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Rubber elasticity: Solution of the James-Guth model
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The solution of the many-body statistical mechanical theory of elasticity formulated by James and Guth in the
1940s [H. M. James, J. Chem. Phys. 15, 651 (1947)] is presented. The remarkable aspect of the solution is that
it gives an elastic free energy that is essentially equivalent to that developed by Flory over a period of several
decades.
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I. INTRODUCTION

Rubber elasticity is the first bulk property of polymers
that yielded to theoretical analysis. The identification of the
relation between the Gaussian distribution of the end-to-end
distance of a random walk with the quadratic strain dependence
of phenomenological stress-strain theory was key to this
success. Of course, the underlying physics that make this
connection inevitable and viable is that a polymer chain in the
bulk amorphous melt phase is unperturbed by intermolecular
interactions [1]. This fact, determined solely by the chain’s
intramolecular potential, allows one to realize the force that
a chain delivers to the crosslinks that terminate it and which
tie it to other chains in the three-dimensional space-filling
random network. While high-elasticity theory was the first
to successfully predict bulk polymeric materials behavior, it
remains one of the few, and perhaps the only, analytical theory
of polymers to do so, computer simulations notwithstanding.
This is reason enough to justify efforts to improve upon the
theory. Given the history of the subject, rubber elasticity is one
of the first soft materials to admit an atom-based theoretical
analysis.

The extent to which the elastic equation of state is
determined by the interaction between network connectivity
and chain statistics has been a point of contention from
the earliest days of polymer theory. The theory, initiated by
Kuhn [2], elaborated by Wall [3,4] and Flory and Rehner
[5,6], and discussed extensively in treatises [1,7–10], is
constructed by adding together the contributions to the stress
from independent chains. This requires the so-called affine
assumption—the displacement of the ends of an average
network chain is congruent to the macroscopic strain. This
theory is relatively easy to execute, but by treating the chains
as independent it incurred the criticism of James and Guth
[11–13]. In their many-body theory the individual chains obey
Gaussian statistics, just as in the independent chain theory, but
James and Guth emphasized the fact that in tying the chains
together with crosslinks they become an indissoluble whole
that must be treated as a single entity. This insight carried a
heavy price—their many-body formulation was too difficult
to be convincingly solved. To make progress, James and
Guth [11] introduced the unphysical notion of fixed junctions
(fixed by the external constraints) that are displaced by the
macroscopic strain. However, the value that one deduces for
the modulus depends on the choice and number of fixed
junctions [14], which effectively ruins any rigor that may be
ascribed to the many-body theory.

Improvements to the independent chain theory by Flory
and his colleagues over the span of about 40 years introduced
successive improvements to the theory. In treating swelling,
Flory [15] introduced the controversial combinatorial term
giving a contribution −(2νk/f ) ln(V ) to the entropy. Here
ν is the number of chains in the network of volume V , f

is the functionality of the crosslinks, and k is Boltzmann’s
constant. Using somewhat convoluted reasoning [16,17], the
ratio 〈r2

i 〉/〈r2〉0 was inserted into the theoretical Young’s
modulus in the 1950s. The numerator in this expression is the
value of the mean-square end-to-end distance of the average
network chain in a reference state and the denominator is
the similar quantity for the free unperturbed chain at tem-
perature T . By involving chain dimensions in the modulus,
Flory and coworkers were able to evaluate the temperature
dependence of chain dimensions in terms of the stress-
temperature coefficient. (It will be noted that the unperturbed
chain dimensions drop out of the modulus in the independent
chain theory, so an additional argument is needed to put this
term into the modulus.) This ratio of dimensions was not
featured in Flory’s work [14] of the 1970s, where the number
of chains is replaced by the cycle rank to account for the
contribution from crosslinks that are inserted after the gel
point. This appears to have been motivated by the idea that up
to the gel point the nascent network, which is approximated
as an acyclic tree, cannot support an equilibrium stress. Given
this idea, it is only the crosslinks that are inserted after the
gel point that contribute to the stress. Assuming that all the
prepolymer has been incorporated into the tree at the gel
point, the crosslinks that are inserted subsequently can only
form cycles in the tree. The cycle rank measures the number
of chains that are “activated” by these post-gel crosslinks. In
replacing the number of chains by the cycle rank, the modulus
decreases to a value close to that advocated by James and Guth.

