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We consider a leaky integrate-and-fire neuron with deterministic subthreshold dynamics and a firing threshold
that evolves as an Ornstein-Uhlenbeck process. The formulation of this minimal model is motivated by the
experimentally observed widespread variation of neural firing thresholds. We show numerically that the mean
first-passage time can depend nonmonotonically on the noise amplitude. For sufficiently large values of the
correlation time of the stochastic threshold the mean first-passage time is maximal for nonvanishing noise. We
provide an explanation for this effect by analytically transforming the original model into a first-passage-time
problem for Brownian motion. This transformation also allows for a perturbative calculation of the first-passage-
time histograms. In turn this provides quantitative insights into the mechanisms that lead to the nonmonotonic
behavior of the mean first-passage time. The perturbation expansion is in excellent agreement with direct
numerical simulations. The approach developed here can be applied to any deterministic subthreshold dynamics
and any Gauss-Markov processes for the firing threshold. This opens up the possibility to incorporate biophysically
detailed components into the subthreshold dynamics, rendering our approach a powerful framework that sits
between traditional integrate-and-fire models and complex mechanistic descriptions of neural dynamics.
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I. INTRODUCTION

In vivo recordings of the membrane voltage in many
types of neurons display stereotypical upstrokes known as
spikes [1]. The timing of these spikes has been shown to exhibit
large variability. While fluctuations are often considered
as obscuring biological function, the constructive role of
stochasticity in neural information processing is now well
established [2–4].

The random nature of spike generation has attracted
considerable attention in the field of mathematical neuro-
science. Among the many models that have been suggested
to describe neural stochasticity, the class of integrate-and-fire
(IF) models [5] has been used to great effect [6]. At the
heart of IF models is the notion of neural excitability. A
voltage spike is elicited when the membrane potential reaches
a threshold. Traditionally, the threshold is considered as either
constant or a given function of time that can depend on the
spike history, while the membrane potential is described by
stochastic differential equations [7–14].

In the present study we investigate the timing of spikes
that are generated when a deterministic subthreshold voltage
crosses a stochastic firing threshold. A fluctuating threshold
reflects experimental findings that the membrane voltage
at which a spike is elicited varies. This has been demon-
strated, e.g., in cortical neurons and hippocampal pyramidal
cells [15,16]. Numerous mechanisms have been suggested that
could give rise to a variable threshold, including adaptation,
channel noise, and dynamic modulation of the axon initial
segment [17–20]. The physiological relevance of a variable
threshold was recently demonstrated in cortical neurons
where synchrony detection was significantly improved [15].
In [21] a leaky IF (LIF) model coupled to a threshold that
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evolves as a Gaussian process successfully described spiking
behavior of regularly firing stellate neurons within the ventral
cochlear nucleus. A stochastic threshold also captures inherent
uncertainty in both the detection of spiking thresholds and
the spike generation mechanism. The former arises from
nonstandardized methods to determine threshold values from
experimental records [22] and the fact that spikes are generated
at the axon initial segment but are often recorded at the
soma. The latter results from still incomplete knowledge of
the molecular components that trigger a spike [20].

IF models with a fluctuating threshold have been inves-
tigated in the past. However, the approach presented here
significantly differs from those studies. Often a distribution of
threshold values has been assumed at each time point [23–26].
As such, successive threshold values are uncorrelated, and
in principle arbitrarily large changes of the threshold can
occur due to the unbounded support of the chosen threshold
distributions. In [27] the concept of hazard functions is used
to determine optimal parameters of the firing probability.
The tested hazard functions have unbounded support, and
the analysis assumes an inhomogeneous Poisson process as the
spike generation mechanism [28]. A more general approach
was taken in [29] where a subthreshold stochastic process
intersects with a frozen stochastic threshold, giving rise to a
phase transition in the distribution of first passage times.

