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Decoherence and spin echo in biological systems
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The spin-echo approach is extended to include biocomplexes for which the interaction with dynamical noise,
produced by the protein environment, is strong. Significant restoration of the free induction decay signal due
to homogeneous (decoherence) and inhomogeneous (dephasing) broadening is demonstrated analytically and
numerically for both an individual dimer of interacting chlorophylls and for an ensemble of dimers. Our approach
does not require the use of small interaction constants between the electron states and the protein fluctuations.
It is based on an exact and closed system of ordinary differential equations that can be easily solved for a wide
range of parameters that are relevant for bioapplications.
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I. INTRODUCTION

The spectroscopic and measuring technologies, developed
during past few decades, have allowed experimental scientists
to examine very rapid dynamical processes, including those
in biological systems. One of them is the very powerful two-
dimensional (2D) femtosecond nonlinear spectroscopy, which
is a special case of parametric four-wave mixing, in which
three pulses interact with the system to produce a signal field
in a particular phase-matched direction. In this case, the 2D
frequency spectra at different delay times is used to recover the
dynamics of the electron population between different sites of
the biocomplexes and estimate the characteristic decoherence
time in these systems (time decay of the nondiagonal elements
of the density matrix) [1]. In particular, it was demonstrated
that, even at room temperature, photosynthetic biocomplexes
exhibit collective quantum coherence (CQC) during primary
electron transfer (ET) processes that occur on the time scale
of some hundreds of femtoseconds [1]. The CQC results from
the fact that the primary processes of exciton transfer and
charge separation are so rapid (on a time scale of a few
picoseconds) and that the protein environment does not have
time to recombine the exciton and destroy the CQC. In Ref. [2],
the integrated two-color coherence photon echo (2CCPE)
approach, based on 2D femtosecond nonlinear spectroscopy,
was used to partly suppress the inhomogeneous broadening
of excitonic coherence in a strongly coupled dimer system,
such as the bacteriopheophytin-bacteriochlorophyll pair in the
bacterial reaction center. In particular, the authors of Ref. [2]
demonstrated that, in addition to the ensemble dephasing, the
coherence in such a system exhibits a biexponential decay with
a slow component with a lifetime of hundreds of femtoseconds
and a rapid component with a lifetime of tens of femtoseconds.

The optical spin-echo spectroscopy is a modification of the
well-known approach which was initially developed in nuclear
magnetic resonance [3,4]. This Hahn spin-echo spectroscopy
(HSES) is a linear approach, which allows one to reduce the
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effects of the “inhomogeneous broadening” (dephasing) in
an ensemble of spins and to increase the time of the signal
generated by the transverse magnetization (free induction, FI).

The important development of the HSES during the past
decade was the recognition that it can be successfully applied
not only to an ensemble of effective spins but also to an
individual spin or to an individual two-level quantum system
(TLS) [5]. In this case, inhomogeneous broadening is absent.
But still one can partly suppress the broadening of the FI
decay resulted from a pure dynamical (time-dependent) noise.
In Refs. [5–8] the HSES was applied to a single quantum
two-level system—the superconducting qubit. In this case, the
qubit is considered in the so-called diagonal representation,
with the main characteristic being the energy gap (usually
tens of gigahertz) between the ground and the excited states.
The dynamical noise, acting on the qubit, is generated by the
time fluctuations of the electron charge, bias current, external
magnetic flux, and other sources. All these sources of noise for
superconducting qubits are relatively weak, so the perturbation
approaches can be used.

In contrast to a superconducting qubit, an individual
effective two-level quantum system (a dimer) in a biocomplex
is usually characterized in the so-called site representation,
using such main parameters as the energy gap (redox potential)
between the excited states of the chlorophylls realizing
this dimer and the matrix element of the dipole-dipole or
the exchange interactions between these two excited states.
Also, the dimer usually experiences a strong interaction with
the protein fluctuations (characterized by the reconstruction
energy), caused by dynamical noise, that must be taken into
account in bioapplications of spin-echo spectroscopy.

