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Non-Gaussian polymers described by alpha-stable chain statistics: Model, effective interactions
in binary mixtures, and application to on-surface separation

M. Majka* and P. F. Góra
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The Gaussian chain model is the classical description of a polymeric chain, which provides analytical results
regarding end-to-end distance, the distribution of segments around the mass center of a chain, coarse-grained
interactions between two chains and effective interactions in binary mixtures. This hierarchy of results can be
calculated thanks to the α stability of the Gaussian distribution. In this paper we show that it is possible to
generalize the model of Gaussian chain to the entire class of α-stable distributions, obtaining the analogous
hierarchy of results expressed by the analytical closed-form formulas in the Fourier space. This allows us to
establish the α-stable chain model. We begin with reviewing the applications of Levy flights in the context
of polymer sciences, which include: chains described by the heavy-tailed distributions of persistence length;
polymers adsorbed to the surface; and the chains driven by a noise with power-law spatial correlations. Further, we
derive the distribution of segments around the mass center of the α-stable chain and construct the coarse-grained
interaction potential between two chains. These results are employed to discuss the model of binary mixture
consisting of the α-stable chains. In what follows, we establish the spinodal decomposition condition generalized
to the mixtures of the α-stable polymers. This condition is further applied to compare the on-surface phase
separation of adsorbed polymers (which are known to be described with heavy-tailed statistics) with the phase
separation condition in the bulk. Finally, we predict the four different scenarios of simultaneous mixing and
demixing in the two- and three-dimensional systems.

DOI: 10.1103/PhysRevE.91.052602 PACS number(s): 36.20.−r, 05.40.Fb, 68.35.Dv, 82.35.Gh

I. INTRODUCTION

While the theory of Flory provides an accurate description
of the ideal polymeric chains [1], factors such as complex
environment interactions, adsorption, or designed chemical
composition can lead to significant deviations from this model.
The Flory approach is based on the Gaussian chain model,
in which the conformation of a chain is equivalent to the
trajectory of a particle undergoing the thermal Brownian
motion [1]. In this model the chain is characterized by the
Gaussian distribution of the nearest-neighbor distances, a fact
that leads to the entire hierarchy of analytical results. In partic-
ular, the Gaussian shape propagates to such characteristics as
end-to-end distance distribution [1], distribution of segments
around the mass center of the chain [2], and the coarse-grained
interaction potential between two chains in terms of the
distance between their mass centers [3]. Deriving all of these
characteristics is possible due to a single fact: the Gaussian
distribution is α stable. Since there exists the entire class
of α-stable, heavy-tailed distributions [4], this suggests that
a natural and equally prolific generalization of the Gaussian
chain model can be based on the α-stable distributions. Indeed,
in this paper we discuss the α-stable chain model and calculate
all of the characteristics analogous to the Gaussian model.

The first goal of this paper is to establish the physical
context in which the α-stable distributions are relevant for
the polymer sciences. Since the application of α-stable
distributions (or Levy walks and Levy flights) in this context is
not an entirely new concept, in Sec. II we review the relevant
literature. In addition, we provide our own simulations of a
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model polymeric chain under the spatially correlated noise,
which establish another context for our considerations.

The main part of this paper is focused on deriving and
analyzing the different aspects of the α-stable chain model. In
Sec. III we introduce the model itself. The distribution of nodes
around the mass center of a chain is calculated in Appendix. In
Sec. IV the coarse-grained model of interaction between two
chains is established. All of these results are analytical and
closed form in the Fourier space.

Another goal of this paper is to analyze the stability of
binary mixtures composed of the α-stable chains. Under-
standing the behavior of binary mixtures is a vital problem
in industry, medicine, wet nanotechnology, and biophysics.
Usually, this problem is considered in the framework of
spinodal decomposition. In this approach the local extremes
of the free-energy functional are identified with respect to
the thermodynamical parameters. While the local minima
are associated with stable thermodynamic phases, which are
insensitive to the fluctuations of parameters, the local maxima
indicate the phase transitions. This method was successfully
applied to find the decomposition condition in the mixtures of
Gaussian particles [5,6], namely, there exists a well defined
region of mixing and demixing, dependent on the proportion
of gyration radii.

From the microscopic perspective, the stability of solution
is governed by effective interactions [7], whose prediction is
a classical problem of soft matter physics [8]. In the context
of binary mixtures of Gaussian particles, Bolhuis et al. found
via simulations that the interaction between particles of one
species has also a Gaussian profile, but with an addition of a
shallow attractive tail [9]. Similar results were predicted half
analytically via closure-relations techniques in Refs. [10,11].
On the other hand, a simpler, but entirely analytical method
has been recently proposed in Ref. [12] by the authors of
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this paper. Therein, we have studied the stability of Gaussian
particles mixtures and our results proved similar to the
spinodal decomposition analysis [5,6]. Since our methodology
from Ref. [12] can be conveniently extended to the particles
described with the α-stable profiles, we apply this approach
in the current paper. As the main result of Sec. V, we generalize
the spinodal decomposition condition for Gaussian particles to
the entire class of particles based on the α-stable distributions.
We discuss the validity of our methodology in Sec. VI.