In principle it is always possible to transform an IF
model with a deterministic firing threshold and stochastic
subthreshold dynamics with additive noise into a model
with a deterministic description of the membrane voltage
and a fluctuating firing threshold (see, e.g., [30]). Indeed
our model is closely related to a leaky IF model driven by
white noise and subject to an exponentially decaying firing
threshold [31]. The time-dependent firing threshold can be
transformed into a constant one, giving rise to an exponential
drive in the subthreshold dynamics [31]. Generally, such
explicitly time-dependent stochastic subthreshold dynamics
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can only be studied numerically. Perturbative expressions
for the first and second moments of the first-passage time
(FPT) have been obtained in the limit of a weak exponential
drive [32]. In contrast, we derive analytical expressions of the
FPT distribution which do not rely on a small parameter. Our
findings provide quantitative insights into nontrivial effects
such as the nonmonotonic behavior of the mean FPT (MFPT)
as a function of the noise amplitude.

II. MODEL AND GOVERNING EQUATIONS

In the subthreshold regime the membrane voltage v(t) obeys
the ordinary differential equation of a leaky integrator

dv

dt
= −αv + β, (1)

with α and β being positive constants. A spike occurs when
v(t) hits the threshold h(t) from below, at which point v is
discontinuously reset to a constant vr = v(0), i.e.,

lim
t→T +

n

v(t) = vr . (2)

We hence define the firing times Tn by

Tn = inf[t |v(t) � h(t); t > Tn−1]. (3)

The fluctuating threshold h is given by

h = h + εX(t), (4)

where h > vr denotes the mean of the threshold and ε > 0
measures the coupling strength to a stochastic process X(t). We
model X(t) as an Ornstein-Uhlenbeck process (OUP) whose
dynamics reads as [33]

dX = −γXdt +
√

DdW. (5)

Here, γ is the inverse of the correlation time of the OUP, D

is a positive constant, and dW is the increment of a standard
Wiener process W . We choose the initial condition X(0) = 0
such that h(0) = h and reset the OUP at each threshold
crossing to X(0). A fixed value of X(0) renders the above
model a renewal process. Without the discontinuous reset
of the OUP, consecutive interspike intervals (ISI) are not
independent identically distributed and hence do not describe
a renewal process [34]. Figure 1 illustrates the generation of
ISIs by the deterministic subthreshold dynamics of v(t) and
the OUP in the renewal regime. Note that the full nonstationary
correlation function of the OUP enters our analysis, i.e.,

〈X(t)X(t ′)〉 = D

2γ
[e−γ |t−t ′ | − e−γ (t+t ′−2Tn)] (6)

for Tn � t,t ′ � Tn+1. It is worth noting that ε in Eq. (4) does
not need to be small. As both v and X are reset at a threshold
crossing such that vr < h̄, the threshold never reaches negative
values, although the OUP in general takes on all values on the
real line. Throughout this paper we set vr = 0.

III. MEAN FIRST-PASSAGE TIMES

We computed the MFPT 〈Tn+1 − Tn〉 as a function of γ and
ε when β/α > h. Angular brackets indicate the average of the
firing times Tn+1 − Tn for the renewal OUP. For notational
convenience, we will denote the MFPT by T throughout

FIG. 1. (Color online) Typical sample path of the OUP renewal
model. After each spike (diamond), the OUP and the trajectory are
reset to a fixed value X(0) = v(0) = 0. Parameter values are β =
10,h̄ = 9,α = γ = 1,D = 2,ε = 1.

the paper. In this case firing occurs even for a deterministic
threshold at h. Our results are shown in Fig. 2. For small
values of γ , the MFPT first increases as a function of ε

before decreasing. As we increase γ , the range over which T

grows monotonically as well as the amplitude both decrease.