In this paper, we analyze analytically and numerically the
application of the HSES for both an individual dimer and for
an ensemble of dimers in biocomplexes for the case of strong
interaction with the protein environment. In our model, a single
dimer in the light-harvesting complex (LHC) is composed
of the excited states, |1〉 and |2〉, of two chlorophylls, Chl1
(donor) and Chl2 (acceptor). If, for example, initially the
donor is populated, the energy (exciton) can be transferred
to the acceptor due to (i) the interaction of the transitional
dipole moments of two chlorophylls, which is characterized
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by the matrix element, V12 (time-reversal dynamics), and (ii)
the Coulomb interactions between the electron in the states
|1〉 and |2〉 and the protein fluctuations. (The environment-
assisted energy transfer [9].) Usually, the protein fluctua-
tions are modeled by the ensemble of quantum harmonic
oscillators of nuclear degrees of freedom or by the corre-
sponding bosonic electromagnetic modes. (See Refs. [9–11]
and references therein.) Also, some different models for
the protein fluctuations are used based on (i) an external
noise [12–15] and (ii) the hybrid approaches [16]. For our
purposes, we assume that the dimer experiences the influence
of a stochastic process (noise) from the protein environment,
which is characterized by two parameters: (i) the amplitude
of noise and (ii) the decay rate (or correlation time) of the
noise correlation function (non-Markovian approximation).
This approximation corresponds to the “infinite temperature”
regime and reasonably describes the Coulomb interaction
of the electron in the excited states of the chlorophyll
molecules with the electromagnetic protein fluctuations if one
is interested in the fast electron transfer dynamics and is not
interested in the temperature dependencies of the electron
transfer rates.

We recognize that the application of the linear HSES may
not be the optimal realization of the spin-echo protocols in the
optical domain. At the same time, the main effects, discussed
in this paper, can easily be demonstrated by using a simple
HSES, with possible further generalizations for more complex
protocols used in optical applications.

We show that both the dynamical and the inhomogeneous
broadening of the FI decay can be successfully suppressed
by the spin-echo pulses in a wide range of parameters. Our
conclusion is that (i) even for strong interaction with the dy-
namical noise and (ii) in the presence of relaxation (transverse
noise), the spin-echo spectroscopy can serve as the useful
complementary spectroscopic technique for characterizing the
biocomplexes that include both individual dimers and an
ensemble of dimers.

The important advantage of our approach is that it is based
on the exact and closed system of ordinary linear differential
equations with constant coefficients, which we derived for
time-dependent observable variables. So our approach does
not use the approximations like small interaction constants
with the protein environment. In particular, our approach
includes the results which followed from the well-known
Bloch-Redfield theory [17–19] as a limited case.

The structure of the paper is the following. In Sec. II,
we introduce the model and derive the closed system of
differential equations for the averaged Bloch vector. In
Sec. III, we apply our approach to describe homogeneous
broadening due to dynamical noise and present the results
of the numerical simulations for both exact and approximate
solutions. In Sec. III, we consider simultaneous action of the
homogeneous and inhomogeneous disorder. In the Conclusion,
we summarize our results and formulate some challenges for
future research.

II. DESCRIPTION OF THE MODEL

First, consider a single dimer in the LHC composed of the
excited states |1〉 and |2〉 of two chlorophylls Chl1 (donor)

and Chl2 (acceptor), interacting through the matrix element
V12 (see above). We assume that each chlorophyll experiences
a diagonal noise (see Refs. [10,11] for details), provided by
the protein environment, which is described by the random
variable, ξ (t). Similarly to the Coulomb interaction of the
excited electron in the dimer with the different electromagnetic
modes of the thermal protein environment, in our model
the same electron interacts with the electromagnetic modes
provided by noisy protein fluctuations which are characterized
by two parameters: (i) the amplitude and (ii) the decay rate
of the correlation function. Usually the protein noise is also
characterized by the corresponding spectral density of noise,
S(ω), where ω is the frequency of the noisy component. The
interactions between the protein noise and the two dimer states
are characterized by two interaction constants, λ1,2, which
usually are not small in biosystems at ambient conditions.

In the site (donor-acceptor) representation, the Hamiltonian
of the system can be written as follows: H = E1|1〉〈1| +
E2|2〉〈2| + (1/2)(V12|1〉〈2| + H.c.) + ξ (t)(λ1|1〉〈1| + λ2|2〉
〈2|).

We assume that noise is produced by the stationary random
telegraph process (RTP) with 〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = χ (t −
t ′), where χ (t − t ′) = σ 2e−2γ |t−t ′ | is the correlation function
and σ , 2γ , and λ1,2 are the amplitude of noise, the decay rate
of the correlation function, and the interaction constants with
noise, respectively.