Finally, in Sec. VII we employ the results regarding phase
separation in binary mixtures to analyze the phase separation of
adsorbed polymers versus their behavior in the bulk. As a result
we predict the parameters for which the different combinations
of simultaneous mixing or demixing on the surface and in the
bulk can be achieved.

II. LEVY FLIGHTS IN POLYMER SCIENCES

Except for the Gaussian case, the asymptotic behavior of
the α-stable distributions is of the power-law type ∝ 1/rα+1

[4], where α ∈ [0,2] is the characteristic exponent of the
distribution. A random walk characterized by such a heavy-
tailed distribution of steps is known as a Levy flight. It is
usually difficult to interpret Levy flights in physical terms,
therefore let us discuss three situations justifying such statistics
in the context of polymers.

The first scenario can be related to the non-Gaussian
distribution of segment persistence lengths. The Gaussian
chain model is usually derived from a discrete model, in which
all segments have the same persistence length [1]. However, it
can be also seen as the model for a chain made of unequal
segments, whose persistence lengths follow the Gaussian
distribution. This can be further generalized to the α-stable
distribution, the idea suggested by Moon and Nakanishi in
Ref. [13]. They proposed the Levy walk chain model, based
on the formalism of turbulent flows [14] and calculated
Flory exponents for this model. While no direct experimental
confirmation of this idea is known to the present authors, non-
Gaussian persistence length distribution might be the result
of the varying chemical composition of a chain. For example,
the DNA double strand is characterized by the persistence
length much greater than a single base pair [15], but also
certain sequences of chemical monomers can assemble into
relatively long and stable structures of significant persistence
length, such as protein domains [16]. A possible realization of
such Levy flights could be the intrinsically disordered proteins,
in which second-order structural motifs such as α helices
coexist with disordered loops [17,18]. However, it should be
mentioned that some numerical experiments on the structure
of partially unfolded proteins indicate that Gaussian statistics
is rather robust [19].

Another scenario is similar to the problem of a tracer, which
mixes one- and three-dimensional diffusion. Such motion has
been observed experimentally in DNA-binding proteins [20]
and its simulations revealed the heavy-tailed distributions of
steps along the polymer in certain configurations [21]. This
behavior can be efficiently modeled with Levy flights [22].
In the context of polymers, we consider the adsorption of
a chain to the surface. This problem was first analyzed by
de Gennes from the scaling perspective in Refs. [23,24].

FIG. 1. (Color online) Top: schematic representation of a poly-
mer adsorbed to the surface, dots indicate the adsorbed segments.
Bottom: planar trajectories connecting the subsequent adsorbed
segments. (a) In the strong adsorption regime freely-diffusing loops
are short and subsequent adsorbed nodes are found close to each
other. The radius of gyration parallel to the surface scale as Rg,|| ∝
N 3/4 [25]. (b) In the weak adsorption limit the long, freely diffusing
loops are numerous and introduce Levy flights into the planar
trajectory. Rg,|| scales as ∝ N 3/5 [25].

For the intermediate attraction strength, only some fraction
of segments is attached to the surface, while the loops that
connect those segments diffuse into the bulk. Considering the
projection of the chain on the surface, it has been argued
by Bouchaud and Daoud [25] that the planar trajectory
connecting adsorbed nodes can be modeled as Levy flights,
since the subsequent adsorbed segments connected by a loop
can be found at abnormally long distances. The schematic
representation of a polymer in the strong versus the weak
adsorption limit is shown in Fig. 1. Bouchaud and Daoud
predict that for an adsorbed polymer its gyration radius parallel
to the surface scales as Rg,|| ∝ N3/4 for the strong adsorption
and Rg,|| ∝ N3/5 for the weak adsorption [25]. Within the
Flory-type theory for Levy flights discussed in Ref. [25],
the latter translates into the characteristic exponent of the
distribution α = 1 and the former demands α = 2. This means
that while in the strong adsorption regime the Levy flights and
the Gaussian statistics are equivalent, for the weak adsorption
limit Rg,|| should be modeled with power-law distributions.