FIG. 2. (Color online) MFPT T as a function of ε for (a) γ = 0.1,
(b) 0.3, (c) 0.5, and (d) 1.0. Threshold crossings are determined by
linear interpolation (green circles) or using a Brownian bridge (red
diamonds). Black squares indicate numerical solutions to Eq. (8). The
blue dashed line denotes the deterministic MFPT given by Eq. (7).
Parameter values read as α = 1,β = 10,h̄ = 9,D = 2.
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The amplitude is defined as the maximal increase of T with
respect to the noise-free constant firing time. The latter always
exists for the parameter regime under investigation and can be
computed from Eqs. (1)–(4) with ε = 0 as

Tdet = 1

α
ln

[
β

β − αh

]
H

(
β

α
− h

)
. (7)

Here, H denotes the Heaviside step function, i.e., H (x) =
1 for x � 0 and zero otherwise. For γ = 0.5 the MFPT
already decays monotonically. As the OUP can be simulated
exactly [35] and the solution for the subthreshold dynamics
is known in closed form, the main error for computing ISIs
results from the determination of the threshold crossing. We
employed two approaches for this. One is based on linear
interpolation [36], while the other makes use of a Brownian
bridge [37]. Both methods give almost identical results (green
circles and red diamonds in Fig. 2). We used more than 106

independent realizations for the computation of the MPFT at
each data point.

Another approach to compute the MFPT consists of solving
the partial differential equation (PDE),

ε2D

2

∂2T

∂h2
0

+ γ (h − h0)
∂T

∂h0
+ (β − αv0)

∂T

∂v0
= −1, (8)

which describes the MFPT T = T (v0,h0) depending on
general initial values of the voltage and the threshold, i.e.,
v(0) = v0 and h(0) = h0. In the present study we are interested
in the case h0 = h̄ and v0 = 0. Equation (8) can be derived by
applying the Feynman-Kac formula [38,39] to the stochastic
system given by Eqs. (1)–(5). In the derivation we used the
stochastic differential equation for h, which follows from
Eqs. (4) and (5) and Itō’s formula [33] as

dh = −γ (h − h)dt + ε
√

DdW. (9)

We solve Eq. (8) on a two-dimensional rectangular domain
bounded by the line v0 = h0, on which T = 0. We use
no-flux boundary conditions on the remaining three sides of
the rectangle. The size of the rectangle is chosen such that
these three sides are sufficiently far away from the point of
interest (vr,h) to eliminate any impact of the no-flux boundary
conditions on the solution T (vr,h) [40].

Insights into the nonmonotonic behavior of the MFPT can
be obtained by introducing a new stochastic variable g = eγ tX,
where the dynamics for X is given by Eq. (5). Using Itō’s
formula, the dynamics of g obeys

dg =
√

Deγ tdW, (10)

and the time-dependent variance of g follows as

s(t) = 〈g2(t)〉 = D

2γ
(e2γ t − 1). (11)

We can interpret Eq. (11) as the definition of a new time
s in terms of the original time t . We then define a new
stochastic process V (s) = g(t(s)) − g(0) in time s, where
t(s) denotes the inverse of s(t), which always exists since
s(t) is strictly monotonically increasing. The variance of V

is 〈V 2(s)〉 − 〈V (s)〉2 = s, and together with V (0) = 0 this
renders V a standard Brownian motion. This transformation
is discussed extensively in [41] and was first used in [42].

FIG. 3. (Color online) Subthreshold voltage ṽ(s) for different
values of γ and ε. Dashed lines correspond to γ = 1, and solid
lines correspond to γ = 0.1 for ε = 0.5 (black), 1 (green), and 1.5
(red). Note that ṽ(s) increases as a function of ε only for s < s0.
The inset shows a close-up for small times s. Parameter values are
h(0) = h̄,α = 1, β = 10, h = 9, and D = 2.

From the threshold crossing condition in the new time s,
v(t(s)) = h(t(s)) = h + εX(t(s)), we find

V (s) =
(

v(t(s)) − h

ε

)
eγ t(s) − X(0) = ṽ(s), (12)

where we have used

X(s) = e−γ t(s)[V (s) + X(0)], (13)

which follows from the definitions of g and V . Therefore,
the crossing of a voltage v(t) through a threshold h(t) that
is described by an OUP is equivalent to the crossing of a
new subthreshold voltage ṽ(s) through a standard Brownian
motion V (s). Figure 3 shows the new subthrehold voltage ṽ(s)
for different values of γ and ε. We observe that for a fixed
value of γ the zero crossing of ṽ is independent of ε. It can be
shown that this crossing occurs at a value s0 that corresponds
to the deterministic first-passage time [Eq. (7)]. Note that the
value of s0 grows as we increase γ . For a fixed s < s0 the
value of ṽ(s) increases as we increase ε. Therefore, a given
realization of the standard Brownian motion V will intersect
with the subthreshold voltage ṽ earlier for larger ε than for
smaller ε for times s < s0. For γ = 1 almost all crossings of ṽ