High elasticity has attracted the attention of theorists far
too numerous to mention here. Much of this work has been
reviewed in articles [18,19] and monographs [9,10]. This
paper is not intended to be a comprehensive review of all the
important work that has gone into our current understanding
of the physics and chemistry of elastomers and gels. It is
instead aimed at solving the James-Guth many-body theory
in the small strain limit. The objective of the paper is to
eliminate as many physical assumptions as possible beyond
those that comprise the basic model, and to make mathematical
approximations clear so that appropriate confirmation or
improvements might be made in the future. The remarkable
result of this calculation is that it gives all the terms that Flory
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put in by hand over the years, although the interpretation of the
terms is somewhat different. There is no essential difference
between the James-Guth and Flory-Wall theories. The other
aspect of this work to emphasize is that it firmly establishes a
baseline against which one may make quantitative statements
about other models, including those that treat entanglements,
e.g., tube models.

II. CONFIGURATION INTEGRAL AND POTENTIAL
OF MEAN FORCE

The shape of a soft system is a characteristic of fundamental
interest, and unlike a gas or liquid, where the volume is fixed
by a container, a soft system adopts a macroscopic shape
that is determined by a combination of internal potentials
and external constraints that are imposed at the time of
formation. Once formed, an unconstrained soft system is free
to adjust its boundary based only on internal potentials. This
section formalizes the computation of the probability function
that is required to specify the geometric information that
characterises the size and shape of the body of interest.

The probability that a classical system described by the
Hamiltonian H (p,q), and having thermal energy kT , is
found in a state {p,q}, where p and q are 3N -dimensional
momenta and coordinate vectors, respectively, is proportional
to exp[−H (p,q)/kT ]. The p and q of a classical system are
continuously variable, such that the probability P (p,q)dpdq

is defined in the 6N -dimensional coordinate patch dpdq by

P (p,q)dpdq = Z−1 exp[−H (p,q)/kT ]dpdq,

where Z normalizes the distribution. Now define a function
F(p,q), which in general can be a tensor valued function
of any degree, with corresponding volume element dF. The
probability P (F)dF that the system will be found in a state
with value F is given by

P (F)dF = dF
∫

P (p,q)dpdq/dF,

with the integration being performed over the space comple-
mentary to F, which is the meaning of dpdq/dF.

The change in free energy, �A, accompanying a change in
state of the system from F1 to F2, is given by

�A = −kT ln[P (F2)dF2/P (F1)dF1]

= −kT ln[J (F2/F1)P (F2)/P (F1)], (1)

where dF2/dF1 = J (F2/F1) is the Jacobian determinant of the
mapping F1 → F2. In most cases the Jacobian determinant
will not be commensurate with P (F) and will therefore not
contribute to the thermodynamics. The reversible work done
on the system to convert it from state F1 to state F2 is just �A.
Because it is only the ratio of probabilities that is important
in thermodynamics, the normalization by Z is immaterial and
will be dropped where no harm comes from doing so.

The elastic body of interest consists of a single covalently
bonded gel component, with no sol fraction. For this classical
problem the momenta integrate trivially and one is left with
the calculation of the unnormalized probability distribution,

P (S,T )dS = dS
∫

exp[−βV (q)]dq/dS, (2)

that the system consisting of N (implicit) polymer atoms at
temperature T has a shape and size determined by S = S(q)
(to be specified later). Here V (q) is the potential energy
of the system, β = 1/kT , and dq is the 3N -dimensional
volume element. (At this early stage swelling can be formally
accommodated with use of a semigrand ensemble for a
polymer-solvent system—the system can be open with respect
to exchange of solvent molecules at specified chemical
potential. This paper focuses on the stress-stain relation and
not on swelling, so that elaboration is not pursued.)

The “moding-out” operation, dpdq → dpdq/dF, is now
performed once more, but on the inside of the shape distribu-
tion. Let there be μ crosslink “atoms,” and consider performing
the integral in Eq. (2) in two steps as

P (S,T )dS = dS
∫

dqμ

∫
exp[−βV (q)]dq/dqμdS.

