v, /(vg 4 vy).
2. Linear aging
Solutions of Egs. (13) and (14) for the linear model in transformed space are respectively given as
e P[(s —vgp)di; + vl + vs(s — vy p)Goj(x = 0,s5)
G1j(p,slxo) = n(p.s), (€9)
! s —vep + v [1 = £(p,9)]
“PX[§y; — ,8)(80; — D] — vg[1 — ,8)]Goi(x =0,
Goj(posixo) = e P80 — ¢(p,s)(So; — DI — vs[1 — ¢(p,s)]1Go;(x S)’ (C10)
s —vp + [l —&(p,s)]
with
b4 . 2 S+ v,p
C(p.s)=1— | —(s + v, p)eS TP’ /2P erfc [ g } (C11)
V28 ¢ V2B
and
T 228 S+ vgp
n(p,s) = [ —e“tver’/2b erfe |:—i| (C12)
V28 V2B
Using a procedure similar to that mentioned above, we fix Go;(x = 0,s|xo) in the limit v, = 0 as
=$%0/Vs [y — (1 — 8;
Goy(x = O.51¥0) = e [vs — (1 = 8o;)s(vs + vg)t/f(s)]’ (C13)

svs(vs + V)Y (s)
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where

PHYSICAL REVIEW E 91, 052704 (2015)

_ [T (vs+vg)2s2> [(vs+vg)s}
¥(s) = 2B exp( 208 erfc w2 |

(C14)

Finally, the steady-state length distribution required to evaluate Eq. (40) is given by Eq. (34) and the expression for unnormalized

correlation in the transformed space is given by Eq. (46).
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