One final interpretation can be related to the situation
in which a polymer experiences a random, though spatially
correlated, behavior of surrounding environment. Such condi-
tions occur in the glassy state, in which the correlations are
exponential [26–28], or near crystallization, in which case the
scale-free behavior results in the power-law correlations [29].
In Ref. [30] we have simulated a two-dimensional model
polymeric chain driven by the spatially correlated noise and
observed the effect of spontaneous chain unfolding, i.e.,
a significant number of segments tends to form linearized
structures, scattered along the chain. As we have shown in
Ref. [31], this effect was mainly due to the short (2–3 segments)
structures, but structures up to 50 segments were also observed.
Such elongated fragments may act as Levy flights, provided
that their distribution is wide enough.
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The model from Ref. [30] consisted of a bead-spring chain
with a global Lennard-Jones potential assigned to each bead
and a second-nearest-neighbor harmonic interaction to induce
nonlinear conformations. The system was driven by the noise
ξ , whose spatial correlation function read:

〈ξ (r)ξ (r + �r)〉 ∝ exp(−|�r|/λ). (1)

For the purpose of the current paper we have repeated
the simulations from Ref. [30], replacing the exponential
correlations in the noise with a heavy-tailed function, based
on the Cauchy distribution, namely:

〈ξ (r)ξ (r + �r)〉 ∝ 1/[1 + (|�r|/λ)2]. (2)

The data regarding the linearized fragments has been gather
in the same fashion as in Ref. [31]. To improve statistics, the
single set of parameters was simulated 128 times, otherwise,
the details of the simulations remained the same as in Refs. [30]
and [31]. In Fig. 2, we include the representative probability
distributions Sn of finding the n-segments-long structure in the
chain geometry. The data has been gathered from the regime
of noise-dominated dynamics. With the growing correlation
length λ the distribution Sn gradually develops a linear region
in the log-log plot. For λ � 40, where relevant, we have
fitted Sn for n > 17 with a power-law model Sn = cn−(α+1).
We obtain α ranging from 1.18 ± 0.39 to 2.44 ± 0.54, with
the relative error typically at the level of 20–30 %. The
uncertainty intervals for these values of α overlap with the
interval α ∈ [0,2], which is expected for the asymptotic
behavior of the α-stable distributions [4]. For comparison, the
data have been also fitted with the exponential decay model

Sn = ae−n/b. While both the linear and exponential fit describe
the tail part of Sn similarly well (in both cases R2 � 0.8) and,
most probably, even for λ = 50 the distribution Sn eventually
develops the exponential decay for n � 50, a power-law-like
region suggests that in the special conditions of long-range
spatial correlations the α-stable distributions might be a more
relevant description of the chain statistics than the Gaussian
distribution. For comparison we also include in Fig. 2 the data
from Ref. [30], which preserve the exponential form in the
entire range of parameters.

III. α-STABLE CHAIN MODEL

In the Gaussian chain model, the geometry of a chain is
described as a random walk trajectory, in which the distribution
of the distances between nearest neighbors is Gaussian,
namely [1]:

G(|ri+1 − ri |) =
(

2πb2

D

)−D/2

exp

(
−D(ri+1 − ri)2

2b2

)
.

(3)
Here, D is the dimension of the system, b is usually interpreted
as the length of a segment and ri is the vector position of ith
node. The characteristic function of G reads:

φG(k) = exp

(
−2b2

D
k2

)
. (4)

Let us now consider the generalization of G(|ri+1 − ri |)
to the α-stable distribution P (|ri+1 − ri |). The multivariate
α-stable distributions are defined in terms of their charac-
teristic functions, which can be written in the following
parametrization [4]:

φ(k) =
exp

(
−

∫
SD

|k · s|α
(

1 − isgn(k · s) tan
πα

2

)
�(ds) + ik · μ

)
for α �= 1

exp

(
−

∫
SD

|k · s|
(

1 + isgn(k · s)
2 ln k · s

π

)
�(ds) + ik · μ

)
for α = 1.

(5)

In the above definition �(ds) stands for the spectral measure
defined on the D-dimensional unit sphere SD , k · s denotes
the scalar product, and μ is the vector of mean values.
Since we are interested in the spherically symmetric distri-
butions, we choose the uniform spectral measure �(ds) =
const. [32]. Under such choice, and assuming μ = 0, the
general parametrization can be simplified to the following
form:

φ(k) = exp (−ckα) , (6)

where k = |k| and c is a constant. Eq. (4) is a special case of
φ(k), and our choice of c should agree with φG(k) for α = 2.
Therefore, we postulate that c reads:

c = 2bα

D
(7)

and, finally, the nearest-neighbor spatial distribution in the
α-stable chain model reads:

P (|ri+1 − ri |)

= 1

(2π )D

∫
dk exp

(
ik · (ri+1 − ri) − 2

D
bαkα

)
. (8)

Having established the nearest-neighbor spatial distribution
P (|ri+1 − ri |), we can calculate such distribution for any pair
of segments, namely:

P (|ri − rj |)

=
∫

dri+1 . . .