In the diagonal representation of the unperturbed Hamilto-
nian, we obtain the total Hamiltonian for the effective TLS,

H = λ0

2
I + 1

2
�σz + 1

2
Dλ,zξ (t)σz

+ 1

2
Dλ,⊥ξ (t)(cos φσx + sin φσy), (1)

where σx,y,z are the Pauli matrices, λ0 = E1 + E2 + (λ1 +
λ2)ξ (t), λ = λ1 − λ2, � =

√
(E1 − E2)2 + |V12|2, Dλ,z =

λ cos θ , and Dλ,⊥ = λ sin θ . We set V12 = |V12|e−iφ and
cos θ = (E1 − E2)/�.

A. The Bloch-Redfield approximation

The dynamics of a TLS is described by two rates: the longi-
tudinal relaxation rate, �1 = T −1

1 , and the transverse relaxation
rate, �2 = T −1

2 . When the noise is weak, and the condition,
τc � T1,T2, is satisfied (where τc = 1/(2γ ) is the correlation
time of the noise fluctuations), one can apply Bloch-Redfield
(BR) theory [17–19]. In BR theory, the transverse relaxation
rate �2 = �ϕ + �1/2, where �ϕ is the “dephasing” rate. (For
a single dimer, �2 is the decoherence rate.) In terms of
the spectral density of noise, S(ω), these rates are defined
as follows [5]: �1 = πD2

λ,⊥S(�), �ϕ = πD2
λ,zS(0). Using

the spectral density of RTP, S(ω) = 2γ σ 2/π (4γ 2 + ω2), we
obtain the relaxation and dephasing rates provided by BR
theory: �1 = 2γ v2 sin2 θ/(4γ 2 + �2), �ϕ = (v2/2γ ) cos2 θ ,
where the renormalized interaction constant with noise, v =
λσ , is introduced.

1. The generalized approach based on the exact equations

To study the quantum decoherence and relaxation pro-
cesses in the general case, we present the density matrix as
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ρ(t) = (I + n(t) · σ )/2, where n(t) = Tr(ρ(t)σ ) is the Bloch
vector. Instead of the Liouville-von Neumann equation for the
density matrix, i�ρ̇ = [H,ρ], it is convenient to employ the
equation of motion for the Bloch vector (we set � = 1):

dn
dt

= � × n + [ξ (t)/σ ]ω × n. (2)

Here the vector, ω = v(sin θ cos φ, sin θ sin φ, cos θ ), charac-
terizes the interaction with noise, and � = (0,0,�) is the
effective external field, which in the diagonal representation
is oriented in the z direction. It is important to note that the
introduced above density matrix, ρ(t), and the Bloch vector in
Eq. (2) depend on a concrete realization of the random process,
ξ (t).

Using the differential formula for the RTP [20],(
d

dt
+ 2γ

)
〈ξ (t)R[t ; ξ (τ )]〉 =

〈
ξ (t)

d

dt
R[t ; ξ (τ )]

〉
, (3)

where R[t ; ξ (τ )] is an arbitrary functional, we obtain from
Eq. (2) the closed system of differential equations:

d〈n〉
dt

= � × 〈n〉 + ω × 〈nξ 〉, (4)

d〈nξ 〉
dt

= � × 〈nξ 〉 + ω × 〈n〉 − 2γ 〈nξ 〉, (5)

where 〈nξ 〉 = 〈ξ (t) n〉/σ . The average, 〈. . . 〉, is taken over
the RTP. Below, when presenting the analytical expressions
and the results of numerical simulations, we are dealing only
with the averaged over noise Bloch vector, 〈n(t)〉, and other
time-dependent expressions.

a. Weakly and strongly coupled dimers. To characterize
a dimer, we introduce the dimensionless parameter ε =
|tan θ | = |V12/(E1 − E2)|. When ε � 1, we will call the dimer
“weakly coupled.” In the opposite case, ε � 1, the dimer is
called “strongly coupled.”

b. Scaling properties. For a weakly coupled dimer, one
can use the following approximation in Eqs. (4) and (5): ω ≈
v(0,0,1). Let us assume that the external resonance field (a
pulse), �R = �R(cos(�t), sin(�t),0), is applied in the (xy)
plane to the TLS, where the frequency of the external field
is �ext = �, and �R is the amplitude of the field (the Rabi
frequency). Then, in the reference frame rotating with the
frequency, �, the equations of motion can be written as

d〈nR〉
dt

= �R × 〈nR〉 + ω × 〈
nξ

R

〉
, (6)

d
〈
nξ

R

〉
dt

= �R × 〈
nξ

R

〉 + ω × 〈nR〉 − 2γ
〈
nξ

R

〉
. (7)

From here it follows that the TLS has a scaling invariance with
respect to the transformation of time: t → αt , if we rescale
the parameters of the system as follows: �R → α−1�R ,
v → α−1v, and γ → α−1γ , where α is an arbitrary constant.