and V occur before s0, which is reflected in the monotonically
decreasing behavior of the MFPT T as a function of ε (Fig. 2).
For smaller values of γ there is a significant probability that no
threshold crossing occurs before s0. Since ṽ(s) is a decreasing
function of ε for fixed s > s0, a given realization of V that has
not intersected with ṽ before s0 will cross ṽ earlier for smaller
values of ε than for larger values. This realization of V has
a larger FPT for growing values of ε. The above arguments
hold for single realizations of V and hence individual FPT.
To elucidate the increase of the MFPT for growing ε we need
to differentiate between different processes. On the one hand,
more realizations of V could intersect with ṽ at times larger
than s0. On the other hand, the spread of FPTs that are larger
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WILHELM BRAUN, PAUL C. MATTHEWS, AND RÜDIGER THUL PHYSICAL REVIEW E 91, 052701 (2015)

than s0 grows. To determine which factor, or the combination
of both, is relevant for the current observations we compute
numerically the FPT distributions.

IV. DISTRIBUTION OF FIRST-PASSAGE TIMES

Our calculation of FPT distributions is based on an approach
developed by Durbin and Williams [43]. They derived an
alternating series for the FPT density p of a Brownian motion
through a curved boundary. Using the notation of Sec. III for
the transformed dynamics in time s, we have

p(s) =
k∑

i=1

(−1)i−1qi(s) + (−1)krk(s), (14)

with

qi(s) =
∫ s

0

∫ s1

0
· · ·

∫ si−2

0
Ki(s)fi(s)dsi−1 · · · ds1. (15)

Here, we introduced

Ki(s) =
i∏

j=1

[
dṽ(sj−1)

ds
− ṽ(sj−1) − ṽ(sj )

sj−1 − sj

]
, (16)

where we formally set ṽ(si) = si = 0. fi(s) denotes the joint
probability density of V (s), V (s1), . . . ,V (si−1) at the boundary
values ṽ(s), ṽ(s1), . . . ,̃v(si−1). In Eq. (14) the term rk(s)
represents the error that is made by truncating the infinite
series after k terms. Note that Eq. (16) differs from the original
expression since we study down-crossings of a Brownian mo-
tion instead of up-crossings as in [43]. For practical purposes it
is convenient to introduceF k(s) = ∑k

i=1(−1)i−1qi(s). We can
transform results obtained in the new time s to the original time
t via F k(t) = F k(s(t))ds(t)/dt . In Fig. 4 we compare F2(t)
with direct numerical simulations for different values of γ and
ε. For γ = 0.1 we observe that for increasing ε the maximum
of the distribution slightly shifts to the left, while the tail of the
distribution becomes significantly longer. This wider spread of
long FPTs is the reason for the nonmonotonic behavior of the
MFPT as it dominates the increase of trajectories with shorter
FPTs. For larger values of γ the tails of the distributions still
grow as we increase ε, but the shift of the distribution to shorter
times is more pronounced. The latter leads to the monotonic
decrease of the MFPT for increasing ε. The occurrence of long
FPTs for small values of γ can be attributed to the correlation
time of the OUP τOU = 1/γ . For small values of γ , changes
in the OUP occur slowly. Since for times larger than 1/α, the
voltage has almost reached its equilibrium β/α, the OUP can
then spend a considerable time in the vicinity of the voltage
without crossing it. It is worth noting that F2(t) captures the
full FPT distribution extremely well for most of the probability
mass. F2(t) only fails at correctly predicting the tail of the
FPT distribution. The extent to which F k(t) agrees with the
true distribution depends on the k. As we illustrate in Fig. 5,
F k(t) approximates results from direct simulations better as we
increase k. In their original contribution Durbin and Williams
prove convergence of Eq. (14) under the assumption that the
intercept at the origin of the tangent line of ṽ(s) for any s, i.e.,
ṽ(s)/s − dṽ(s)/ds, does not change sign. Inspection of Fig. 3
shows, however, that the intercept is negative for small values