∫
drj−1

j∏
n=i+1

P (|rn − rn−1|)

= 1

(2π )D

∫
dk exp

(
ik · (ri − rj ) − 2

D
|i − j |bαkα

)
,

(9)
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FIG. 2. The probability distribution Sn of finding the n-segment-long linearized fragment in a chain driven by the spatially correlated
noise. Each plot represents the results for noise amplitude 2kT and correlation length λ. Triangles: exponential noise correlation function
〈ξ (r)ξ (r + �r)〉 ∝ exp(−|�r|/λ); dots: Cauchy noise correlation function 〈ξ (r)ξ (r + �r)〉 ∝ 1/[1 + (|�r|/λ)2]. The tail behavior (n � 17)
has been fitted with exponential decay model Sn = ce−n/bi (dashed lines) with bi given on the plot. For λ � 40 the data has been also fitted
with power law Sn = cn−(α+1) for n � 17, indicating the power-law asymptotic behavior.

where we made use of α stability. For α = 2 this for-
mula comes down to the well known result for Gaussian
chain [1]:

G(|ri − rj |) =
(

2π |i − j |b2

D

)−D/2

exp

(
−D(ri − rj )2

2|i − j |b2

)
.

(10)

It is also possible to calculate α = 1 case explicitly:

Pα=1,D=3(|ri − rj |) = 16π |i − j |
3

1( 4|i−j |2
9 + r2

)2 . (11)

In particular, taking as i and j the first and the last
segment respectively, we obtain the end-to-end distance
distribution.

A classical problem in polymer physics is to predict the
scaling behavior of radius of gyration Rg with the growing
N . In order to do so, we will calculate Rg using a method
mentioned in Ref. [13], namely Rg = 〈rα〉1/α , where 〈.〉

denotes the average:

Rg =
[

1

(2π )D

∫
drrα

∫
dk exp

(
ik · r − 2N

D
bαkα

)]1/α

= b

(
2N

D

)1/α

×
(

1

(2π )D

∫
dr′r ′α

∫
dk′ exp(ik′ · r′ − k′α)

)1/α

.

(12)

This result is obtained via the change of variables k′ =
b(2N/D)1/αk and r′ = b−1(2N/D)−1/αr, which completely
factors the dependence on b and N out of the integral.
Therefore, the scaling reads Rg ∝ bN1/α .

While this scaling seems reasonable for α � 1, it becomes
questionable for 0 < α < 1, for which the scaling exponent of
N becomes greater than 1. On the one hand, the examples from
Sec. II use α � 1 almost exclusively. In particular, Moon and
Nakanishi in Ref. [13] introduce their more complicated Levy
walk model to avoid α < 1 problem and, in their approach,
the scaling exponent of N is always lower than 1. On the other
hand, Bouchaud and Daoud in Ref. [25] systematically discuss
every possible value of α, pointing out that for α < 1 the Flory
correction from the self-avoiding nodes becomes irrelevant. In
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conclusion, while α < 1 seems physically unlikely, with so
little literature on the subject it cannot be rejected at this point.

Finally, with P (|ri+1 − ri |) at our disposal, we can calculate
the distribution of nodes around the mass center of the
chain. This derivation is highly technical, so we include it
in Appendix and here we discuss the final result only. In the
limit of huge number of nodes N , the sought distribution reads:

PCM(|r − R|) = 1

(2π )D

∫ 1

0
dq

∫
dk exp

[
ik · (r − R)

− 2Nbαkα

D(α + 1)
((1 − q)α+1 + qα+1)

]
, (13)

where R is the mass center. While this expression is exact, the
integral with respect to q makes it unwieldy. We can simplify
it by resorting to the integral mean value theorem. Namely,
there exists such q0 ∈ [0,1], that:

PCM(|r − R|) = 1

(2π )D

∫
dk exp

[
ik0 · (r − R)

− 2Nbαkα

D(α + 1)

(
(1 − q0)α+1 + qα+1

0

)]
. (14)

On the other hand, since the integrand of (13) is a peak function
of q with maximum at q = 1/2, this value contributes the most
to the integral. For this reason, we will approximate (14) by
imposing q0 = 1/2. This results in the characteristic function
of PCM(|r − R|) in a form exp(−c(α)kα), where:

c(α) = 2N

D(α + 1)

(
b

2

)α

. (15)