III. HOMOGENEOUS BROADENING
DUE TO DYNAMICAL NOISE

It is well known that the main contribution to the de-
coherence (or dephasing) time of an individual TLS (or

an ensemble of TLSs) is due to the fluctuations of the
“longitudinal effective magnetic field,” which, in the case
of our Eq. (1), is proportional to Dλ,z. Correspondingly, the
amplitude of fluctuations of the “transverse effective magnetic
field” is proportional to Dλ,⊥. Below we will mainly be
interested in the characteristic time of the FI decay and
how the Hahn spin-echo pulses influence this process. Then
the main interest represents the case when the ratio of the
amplitude of the transverse effective magnetic field to the
amplitude of the longitudinal effective magnetic field is a
small parameter: |Dλ,⊥/Dλ,z| = | tan θ | = ε � 1, which also
corresponds to the case of a weakly coupled dimer. In this
case, for an approximate analytical solution of Eqs. (4) and
(5), one can neglect the effects of relaxation. Introducing the
complex vectors 〈m(t)〉 = 〈nx(t)〉 + i〈ny(t)〉 and 〈mξ (t)〉 =
〈nξ

x(t)〉 + i〈nξ
y(t)〉, one can show that the solution of Eqs. (4)

and (5) can be written as

〈nz(t)〉 = 〈nz(0)〉, 〈
nξ

z (t)
〉 = 0, (8)

〈m(t)〉 = ei�t�(t)〈m(0)〉, (9)

〈mξ (t)〉 = − iei�t

v cos θ

d�(t)

dt
〈m(0)〉. (10)

Here we denote by �(t) the generating functional of the RTP
[20]. For the FI decay, it is given by [6–8]

�f (t) = e−γ t

[
1

μ
sinh(γμt) + cosh(γμt)

]
, (11)

where μ =
√

1 − (v cos θ/γ )2.
Below we will compare the approximate analytical solution

(8)–(10) with the numerical solution of the exact Eqs. (4)
and (5). It will be demonstrated that a good coincidence of
both these solutions extends even for a strongly coupled dimer
(ε ∼ 1) and, consequently, for strong transverse noise.

We also note that the results of our numerical simulations
only weakly depend on the phase, φ, of the matrix element,
V12. So, in all cases presented below for individual dimers, we
have chosen φ = 0.

A. Free induction signal decay

We call noise weak if the dimensionless parameter,
η = |v cos θ/γ | � 1. The main reason for this is that, as
it follows from Eq. (11), for weak noise, the decay rate
of the nondiagonal averaged density matrix element (which
characterizes the decoherence) coincides with �ϕ , provided by
BR theory. We call noise strong if η � 1. In particular, when
η > 1, the parameter μ in Eq. (11) becomes imaginary, and the
decay of the functional, �f (t), is accompanied by oscillations
with frequency, γ |μ| (or the period: T = 2π/γ |μ|).

Below we compare the analytical solutions (8)–(10), when
the transverse effective field (relaxation) is neglected, with
the corresponding exact solutions obtained numerically from
Eqs. (4) and (5). In numerical simulations, we put � = 1.
All energy-dimensional parameters are measured in ps−1

(1 ps−1 ≈ 0.66 meV), and time is measured in ps.
In Fig. 1, the strongly coupled dimer was considered

(θ ≈ 0.968, ε ≈ 1.45). One can see that in spite of the noise
being strong, η ≈ 1.13 (red dashed curve) and η ≈ 2.27

052702-3



ALEXANDER I. NESTEROV AND GENNADY P. BERMAN PHYSICAL REVIEW E 91, 052702 (2015)

FIG. 1. (Color online) Time dependence (in ps) of m = |〈m(t)〉|
for the FI signal. Blue curves: Analytical results. Dashed curves:
Exact solution. Parameters: � = 127, θ = 0.968, γ = 10, v = 20
(red curve), v = 40 (orange curve). Inset: θ = 1.45, v = 20.