That is, first integrate over the midchain coordinates between
the crosslinks while holding the latter coordinates fixed, after
which the integrations over the crosslink positions are to
be executed. The first integration generates an acceptable
approximation to the free energy for the uncrosslinked polymer
together with a remaining piece that is determined by the
potential of mean force acting between the crosslinks. That is

P (S,T )dS = exp[−βA0(S,T )]dS
∫

exp[−βV̄ (qμ)]dqμ/dS,

(3)

where A0(S,T ) is the free energy of the uncrosslinked polymer.
This function is presumed to depend only on the volume
of the elastomer and not on its shape; this will be defined
more precisely after S is specified. What remains under the
integral is the Boltzmann factor of the potential of mean force,
V̄ (qμ), acting between crosslinks. (The Flory-Rehner theory
of swelling [5,6] assumes this separation of the free energy
of the base polymer from that of the elastomer. Sensitive
swelling experiments [20–22] suggest that this separation is
not strictly valid. A theory that couples crosslink modes of
motion with midchain motions would take us far afield of
the present objective, which is restricted to an analysis of the
classical theory and the presentation of techniques for handling
soft materials.)

The potential of mean force, V̄ (qμ), for an elastomer is
given in all elementary elasticity theories as a product of
Boltzmann factors, one for each chain in the network. James
and Guth [11] wrote this product as a many-body quadratic
potential of the form

V̄ /kT =
∑
i−j

γij (ri − rj )2 = γ tr(XKX′), (4)

where γij = 3/2〈r2〉ij is the modulus parameter for the tie-
chains, with 〈r2〉ij being the mean-square displacement, at
the implicit temperature T , between junction pairs i-j that
are directly connected by a single chain. (James and Guth
formulated the potential with a distribution of chain lengths,
as has been done here. The simplified, second version in Eq. (4)
is written with an average γ to emphasize the chain dimension
parameter that will carry important information. For a network
constructed with uniform chains this is the sole required
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molecular characteristic; for a distribution of chain lengths the
averaging over the chain length distribution will be addressed
later.) The Cartesian coordinates of the junction points are
written as the 3 × μ matrix X = (xa

i ); 1 � a � 3,1 � i � μ,
with transpose X′. There may be multiple chains that directly
connect two junctions, but this is incorporated in the matrix
K , which is the Laplacian for the graph [24] that encodes the
connectivity of the network. (In previous work the author [23]
named this the Kirchhoff matrix. The mathematical literature
[24] has settled on the name Laplacian. It would also be
appropriate to call this the Hessian for the network.) Regardless
of the name, the construction of the matrix has been described
in detail in several publications [11,23,25] and need not be
repeated here. It is assumed that the Laplacian has a single
zero eigenvalue, which signifies that the system consists of a
single connected component.

III. BROUT-FIXMAN-EDWARDS (BFE) AVERAGING

The next formality turns out to be extremely important for
practical evaluation of the stress-strain relation: we need to
average over frozen disorder. Systems with frozen disorder
require a higher level average of the free energy than is usually
encountered in elementary statistical mechanics. This was first
described by Brout [26] in a treatment of order-disorder tran-
sitions; Fixman used the averaging in the guise of conditional
probabilities in work on polypeptides [27] and polynucleic
acids [28]; and finally, Edwards and coworkers [29] formalized
the averaging in several treatments of rubber elasticity. Let
{C} be a set of internal constraints. The set {Ci} is a particular
instantiation of the constraints that characterizes a member
of the ensemble of samples of the material, all members
having been prepared under the action of identical external
constraints. The probability that a system is observed with
this set of constraints is P (T∗,{Ci}) ∝ exp[−A(T∗,{Ci})/kT∗],
where A(T∗,{Ci}) is the free energy of the system that is formed
at temperature T∗ when the constraints {C} are imposed. While
the constraints are formed at temperature T∗, they remain
fixed when the system temperature is changed to T . The BFE
average that we need is

〈A(T )〉 =
∑

i

P (T∗,{Ci})A(T ,{Ci}). (5)

The average 〈A(T )〉 depends on additional parameters that are
implicit. For the elasticity problem, the cure temperature is
T∗, and the constraints are the crosslinkages that are formed at
cure.