IV. COARSE-GRAINED INTERACTION BETWEEN TWO
NON-GAUSSIAN POLYMERS

Having established PCM(|r − R|) for a single chain, we can
calculate the coarse-grained interaction between two chains
in terms of the distance between their mass centers. From
now on, the lower index numerates the type of particle, so
PCM,i(|r − Ri |) describes an ith type of chain characterized
by Ni segments, constant bi and exponent αi . We can follow
the reasoning of Flory and Krigbaum [3] and assume that the
systems suffers an energetic penalty εij if a segment belonging
to one chain invades a small volume in the vicinity of a segment
belonging to the other chain. For a single site r, the probability
of such event is proportional to PCM,i(|r − Ri |)PCM,j (|r −
Rj |)dr. Therefore, the entire interaction reads:

Vij (|Ri − Rj |) = εij c̃ij

∫
drPCM,i(|r − Ri |)PCM,j (|r − Rj |)

= εij c̃ij

(2π )D

∫
dk exp[ik · (Ri − Rj )

− ci(αi)k
αi − cj (αj )kαj ]. (16)

Assuming that εij has a dimension of energy, it is necessary
to introduce an additional constant c̃ij , which has a dimension
of volume. We can deduce this constant from the case of αi =
αj = 2, for which we obtain the following universal Gaussian
potential [8] and its Fourier transform:

V (r) = ε exp

(
− r2

4c

)
V(k) = ε (4πc)D/2 e−ck2

. (17)

When ε is independent from N , this potential is perceived
as an accurate and reliable model for interaction of identical
chains [8,9]. Comparing (17) to (16), one can see that
c = ci(2) + cj (2) and hence c̃ij = (4πc)D/2. This can be
generalized for αi = αj = α by:

c̃ij = {4π [ci(α) + cj (α)]}D/α. (18)

For the case of αi �= αj the constant c̃ij cannot be uniquely
deduced from the dimensional analysis, thus we will restrict
our further considerations to the potentials with common α.

V. EFFECTIVE INTERACTIONS AND MIXTURE
STABILITY

Once Vij has been found, we can analyze the interactions in
binary mixtures. The system is described by three microscopic
potentials in the form (16), where V11 and V22 are the internal
interactions of each species and V12 is the cross-species
interaction. When the behavior of one species in a mixture
is considered, the presence of the other species modifies the
microscopic interaction [7,8]. The additional potential, known
as the effective interaction, is of entropic origin [7,8] and it is
a key factor in controlling mixture stability and demixing. The
prediction of effective interactions from arbitrary microscopic
potentials is usually a challenging numerical task, but in our
previous work [12] we have proposed a simple analytical
method, suitable for soft interactions. According to Ref. [12],
the effective interaction can be estimated by:

Ueff(�R) = − 1

(2π )D

∫
	̃

dkeik·�R |V12(k)|2
V22(k)

, (19)

where Vij (k) = ∫
dr exp(ik · r)Vij (r) is a Fourier transform

of relevant Vij (r) and 	̃ is the volume in the reciprocal space.
Substituting (16) with relevant constants given by (18) into the
expression for effective interactions, one obtains:

Ueff(�R) = − 1

(2π )D
ε2

12

ε22

(4π )D/α[c1(α) + c2(α)]2D/α

[2c2(α)]D/α

×
∫

	̃

dkeik·�R−2c1(α)kα

. (20)

The total interaction for the first species in the mixture reads:

Utot(�R) = V11(�R) + Ueff(�R) (21)

or explicitly:

Utot(r)

=
(

ε11 [8πc1(α)]D/α − ε2
12

ε22

(4π )D/α[c1(α) + c2(α)]2D/α

[2c2(α)]D/α

)

× 1

(2π )D

∫
	̃

dkeik·�R−2c1(α)kα

. (22)
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One can see that Utot(�R) and V11(�R) have the same
shape, up to the scaling factor S:

S = ε11 [8πc1(α)]D/α − ε2
12

ε22

(4π )D/α[c1(α) + c2(α)]2D/α

[2c2(α)]D/α
.

(23)

S has a complicated form and it can take both the negative and
positive values, depending on the parameters. The change in
the sign of the total interaction indicates a remarkable change
in the behavior of the system. Namely, for S > 0 the total
interaction between the particles of the first species is purely
repulsive, which means that these particles will disperse in the
volume. Conversely, for S < 0, the first species of particles
interacts via attractive potential, which results in the clustering
of these particles and demixing in the system. Equating S to
0, the condition for demixing reads:

ε11ε22

ε2
21

<

(
[c1(α) + c2(α)]2

4c1(α)c2(α)

)D/α

. (24)

Let us now analyze the condition (24) and introduce a
common energy scale:

ε̃ = ε12√
ε11ε22

(25)

and:

g =
(

c1(α)

c2(α)

)1/α

= b1

b2

(
N1

N2

)1/α

(26)

for which condition (24) can be reduced to:

ε̃ >

(
4gα

(1 + gα)2

)D/(2α)

. (27)

Recalling the equation (12) for the radius of gyration Rg , one
can see that for the chains characterized by the distributions
sharing the same α, the parameter g becomes the ratio of Rg:

g = Rg,1

Rg,2
. (28)

For α = 2 and D = 3 the condition (24) becomes exactly the
spinodal decomposition condition for Gaussian particles, as
given in Ref. [5] and [6], namely:

ε̃ >

(
2g

1 + g2

)3/2

. (29)

Therefore, the condition (27) is a direct generalization of the
spinodal decomposition to the systems of particles described
with α-stable distributions.