FIG. 4. (Color online) FPT histograms for (a) γ = 0.1, (b) 0.3,
(c) 0.5, and (d) 1.0 and ε = 0.1 (red), 0.5 (green), and 1 (blue). The
most probable FPT decreases as ε increases. The black lines indicate
the deterministic FPT. The dashed lines correspond to F2(t), while
the solid lines result from direct numerical simulations. Parameter
values are α = 1.0, β = 10, h̄ = 9, D = 2.

of s and positive for large values. Our results suggest that
convergence of the FPT distribution also occurs if the above
assumption is violated, but a rigorous proof is still missing.

FIG. 5. (Color online) FPT distributions F k(t) for k = 1 (red
diamonds), 2 (green squares), and 3 (blue circles). For larger k, the
tail of the distribution is approximated more faithfully. The gray line
corresponds to results from direct numerical simulations. Parameter
values are γ = 0.5,ε = 0.5, D = 2, h̄ = 9,β = 10.
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FIG. 6. (Color online) Cumulative distribution function (CDF)
of FPTs for γ = 0.1 (red) and γ = 1.0 (blue). The circles and
diamonds represent results using the Wang and Pötzelberger approach
in [44], while solid lines correspond to results from direct Monte
Carlo simulations. Parameter values are α = 1,ε = 1.0,D = 2,

h̄ = 9,β = 10.

V. CUMULATIVE DENSITY FUNCTIONS

We next studied the emergence of long tails in the
FPT distributions in more detail. In Fig. 6 we show the
cumulative distribution function (CDF) of the FPTs for
different values of γ . We employed the method developed by
Wang and Pötzelberger [44]. The CDF is expressed as an
expectation value 〈g〉 using a piecewise linear approximation
of the boundary ṽ. An advantage of this method is that each
instance of g is known in closed form and only the average
needs to be computed numerically. We observe that for times
smaller than 2 the two CDFs agree well. This entails that the
FPT distributions almost coincide since they follow from the
corresponding CDFs by differentiation with respect to time.
The CDF for γ = 1 levels off at significantly earlier times
than the CDF for γ = 0.1, illustrating the more pronounced
tail of the FPT distribution for γ = 0.1. For comparison
we also include results from direct numerical simulations,
which lie on top of the quasi-analytical results for the CDF.
The findings in Fig. 6 provide an independent test for the
nonmonotonic behavior of the MFPT. Moreover, convergence
of the CDF as we increase the number of linear segments to
approximate ṽ is guaranteed.

The shift of the FPT distributions to smaller times can also
be understood by computing the probability c that a given
realization of V (s) intersects with ṽ(s) at times s < s0. We
computed c based on the approach in [44] and plot results as
a function of ε for different values of γ in Fig. 7. We observe
that c is an increasing function of ε. Hence, a growing number
of realizations of V have FPTs that are smaller than s0. As
we increase γ for fixed ε, we find that c grows monotonically,
demonstrating that more realizations of V reach ṽ before s0.
The rate of increase of c with ε is more pronounced for larger
values of γ . Therefore, the relative increase in realizations of
V that have FPTs smaller than s0 is stronger for larger values

FIG. 7. (Color online) Probability c computed using [44] that
V (s) has crossed ṽ(s) at least once in the time interval (0,s0] as
a function of ε for γ = 1 (red diamonds), 0.5 (green squares),
0.3 (blue circles), and 0.1 (purple crosses). Parameter values are
α = 1,D = 2,h̄ = 9,β = 10.

of γ compared with smaller values. Taken together, the results
in Figs. 6 and 7 demonstrate the subtle interplay between
the emergence of long tails in the FPT distribution and the
increase in the probability mass of FPTs smaller than Tdet in
the generation of nonmonotonic MFPTs.