IV. THE HOLONOMIC CONSTRAINT TRICK

The exact stress-strain relation from continuum mechanics
[30] is

σ = 2(ρε/ρ1)ε[∂a/∂(ε′ε)]T ε′, (6)

where σ is the stress tensor, ρε is the mass density at the state
of strain specified by the deformation gradient tensor ε (for
the unstrained state, ε = 1 = unit tensor), ε′ is the transpose
of ε, and a is the Helmholtz free energy per unit volume in the
unstrained state. All of these quantities are defined pointwise,
and in general will vary from point to point in the medium.

While the equation is an exact continuum equation, it is un-
tenable from the standpoint of statistical mechanics. Suppose
that one has an inhomogeneous medium in which the phases
are sufficiently finely dispersed that the interaction between
neighboring phases is a substantial contribution to the free-
energy density. How does one evaluate the free-energy density
for a domain? It is not the discontinuities per se that cause
problems—it is the interactions between neighboring volume
elements that defeat evaluation of a free-energy density.
The potential energy of atoms that interact across bounding
surfaces of volume elements cannot be assigned unequivocally
to the elements on either side of the surface. This is one of the
more glaring examples of the incompatibility of continuum and
atomic descriptions of matter—there are others. Furthermore,
for most practical applications the microscopic strain is neither
important nor measurable. The statistical mechanical problem
is best defined in the thermodynamic limit of large systems
where the macroscopic strain is the only concern. Once
problems at this length scale are solved, the problems of finely
divided inhomogeneous media can be approached from above,
which is the usual approach in engineering calculations with,
say, finite-element methods.

The many-body theory that James and Guth formulated
left them with the difficult problem of relating the molecular
coordinates to the strain. For a homogeneous crystalline solid,
the deformation of a unit cell coincides, on average, with the
macroscopic deformation, and this immediately relates the
cell axes to the macroscopic deformation. On the other hand, a
simple fluid conforms to the shape of its container, so the state
of strain is of no consequence. However, containers provide
nonholonomic constraints on the configuration space of simple
fluids: the coordinates are confined to a compact domain
determined by the container. In usual practice an elastomer is
constrained by mechanical means over a portion of its surface
by a set of clamps, a wheel rim, a road bed, etc., which are
external constraints that deliver stress. As in the case of fluids,
these are nonholonomic constraints that impose boundary
conditions on the configuration space; for an elastomer these
are invariably discontinuous boundaries. However, the very
complicated constraints that might be encountered in a real
application should not be solved at the level of statistical
mechanics. We have to be content to evaluate the equation
of state for a simple geometrical shape and leave complex
geometries to engineering calculations.

In their 1943 paper [11], James and Guth wrote that
“Rubber resembles a gas very strikingly in its thermoelastic
behavior.” Given this analogy, it may have been natural to think
about integrating over a configuration space with boundary
constraints similar to those provided by a container. James and
Guth introduced holonomic constraints by picking junction
points in the network that were declared to be fixed by
external forces and which are displaced by the macroscopic
strain. This artifice enabled them to sidestep difficult inte-
grations. They showed that the average coordinates of the
free junctions are linear functions of the coordinates of the
fixed junctions; integrations over their fluctuating positions
have the majority of their support over molecular dimensions.
The difficult problem of integrating all coordinates over the
volume of the elastomer, subject to constraints, was thereby
eliminated.
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Unfortunately, this construction merely shifted the problem
to a different arena. As Flory pointed out [14], the value that
one obtains for the modulus in this treatment depends on the
number and location of the fixed points. One cannot make
a conclusive theory based on this treatment of constraints
without additional assumptions. The rigor that is inherent in
the many-body theory was vitiated by fixing junctions.