The condition (27) is plotted in Fig. 3. For every pair of g

and α its value varies from 0 to 1. In the entire range of α, the
region of mixing (below the surface) preserves the features of
the Gaussian case, namely it falls rapidly to 0 for g � 1,
reaches the single maximum at g = 1, and asymptotically
decreases to 0 for g � 1. However, as α decreases to 0
the mixing region for g � 1 becomes wider, asymptotically
reaching the region defined by ε̃ > 1. This means that the
gyration radius ratio g becomes less and less relevant for the
mixing of chains characterized by very wide distributions. The
changes in the mixing region shape are much more pronounced
for α < 1.

FIG. 3. (Color online) The spinodal decomposition condi-
tion (27) for the binary systems of particles described with the
α-stable statistics as a function of gyration radii ratio g = Rg,1/Rg,2

and the distribution exponent α for D = 3 dimensional system.
ε̃ = ε12/

√
ε11ε22 is the common energy scale. In the region above

the plotted surface the binary system undergoes demixing due to the
prevalence of the attractive effective interactions, in the region below
the surface the effective interaction is repulsive and the system is
homogeneous.

VI. DISCUSSION

It is known that the spinodal decomposition condition for
Gaussian particles leads to the predictions on mixture separa-
tion, which are qualitatively and quantitatively comparable to
the more advanced methods [6]. Thus, a similar efficiency can
be expected from (27), at least for α mildly deviating from 2.
However, some possible issues should be mentioned.

The fact that the total interaction (21) can become entirely
negative is unrealistic. This evident problem is mitigated by
the fact that the energy density of a pair interaction behaves
as Utot(r)rD−1dr . Therefore, rD−1 factor suppresses the lack
of repulsive core at short distances and amplifies the influence
of the attractive tail. The unrealistic shape of Utot is also a
consequence of the way the potential Vij (r) given by (16)
is constructed. This potential is mean field in its nature and
its width is governed by the constant ci(α) + cj (α). In the
context of Gaussian particles, while the dominant shape of
the interaction between two separate chains is agreed to be
Gaussian [9,33], there is an open problem of whether there are
additional components [33] or how the width of such Gaussian
is related to the gyration radii of the component chains [5]. A
similar problem is relevant in our case and the choice of the
width constant different from ci(α) + cj (α) might result in a
more realistic shape of Utot

VII. PHASE SEPARATION IN THE ADSORPTION
OF GAUSSIAN PARTICLES TO THE SURFACE

The result (27) is particularly interesting in the context of
the already mentioned work of Bouchaud and Daoud [25],
where the gyration radius parallel to the surface is calculated
for an adsorbed polymer. As mentioned in Sec. II, the
characteristic exponent for the distribution on the surface reads
αss = 2 in the strong adsorption limit and αws = 1 in the weak
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FIG. 4. (Color online) Schematic representation of four mixing
and demixing scenarios in the binary system consisting of a solution
and an adsorbing surface. In the bulk polymers follow the Gaussian
statistics (αb = 2, Db = 3). On the surface (Ds = 2) polymers are
described either by αss = 2 in the strong adsorption limit or αws = 1
for the weak adsorption.

adsorption limit [25]. Considering the adsorption from the
binary mixture, (27) provides the condition for homogeneous
versus inhomogeneous adsorption, i.e., the ratio of gyration
radii parallel to the surface (Rg,||) decides whether both species
cover the surface in a homogeneous manner or they separate
into the islands consisting of the particles of the same type. On
the other hand (27) allows us to compare for which parameters
the separation on the surface and in the bulk coappear.

Let us consider a simple binary system in which the
behavior of chains in the bulk (Db = 3, αb = 2) is Gaussian,
but on the surface it is characterized by Ds = 2 and αss or αws .
The types of particles differ by the number of monomers Ni

and their persistence length bi . The condition (27) reads:

ε̃ >

⎛
⎜⎝ 4

(
b1
b2

)αx
N1
N2[

1 +
(

b1
b2

)αx
N1
N2

]2

⎞
⎟⎠

Dy

2αx

= fx,y . (30)

In the strong adsorption limit it is always true that fss,s �
fb,b for any b1/b2 and N1/N2. Therefore, assuming that
in this system ε̃ is the same on the surface and in the
bulk, three scenarios of mixing or demixing are allowed.
First, for (a) [Fig. 4(a)] fss,s � fb,b � ε̃ the solution in the
bulk is homogeneous and so is the coverage of the surface.
Conversely, for (b) [Fig. 4(b)] ε̃ � fss,s � fb,b the separation
is simultaneous on the surface and in the bulk. Finally, for
(c) [Fig. 4(c)] fss,s � ε̃ � fb,b demixing in the bulk occurs,
but the surface coverage is still homogeneous. The schematic
representation of scenarios (a)–(c) is shown in Fig. 4.