(orange dashed curve), the approximate analytical solutions
(shown by blue curves) are in good agreement with the
exact numerical solutions. In the inset, the noise amplitude
is relatively large (v = 20), and the matrix element, V12, of
the Chl1 and Chl2 interaction is also large: ε ≈ 8.24 (strongly
coupled dimer). At the same time, the noise is weak, η ≈ 0.24,
and the BR approach works. However, one cannot neglect
the contribution from the transverse field to the decoherence
rate, �2 = �ϕ + �1/2. Indeed, in this case, �ϕ ≈ 0.3 and
�1 ≈ 0.48. That is why the approximate solution in the inset
(blue curve) deviates significantly from the exact numerical
solution (red dashed curve).

B. Echo signal

For simplicity, we assume in the analytical estimates that
the spin-echo π pulses act practically instantaneously. The
spin-echo pulse, applied at the time τ , rotates the wave function
around the x axis by the angle π . The corresponding analytical
solution for the generating functional can be written as

�e(t) =
{
�f (t), 0 < t < τ,

�
f
g (t), t > τ,

(12)

where

�f
g (t) = �f (t) + e−γ t

(
1 − 1

μ2

)
{cosh[γμ(t − 2τ )]

− cosh(γμt)}. (13)

Below we demonstrate that our analytical solutions, given
by Eqs. (8)–(10) and Eqs. (12), (13), are in good agreement
with the exact numerical solutions, up to the value of ε ≈ 1.72
(θ � π/3) and for the finite width of the π pulse (for example,
δ = 1 ps) for both weakly and strongly coupled dimers and
even for relatively large noise.

In the numerical simulations, we use the echo pulses of
finite duration. We assume that the circular polarized field,

(a)

(b)

FIG. 2. (Color online) Time dependence (in ps) of m = |〈m(t)〉|.
Blue curves: FI decay. Red curves: Echo signals. Number of echo
pulses, N = 20. (a) Parameters: � = 150, v = 40, γ = 10, and θ =
0.165. The duration of each pulse is δ = 10 fs, and its height is h =
100π . (b) Parameters: � = 150, v = 0.4, γ = 0.1, and θ = 0.165.
Inset: The sequence of π pulses applied to the system. The duration
of each pulse is δ = 1 ps, and its height is h = π .

�R(t) = �R(t)[cos(�t), sin(�t), 0], is applied after the FI
decay, at time τ . Here

�R(t) =
⎧⎨
⎩

0, 0 � t < τ,

h, τ � t � τ + δ,

0, t > τ + δ.

(14)

The duration of this pulse is δ, and its amplitude, h, is found
from the condition hδ = π .

In Fig. 2, the time dependence (in ps) of the transverse Bloch
vector, m(t) = |〈m(t)〉|, is shown. The FI decay corresponds
to the blue curves. The spin-echo signals correspond to the
red curves. The number of echo pulses is N = 20. Parameters
in Fig. 2(a) were chosen: � = 150, v = 40, γ = 10, and θ =
0.165. At τ = 20 fs, the first π pulse, with the width δ =
10 fs, was applied. The distance between π pulses was chosen:
� = 30 fs. This case corresponds to a weakly coupled dimer
(ε ≈ 0.17) and to strong noise: η ≈ 3.9. The FI decay exhibits
oscillations with the period: T = 2π/γ |μ| ≈ 0.16. Note that
the results with such a short π pulse are presented here mainly
for the purposes of illustration of the discussion in Sec. II A
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(a)

(b)

FIG. 3. (Color online) A comparison of analytical and numerical
solutions. Time dependence (in ps) of m = |〈m(t)〉|. Red curves:
Numerical solution. Green dashed curves: Analytical solution. The
FI decay: Blue curves. Parameters: (a) � = 150, v = 0.4, γ = 0.1,
θ = 0.165, τ = 2.5 ps; (b) � = 127, v = 0.2, γ = 0.1, θ = 0.968,
τ = 10.5 ps. The duration of the π pulse is δ = 1 ps, and its height
is: h = π .

of scaling effects. This kind of π pulses require very large
Rabi frequencies and large values of the corresponding electric
fields, which could destroy the system [21].