What is needed is a trick to introduce holonomic constraints
that convey the dimensional information of nonholonomic
constraints but which do not require special treatment for any
particular atomic species. The symmetric gyration tensor

Sab = N−1
N∑

i=1

xa
i xb

i ∼ V −1
∫

V

rarbdV 1 � a, b � 3

(7)
provides just what is needed. The continuum form on the
right, with integration over the volume V of the material,
approximates the atomic coordinate form on the left, all the
better the larger (thermodynamic limit) is the system. In both
the atomic and continuum forms, the coordinates are measured
from the center of symmetry of the system. The macroscopic
strain is defined by the deformation tensor with components
λc

a via

Scd = λc
aλ

d
bS

ab
0 =⇒ S = λ′S0λ. (8)

Here S0 is a reference state, the summation convention is
used, and a matrix representation is conveyed by the boldface
equation on the right. It is worth noting that the equality
between atomic and continuum evaluations of the gyration
tensor in Eq. (7) accommodates inhomogeneous media as well
as homogeneous. The macroscopic strain tensor λ defined in
Eq. (8) is insensitive to atomic detail; it is defined by this
equation. Note that this is a macroscopic deformation, whereas
ε in Eq. (6) it is microscopic, i.e., it is a function of coordinates
(location) in general.

A. Eckart coordinates

The 3 × μ matrix X = (xa
i ),1 � a � 3,1 � i � μ of

crosslink coordinates gives the gyration tensor in Eq. (7) as
S = μ−1XX′. The diagonal components of this tensor are
equivalent to a multidimensional radius in the configuration
space, as a conversion to polar form will demonstrate.
This transformation from Cartesian coordinates X to polar
coordinates, i.e., the polar decomposition of the matrix X,
was first executed in the context of a physical problem by
Eckart [31] and was first applied to polymer configuration
problems by Šolc [32]. The transformation is the same as
the well-known SV D decomposition in multivariate statistics.
For our needs, the transformation of the volume element is
most easily carried out with use of some matrix algebra.
The Autonne-Eckart-Young theorem [33] enables us to write
X = R′ξU , where R ∈ SO(3) is a rotation matrix in the
special orthogonal (Lie) group (RR′ = R′R = 13), ξ is a
diagonal matrix such that ξ 2 is the matrix of eigenvalues of
the nonsingular matrix XX′, and UU ′ = 13,U

′U �= 1μ is a
point in a Stiefel manifold [34], i.e., U lies in the coset space
O(μ)/O(μ − 3). The transformation of the 3μ-dimensional
volume element: dX → J [dX/d(RξU )]dRdξdU , can be
done in a few different ways. The Jacobian J [dX/d(RξU )]

can be computed directly [35], but fewer computations are
required if use is made of the rule from differential geometry
that

√
gdx is the volume element associated to the metric

ds2 = gij dxidxj . The Jacobian is computed in the Appendix.

B. Eliminating the zero eigenvalue of the Laplacian

Since the coordinates in Eq. (7) are measured relative to the
origin at the center of symmetry, the rows of X sum to zero.
Define the orthogonal matrix T ∈ SO(μ) that diagonalizes the
Laplacian via a similarity transformation. That is, make the
substitution X = QT , such that tr(XKX′) = tr(QTKT′Q′) =
tr(QκQ′), where κ is the matrix of nonvanishing eigenvalues
of K , and Q is a normal coordinate representation of the
configuration space. The zero eigenvalue of K is generated
by the constant row of T , and the corresponding column
in T ′ gives a zero when it multiplies X. This coordinate
is the center of symmetry that is fixed at the origin, and
XT ′ annihilates the corresponding column of Q. One gets
to the same place by deleting the constant column of T ′,
such that T ′ → T ′

0; the zeros in Q and κ combine and may
be deleted, so that Q becomes a 3 × (μ − 1) matrix and
κ is a (μ − 1) × (μ − 1) positive definite diagonal matrix.
Since XX′ = QT0T

′
0Q

′ = QQ′ (note that T0T
′

0 = 1μ−1 but
T ′

0T0 �= 1μ−1). The Q coordinates can be reduced to polar
form as described above for the cartesian matrix X, to give

βV̄ = γμtr(SUκU′), (9)

where U is a 3 × (μ − 1) matrix representation of the coset
space O(μ − 1)/O(μ − 4). The dependence on the rigid body
rotation R cancels in Eq. (9) because the trace is invariant to
cyclic permutation of the arguments.