In the weak adsorption limit (αws = 1), the situation is
more complicated because both fws,s � fb,b and fws,s � fb,b

are possible, depending on b1/b2 and N1/N2. Replacing fss,s

by fws,s in the inequalities from the previous paragraph one ob-
tains the conditions for separation scenarios (a)–(c) in the weak
adsorption limit. However, there exists the additional region
in which it is possible that (d) [Fig. 4(d)] fb,b � ε̃ � fws,s .

FIG. 5. The exemplary comparison of the phase separation
conditions on the surface in the weak adsorption limit (fws,s , solid
line) and in the bulk (fb,b, dashed line) for the binary system of
Gaussian polymers characterized by the persistence length ratio
b1/b2 = 0.1. fws,s and fb,b are defined by (30). fws,s and fb,b divide
the plot into four regions: (a) simultaneous mixing on the surface and
in the bulk, (b) simultaneous demixing on the surface and in the bulk,
(c) mixing on the surface, demixing in the bulk, (d) demixing on the
surface, mixing in the bulk.

In this region the separation on the surface occurs, while
the solution in the bulk is still homogeneous (see Fig. 4).
In Fig. 5 the exemplary phase separation diagram for the weak
adsorption limit and b1/b2 = 0.1 is presented, which contains
all of the phase separation scenarios (a)–(d). Figure 6 shows
the difference fws,s − fb,b, which indicates where scenarios
(c) and (d) are allowed. In particular, for b1/b2 → 0 and
b1/b2 � 1 the scenario (d) becomes almost inaccessible, while
it is allowed in the vicinity of b1/b2 � 1.

These considerations show that the behavior of a mixture
can be designed by the choice of b1/b2 (which is dependent
on the chemical composition) and N1/N2. However, our
predictions can be affected by a few additional effects. In
general, there are two main factors that determine the behavior
of the system as a whole. On the one hand, the system
tends to minimize its energy, so the details of adsorption
mechanism (e.g., binding energy, a preference for a certain
type of particles, adsorption rate, etc.) are important. Since
our model is valid for thermodynamic equilibrium, the sur-
face binding should not be significantly stronger than other
interactions, to allow equilibration. On the other hand, the
system globally maximizes its entropy, which includes the
on-surface and in-the-bulk contributions. However, there is
also the bulk-surface component, i.e., the bigger particles can
decrease their excluded volume in the vicinity of a wall,
hence they experience the entropy-driven affinity to the flat
surface [7,34]. This effect is not included in our model. One
would generally expect the increased concentration of bigger
particles in the near-surface region and a reduced availability
of smaller particles. Indeed, for the hard-sphere mixtures this
effect depends on the concentration of smaller particles and
it precedes the in-bulk clustering [34], which can be also
expected for polymers. It is not clear, however, whether this
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FIG. 6. (Color online) The density plot of the difference fws,s −
fb,b as a function of persistence length ratio b1/b2 and the ratio of
monomer numbers N1/N2. fws,s − fb,b indicates which surface/bulk
demixing scenarios are allowed (see Sec. VII and Fig. 5 for explana-
tion). White meshed region: fws,s − fb,b < 0 indicates scenario (d)
allowed (demixing on the surface, mixing in the bulk), complement
region: fws,s−fb,b > 0 scenario (c) allowed (mixing on the surface,
demixing in the bulk).

effect can be strong enough to result in the complete coating
of the surface with bigger particles.

In conclusion, the full theory should also include both the
detailed adsorption mechanism and the surface affinity. How-
ever, our model is potentially valid in the semidilute regime for
adsorption strength comparable to entropic interactions and
in the systems in which the surface effects are a significant
contribution to the entropy of the entire system.

VIII. SUMMARY

In summary, in this paper we have presented the gen-
eralization of the results known from the Gaussian chain
theory to the particles described with the α-stable distributions.
As expected, it is possible to obtain a similar hierarchy of
analytical results ranging from end-to-end distribution up to
the effective interactions in binary mixtures. Typically for
α-stable distributions, we obtained the closed-form formulas
in the Fourier space. Our theory also allows us to generalize
the spinodal decomposition condition from Gaussian particles
to the α-stable particles. This can be readily applied to the
problem of mixing or demixing of adsorbed polymers, as we
also show. Our results might be further utilized in the context
of Levy flights applications reviewed in Sec. II.