VI. DISCUSSION

In this paper, we have formulated and investigated an IF
model for neural firing with a stochastic process controlling the
firing threshold, motivated by experimental studies showing
apparent variability or randomness in the spiking threshold.
The model is designed to be as simple as possible while
allowing fluctuations of the threshold around a “preferred”
value h̄. We therefore use an OUP reverting to a mean h̄ for the
threshold and a leaky IF model for the subthreshold dynamics
v. The simplicity of the model permits the use of techniques
from stochastic calculus [38].

We have demonstrated that the MFPT may depend non-
monotonically on the noise amplitude ε, finding a maximum
of the MFPT as the noise strength is increased. The occurrence
of a minimum in spiking activity at nonvanishing noise
strength has been termed inverse stochastic resonance and has
been described in stochastic Hodgkin-Huxley models [45].
The emergence of inverse stochastic resonance in these
models is directly linked to the phase-space structure of the
corresponding deterministic models. In contrast the determin-
istic LIF model does not predict the complex behavior of
its stochastic counterpart. Inverse stochastic resonance has
been observed in vivo [46] and may even have therapeutic
applications [47].

Local extrema of the MFPT have been reported before.
In [32] escape from a linear and parabolic potential in the
presence of a weak exponential driving force is considered,
while a Kramers problem with a fluctuating barrier is inves-
tigated in [48]. In both studies extrema of the MFPT emerge
when a time scale is varied, which is the decay rate of the
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weak exponential forcing in [32] and the correlation time of
the random barrier in [48]. The dependence of the MFPT
as a function of the noise amplitude is always monotonic in
these studies. This sets our results apart from these earlier
findings. Moreover, transforming our model to one with a
constant threshold and an exponential drive in the subthreshold
voltage results in an amplitude of the time-dependent drive
that is not small for the parameter values that we have
considered. This precludes us from applying the perturbative
results in [31,32] for computing the first two moments of
the MFPT. An exponential drive of sufficient amplitude
and decay time is essential for observing the nonmonotonic
behavior of the MFPT. The nonmonotonicity results from the
competition between small passage times, which arise when
the OUP crosses v during the rising phase of the subthreshold
voltage, and large passage times, which occur when the OUP
intersects with the almost stationary value of v.

The dependence of the MFPT on the noise strength
was found both by direct Monte Carlo simulations and by
solving a backward Kolmogorov-type PDE, with virtually
identical results. The increase of the MFPT with noise strength
can be explained quantitatively by inspection of the FPT
distributions. As the noise becomes stronger, the peak of the
FPT distribution moves towards shorter firing times, but the
tail of the distribution strengthens significantly, so that rare
long times between firings become more frequent. Further
understanding of this effect was achieved by transforming
the dynamics of the system to that of a standard Brownian
motion. This allows a series method [43] to be used to obtain
approximations to the FPT distribution analytically; this series
appears to converge rapidly, showing good agreement with
numerical results.

A number of previous studies on LIF models with constant
threshold employed different noise intensities of the OUP. For
example, a noise scaling of

√
2Dγ was used in [49], which

entails that the variance of the OUP is given by D and hence
does not depend on the correlation time 1/γ . By setting the
noise intensity to

√
2Dγ the authors of [50] ensure that the

variance of the subthreshold voltage remains almost constant
in the limit of long correlation times of the OUP, for which the
variance is given by Dγ . Since the emergence of the maximum

of the MFPT depends on the interplay of long correlation times
and sufficient variance of the OUP, we tested both of the above
noise intensities. Our results show that the new noise scalings
of the OUP have no effect on the nonmonotonicity of the
MFPT. The maximum still exists but is shifted to larger values
of ε for a given value of γ .

An interesting question is how broadly applicable the
transformation of a stochastic threshold to Brownian motion
is, particularly since an IF model with additive noise sub-
threshold dynamics and constant firing threshold can always
be transformed into a model where the subthreshold voltage
evolves deterministically and hits a stochastic threshold. If
the stochastic threshold is given by a Gauss-Markov process a
transformation to Brownian motion always exists [41]. A wider
class of practically relevant stochastic threshold processes are
general diffusion processes [33]. Here, a transformation to
Brownian motion is only feasible for specific forms of the drift
and diffusion functions. Wang and Pötzelberger [51] provide a
practical PDE that these functions need to satisfy to derive an
equivalent Brownian motion. For the most general conditions
to recast a diffusion process as Brownian motion we refer the
reader to [52].