Parameters in Fig. 2(b) were chosen: � = 150, v = 0.4,
γ = 0.1, θ = 0.165, τ = 2 ps, δ = 1 ps, and � = 3 ps. This
case corresponds to a weakly coupled dimer (ε ≈ 0.17) and
to strong noise: η ≈ 3.9. The FI decay exhibits oscillations
with the period: T = 2π/γ |μ| ≈ 16.5. (Note that in Fig. 2, the
modules of the transverse Bloch vector, |〈m(t)〉|, is presented.)
The inset shows the sequence of π pulses applied to the system,
with the duration of each pulse, δ = 1 ps and � = 3 ps. As one
can see by comparison of Fig. 2(a) and Fig. 2(b), the scaling
takes place which was discussed in Sec. II A. One can also see
from Figs. 2(a) and 2(b) that the homogeneous broadening of
the FI signal can be significantly improved by applying the
Hahn spin-echo pulses.

In Figs. 3(a) and 3(b), we compare our analytical solutions,
given by Eqs. (8)–(10) and Eqs. (12) and (13), with the exact
numerical solutions of Eqs. (4) and (5) and Eqs. (6) and (7).
In analytical solutions the π pulse was applied at the middle
of the π pulse of the corresponding numerical solutions. In
Fig. 3(a), a weakly coupled dimer is considered (ε ≈ 0.17),

and the noise is strong (η ≈ 3.9). Initially, the Bloch vector
was positioned in the x direction. The red curve demonstrates
the results of the exact numerical simulations. During the time,
τ = 2.5 ps, the Bloch vector experiences the FI decay. At time
t = 2.5 ps, the π pulse was applied of the duration, δ = 1 ps.
After the end of the π pulse, the Bloch vector experiences the
FI decay. The green dashed curve describes the corresponding
analytical solution. As one can see, both solutions practically
coincide. The blue curve corresponds to the FI decay. All
solutions oscillate, as the values of parameter μ in Eq. (11) are
imaginary. In Fig. 3(b), a strongly coupled dimer is considered
(ε ≈ 1.45), and the noise is strong (η ≈ 1.1). The π pulse
of duration, δ = 1 ps, is applied at τ = 10.5 ps. Again, as in
Fig. 3(a), the numerical and analytical solutions practically
coincide. In this case, the period of oscillations is large,
T = 2π/γ |μ| ≈ 126 ps, and the oscillations are not revealed.

Our results demonstrate that the analytical solutions rep-
resent a good approximation of the exact numerical solutions
for both weakly and strongly coupled dimers (up to the values
ε ≈ π/3) for finite widths of π pulses and for both weak
(η � 1) and strong (η � 1) noises.

In Figs. 4(a) and 4(b), N relatively wide π pulses (with
δ = 1 ps) were applied, with a distance between pulses,

(a)

(b)

FIG. 4. (Color online) Time dependence (in ps) of m = |〈m(t)〉|.
The FI decay: Blue curve. Echo signal: Red curve. The duration of
each echo π pulse is δ = 1 ps, and its height is h = π . Parameters:
� = 150, γ = 0.5, θ = 0.165. (a) Number of pulses is N = 20
(v = 0.25). Inset: The sequence of π pulses applied to the system.
(b) Number of pulses is N = 10 (v = 1).
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� = 1 ps. The dimer was chosen weakly coupled: ε ≈ 0.17.
In Fig. 4(a), the noise is weak (η ≈ 0.49) and N = 20. In
Fig. 4(b), the noise is strong (η ≈ 1.97) and N = 10. In this
case, the value of the parameter, μ ≈ 1.7i, is imaginary, and
one can observe the oscillations of |〈m(t)〉|, with the period,
T/2 = π/γ |μ| ≈ 3.7. Initially, the Bloch vector was oriented
along the x axis. During the initial time, τ = 1 ps, the Block
vector experiences the FI decay. The first π pulse was applied
at t = 1 ps. The FI decay is represented by the blue curves.
The red curves demonstrate the evolution of the transverse
component of the Bloch vector under the influence of the π

pulses. As one can see, a significant improvement of the signal
can be achieved.

IV. SIMULTANEOUS ACTION OF THE HOMOGENEOUS
AND INHOMOGENEOUS DISORDER

Here, in addition to dynamical fluctuations [noise, ξ (t)],
we consider an ensemble of TLSs (dimers) with fluctuating
parameters, (�,θ,φ), due to the static disorder. It is well known
that this leads to the inhomogeneous broadening of the FI
signal decay. In our numerical simulations we assumed the
independent Gaussian disorder for parameters (�,θ,φ). Our
numerical simulations demonstrate that the main contribution
from the static disorder, for a wide range of parameters, is
due to the fluctuations of the frequency, �. Therefore, we
neglect the static fluctuations of both angles θ and φ. We
assume a Gaussian distribution for the random parameter �,
denoting the dispersion by σ∗. Note that the results can easily
be extended by including the static fluctuations of angles θ and
ϕ in the numerical solutions of the exact Eqs. (4) and (5).