APPENDIX: DISTRIBUTION OF SEGMENTS AROUND
THE CENTER OF MASS

In this Appendix we derive the distribution of segments
around the mass center of a chain. Let us consider an

N -segments-long chain, described by the nearest-neighbor
probability given by (8). The position of the mass center reads:

R = 1

N

N∑
i=1

ri . (A1)

The probability that each segment occupies its position ri

under condition that the mass center is positioned at R reads:

P (r1, . . . ,rN |R) =
N−1∏
i=1

P (|ri+1 − ri |)δ
(

R − 1

N

N∑
i=1

ri

)
.

(A2)

From this expression we can calculate the probability of
finding j th segment at some position relative to the mass
center:

P (|rj − R|) =
∫

dr1 . . .

∫
drj−1

∫
drj+1 . . .

∫
drN

×
N−1∏
i=1

P (|ri+1 − ri |)δ
(

R − 1

N

N∑
i=1

ri

)
.

(A3)

The integrals in the above expression can be done particularly
easily, if we switch to relative variables:

�ri−j = ri − ri−1 for i > j

�ri−j = ri−1 − ri for i < j,
(A4)

which allows us to express ri as:

ri = rj +
N−i∑
n=1

�r+n for N � i > j

ri = rj +
j−i∑
n=1

�r−n for 1 � i < j.

(A5)

In these coordinates the position of mass center reads:

1

N

N∑
i=1

ri = rj +
N−j∑
n=1

N − j − n + 1

N
�r+n

+
j−1∑
n=1

j − n

N
�r−n. (A6)

The change of variables (A4) is linear and its Jacobian is equal
to 1, so applying the new coordinates to (A3), we obtain:

P (|rj − R|) =
N−j∏
n=−j

n �=0

∫
d�rnP (�rn)

×δ

(
R − rj +

N−j∑
n=1

N − j − n + 1

N
�r+n

+
j−1∑
n=1

j − n

N
�r−n

)
. (A7)
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The following step is to express P (�rn) in (A7) in terms of its
characteristic function (8):

P (|rj − R|) = 1

(2π )ND

N−j∏
n=−j

n �=0

∫
d�rn

∫
dkne

ikn·�rnφ(kn)

×
∫

dk0 exp

(
ik0 · (R − rj )

+ i

N−j∑
n=1

N − j − n + 1

N
k0 · �r+n

+i

j−1∑
n=1

j − n

N
k0 · �r−n

)
. (A8)

Further, we integrate out every component of �r±n, which
introduces multiple Dirac-δ functions:

P (|rj − R|)

= 1

(2π )D

=
∫

dk0

[
N−j∏
n=1

∫
dk+nφ(k+n)

× δ

(
k+n − N − j − n + 1

N
k0

) ]

×
[

j−1∏
n=1

∫
dk−nφ(k−n)δ

(
k−n − j − n

N
k0

)]
eik0·(R−rj )

= 1

(2π )D

∫
dk0

[
N−j∏
n=1

φ

(
N − j − n + 1

N
k0

)]

×
[

j−1∏
n=1

φ

(
j − n

N
k0

)]
eik0·(R−rj ). (A9)

At this point we apply the explicit form of φ(k), so the final
expression for P (|rj − R|) reads:

P (|rj − R|) = 1

(2π )D

∫
dk0 exp

{
ik0 · (R − rj )

−2bα

D

[
N−j∑
n=1

(
N − j − n + 1

N

)α

+
j−1∑
n=1

(
j − n

N

)α
]

kα
0

}
. (A10)

Expression (A10) gives the probability of finding j th segment
in the vicinity of mass center, so the probability of finding any
segment reads:

PCM(|r − R|) = 1

N

N∑
j=1

P (|rj − R|), (A11)

where the factor 1/N provides normalization. Let us assume
now that N is a large number, so both n/N = q and j/N = q ′
can be treated as continuous variables, hence we can simplify:

N−j∑
n=1

(
N − j − n + 1

N

)α

→ N

∫ 1−q ′

0
dq(1 − q ′ − q)α

= N

α + 1
(1 − q ′)α+1 (A12)

j−1∑
n=1

(
j − n

N

)α

→ N

∫ q ′

0
dq(q ′ − q)α = N

α + 1
q ′α+1.

(A13)

The final expression for the distribution of any segment around
the mass center reads:

PCM(|r − R|) = 1

(2π )D

∫ 1

0
dq ′

∫
dk0 exp

[
ik0 · (r − R)

− 2Nbαkα
0

D(α + 1)
((1 − q ′)α+1 + q ′α+1)

]
.

(A14)
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