Future work will consider two variations of the setup of the
problem investigated here. We have considered a “renewal”
model in which the threshold is reset to a constant value
after firing, but an alternative procedure is to set it to a value
selected from the statistical distribution of the OUP. A second
possibility is to use a full spike train, in which the threshold
OUP is not reset after each spike but evolves freely. This will
give rise to serial correlations of the interspike intervals, and it
will be of interest to investigate whether the serial correlations
display stronger or weaker correlations than the OUP threshold
process itself.
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[51] L. Wang and K. Pötzelberger, Methodol. Comput. Appl. Probab.

9, 21 (2007).
[52] G. W. Bluman, SIAM J. Appl. Math. 39, 238 (1980).

052701-7

http://dx.doi.org/10.1113/jphysiol.1980.sp013426
http://dx.doi.org/10.1113/jphysiol.1980.sp013426
http://dx.doi.org/10.1113/jphysiol.1980.sp013426
http://dx.doi.org/10.1113/jphysiol.1980.sp013426
http://dx.doi.org/10.1523/JNEUROSCI.4064-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.4064-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.4064-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.4064-11.2011
http://dx.doi.org/10.1080/21553769.2011.556016
http://dx.doi.org/10.1080/21553769.2011.556016
http://dx.doi.org/10.1080/21553769.2011.556016
http://dx.doi.org/10.1080/21553769.2011.556016
http://dx.doi.org/10.1371/journal.pcbi.1000850
http://dx.doi.org/10.1371/journal.pcbi.1000850
http://dx.doi.org/10.1371/journal.pcbi.1000850
http://dx.doi.org/10.1371/journal.pcbi.1000850
http://dx.doi.org/10.1085/jgp.59.6.734
http://dx.doi.org/10.1085/jgp.59.6.734
http://dx.doi.org/10.1085/jgp.59.6.734
http://dx.doi.org/10.1085/jgp.59.6.734
http://dx.doi.org/10.1016/S0303-2647(03)00106-0
http://dx.doi.org/10.1016/S0303-2647(03)00106-0
http://dx.doi.org/10.1016/S0303-2647(03)00106-0
http://dx.doi.org/10.1016/S0303-2647(03)00106-0
http://dx.doi.org/10.1016/j.biosystems.2004.09.003
http://dx.doi.org/10.1016/j.biosystems.2004.09.003
http://dx.doi.org/10.1016/j.biosystems.2004.09.003
http://dx.doi.org/10.1016/j.biosystems.2004.09.003
http://dx.doi.org/10.1103/PhysRevE.72.021911
http://dx.doi.org/10.1103/PhysRevE.72.021911
http://dx.doi.org/10.1103/PhysRevE.72.021911
http://dx.doi.org/10.1103/PhysRevE.72.021911
http://dx.doi.org/10.1162/089976600300015835
http://dx.doi.org/10.1162/089976600300015835
http://dx.doi.org/10.1162/089976600300015835
http://dx.doi.org/10.1162/089976600300015835
http://dx.doi.org/10.1016/S0165-0270(00)00344-7
http://dx.doi.org/10.1016/S0165-0270(00)00344-7
http://dx.doi.org/10.1016/S0165-0270(00)00344-7
http://dx.doi.org/10.1016/S0165-0270(00)00344-7
http://dx.doi.org/10.1073/pnas.1212479110
http://dx.doi.org/10.1073/pnas.1212479110
http://dx.doi.org/10.1073/pnas.1212479110
http://dx.doi.org/10.1073/pnas.1212479110
http://dx.doi.org/10.1007/s004220000156