In Fig. 5, we compare the results for the decay of the FI
signal for three values of the dispersion, σ∗ = 0,10,20, of
static fluctuations of the frequency, �, and for the amplitudes
of noise, v = 20,40. The parameter, η ≈ 1.13, so the noise is

FIG. 5. (Color online) Simultaneous action of homogeneous and
inhomogeneous broadening on the FI decay. The time dependence (in
ps) of the generating functional, �(t). Red curve: σ∗ = 0. Blue curve:
σ∗ = 10. Green curve: σ∗ = 20. Parameters: � = 127, θ = 0.968,
γ = 10, v = 20. Inset: v = 40.

FIG. 6. (Color online) The decay of the FI signal in the presence
of both homogeneous and inhomogeneous broadening (blue curve)
and the action of the echo signal (red curve). Time dependence (in ps)
of m = |〈m(t)〉|. Parameters: � = 127, θ = 0.968, γ = 10, v = 20,
σ∗ = 10, and τ = 0.075.

strong in this case. In the inset, oscillations are observed with
the period, T = 2π/γ |μ|, due to the imaginary value of the
parameter, μ.

The analytical solution, which includes the contributions
from both the static disorder and the dynamical noise and
corresponds to the spin-echo signal applied at the time τ , can
be written as 〈m(t)〉 = �e

g(t)〈m(0)〉, where

�e
g(t) =

⎧⎨
⎩

e− σ2∗ t2

2 �f (t), 0 < t < τ

e− σ2∗ (t−2τ )2

2 �
f
g (t), t > τ.

(15)

In Fig. 6, both static disorder of � and the dynamical
noise, ξ (t), are included. The decay of the FI signal is
shown by the blue curve. For our chosen parameters, the FI
signal decays in approximately 200 fs. The spin-echo signal
was applied at τ = 75 fs. As one can see, the echo pulse
restores significantly the FI decay (red curve). Note that for
the parameters chosen in Fig. 6, both dimensionless decay
factors coincide at the characteristic time of the FI decay,
t∗ = 200 fs: γ t∗ = σ 2

∗ t2
∗/2 = 2. Therefore, both homogeneous

and inhomogeneous broadening are partly compensated in this
case by the spin-echo signal.

V. CONCLUSION

We presented analytical and numerical results for Hahn
spin-echo pulses for TLSs—chlorophyll-based dimers in
biocomplexes, embedded in noisy protein environment. We
have shown that even strong dynamical broadening can be
suppressed significantly by Hahn spin-echo pulses. This is
important for many bioapplications at ambient conditions.
We also demonstrated the restoration of the free induction
decay signal by use of Hahn spin-echo pulses when both
homogeneous and inhomogeneous broadening equally con-
tribute to the free induction decay. We recognize that in real
experiments with biomaterial, the application of the Hahn
spin-echo pulses may not correspond to the optimal protocol.
So different modifications of the protocols considered here will
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be needed. At the same time, the characteristic effects of the
spin-echo pulses for both weakly and strongly coupled dimers
and for weak and strong noises can be analyzed by using
the simple protocols considered here. Note that the approach
considered here is not a perturbative one, and it does not require
any additional simplifications related to small parameters and
different uncontrolled approximations. We also would like to
mention that the exact and closed system of equations which
we derived for the Hahn echo protocols is a linear one. So this
system possesses the scaling properties, which are very useful,
especially when performing numerical simulations. Indeed,
one can choose, for example, the “unreal” (short) pulses and
then easily apply the results for the “real” scaled parameters.
We demonstrated these scaling properties of our approach both
analytically and numerically.

The application of the spin-echo technique is especially
useful for biosystems with strong low-frequency dynamical
noise, such as 1/f noise [12]. Our approach can be generalized
for this case, as was done in Ref. [8], by introducing the
corresponding ensemble of the fluctuators. In addition, many
different sources of dynamical noises can be included in the
approach presented here (as was done in Ref. [22]).
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