http://dx.doi.org/10.1007/s004220000156
http://dx.doi.org/10.1007/s004220000156
http://dx.doi.org/10.1007/s004220000156
http://dx.doi.org/10.1016/j.jtbi.2004.08.030
http://dx.doi.org/10.1016/j.jtbi.2004.08.030
http://dx.doi.org/10.1016/j.jtbi.2004.08.030
http://dx.doi.org/10.1016/j.jtbi.2004.08.030
http://dx.doi.org/10.1007/s10955-004-2269-5
http://dx.doi.org/10.1007/s10955-004-2269-5
http://dx.doi.org/10.1007/s10955-004-2269-5
http://dx.doi.org/10.1007/s10955-004-2269-5
http://dx.doi.org/10.1103/PhysRevE.54.2084
http://dx.doi.org/10.1103/PhysRevE.54.2084
http://dx.doi.org/10.1103/PhysRevE.54.2084
http://dx.doi.org/10.1103/PhysRevE.54.2084
http://dx.doi.org/10.1162/089976698300017845
http://dx.doi.org/10.1162/089976698300017845
http://dx.doi.org/10.1162/089976698300017845
http://dx.doi.org/10.1162/089976698300017845
http://dx.doi.org/10.1080/03610919908813596
http://dx.doi.org/10.1080/03610919908813596
http://dx.doi.org/10.1080/03610919908813596
http://dx.doi.org/10.1080/03610919908813596
http://dx.doi.org/10.2307/3213688
http://dx.doi.org/10.2307/3213688
http://dx.doi.org/10.2307/3213688
http://dx.doi.org/10.2307/3213688
http://dx.doi.org/10.1214/aoms/1177729991
http://dx.doi.org/10.1214/aoms/1177729991
http://dx.doi.org/10.1214/aoms/1177729991
http://dx.doi.org/10.1214/aoms/1177729991
http://dx.doi.org/10.2307/3214567
http://dx.doi.org/10.2307/3214567
http://dx.doi.org/10.2307/3214567
http://dx.doi.org/10.2307/3214567
http://dx.doi.org/10.2307/3215174
http://dx.doi.org/10.2307/3215174
http://dx.doi.org/10.2307/3215174
http://dx.doi.org/10.2307/3215174
http://dx.doi.org/10.1007/s00114-009-0570-5
http://dx.doi.org/10.1007/s00114-009-0570-5
http://dx.doi.org/10.1007/s00114-009-0570-5
http://dx.doi.org/10.1007/s00114-009-0570-5
http://dx.doi.org/10.1152/jn.00486.2006
http://dx.doi.org/10.1152/jn.00486.2006
http://dx.doi.org/10.1152/jn.00486.2006
http://dx.doi.org/10.1152/jn.00486.2006
http://dx.doi.org/10.1152/japplphysiol.00058.2009
http://dx.doi.org/10.1152/japplphysiol.00058.2009
http://dx.doi.org/10.1152/japplphysiol.00058.2009
http://dx.doi.org/10.1152/japplphysiol.00058.2009
http://dx.doi.org/10.1103/PhysRevE.54.3173
http://dx.doi.org/10.1103/PhysRevE.54.3173
http://dx.doi.org/10.1103/PhysRevE.54.3173
http://dx.doi.org/10.1103/PhysRevE.54.3173
http://dx.doi.org/10.1103/PhysRevE.68.021920
http://dx.doi.org/10.1103/PhysRevE.68.021920
http://dx.doi.org/10.1103/PhysRevE.68.021920
http://dx.doi.org/10.1103/PhysRevE.68.021920
http://dx.doi.org/10.1103/PhysRevE.77.031914
http://dx.doi.org/10.1103/PhysRevE.77.031914
http://dx.doi.org/10.1103/PhysRevE.77.031914
http://dx.doi.org/10.1103/PhysRevE.77.031914
http://dx.doi.org/10.1007/s11009-006-9002-6
http://dx.doi.org/10.1007/s11009-006-9002-6
http://dx.doi.org/10.1007/s11009-006-9002-6
http://dx.doi.org/10.1007/s11009-006-9002-6
http://dx.doi.org/10.1137/0139021
http://dx.doi.org/10.1137/0139021
http://dx.doi.org/10.1137/0139021
http://dx.doi.org/10.1137/0139021