The volume element on the configuration space begins as
dX = δ(x0)

∏
i,a dxa

i , where the δ function suppresses integra-
tion over the center of symmetry coordinate x0. The Jacobian
determinant of the transformation to normal coordinates is
unity, and since the center of symmetry coordinate has been
suppressed, we have δ(x0)dX ∼ dQ.

The transformation to polar coordinates (see Appendix)
gives

dX = dRdU [det(S)](μ−5)/2
∏
a<b

|Sa − Sb|
∏
a

dSa

to within an uninteresting constant. The integration over the
space R ∈ SO(3) gives another constant, and since we are to
integrate over dX/dS by the prescription of Eq. (2), that is, the
components of the diagonal tensor S are fixed, all that remains
is the integral over U . Happily, the structure of κ makes this
part of the problem easier than one might expect.

V. EVALUATION OF THE CONFIGURATION INTEGRAL

The probability that the James-Guth model elastomer is
found in a state S = diag(Sa) is

P (S)dS ∝ [det(S)](μ−5)/2
∏
a<b

|Sa − Sb|dS

×
∫

UU ′=1
etr(−γμSUκU ′)dU, (10)
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where etr(·) = exp[tr(·)]. Terms that would convert the pro-
portionality to an equality will cancel, as does the free energy
A0, when the ratio P (S)dS/P (S0)dS0 = det(λλ′)P (S)/P (S0)
is computed. The integration over dU covers the coset space
U ∈ O(μ − 1)/O(μ − 4). The elements of U are bounded:
0 � |ua

j | � 1 because UU ′ = 13. (The extremely interesting
geometrical fact that emerges from this coordinate transfor-
mation is this: In a configuration space of 3N variables,
three are deleted for center of mass motion, three for
rigid body rotations, and three fix the macroscopic size
of the system. The remaining 3N − 9 variables comprise
a non-Euclidean compact space, independent of any model
potential.)

The evaluation of the integral is highly dependent on
the eigenvalue spectrum, κ , of the Laplacian. Several facts
about the spectrum can be deduced from general theorems on
matrices, but it is the small eigenvalues that are important.
Regardless of the exact values that the small eigenvalues take,
one knows that the dominant contribution to the integral in
Eq. (10) will be attained in the region where UκU ′ has its
minimum value. This means that the dominant contribution to
the integral will be found in the region of the U space that is
associated with the smallest eigenvalues of κ . In addition, the
free energy must be an extensive thermodynamic function if
the theory is to make any sense. But S = O(μ2/3) because of
Eq. (7). This requires that UκU ′ ≈ O(μ−2/3), so as to cancel
the macroscopic size dependence in S. These observations
were made long ago [36]; the main purpose of the next
section is to show that this estimate of the small eigenvalue is
correct.

Let the eigenvalues be ordered such that 0 < κ1 � κ2 �
· · · � κμ−1. The minimum of tr(UκU ′) will be attained on
the subspace where U = (R,0); R ∈ O(3) and 0 is a 3 × (μ −
4) matrix of zeros. In the next section we will see that the
small eigenvalues are threefold degenerate, κ1 = κ2 = κ3, for
a cubical elastomer, which collapses the integral to

∫
etr(−γμSUκU ′)dU

≈ etr(−γμκ1S) = exp[−γμκ1(S1 + S2 + S3)]. (11)

This may be considered to be the leading term in an expansion;
it is difficult to improve upon it [37].

On evaluating the contribution to the free energy from
Eq. (11) we get the term Â = kT μγ κ1(S1 + S2 + S3), where
γ κ1 is the only term that depends on constraints operating at
the time of formation of the elastomer. These constraints are
imprinted on the spectrum of eigenvalues of the Laplacian K .
The BFE average now comes to the rescue: the average over
the probability distribution of constraints is a simple average
over connectivity. That is, 〈Â〉 = kT μ〈γ κ1〉(S1 + S2 + S3)
requires a straightforward statistical mechanical average of
the small eigenvalue. It is hard to imagine a technique for
evaluating the small eigenvalues that does not invoke a BFE
averaging procedure. Recognition that γ κ1 is a BFE average,
even with brackets omitted, is implicit in everything that
follows. If the network is formed with a distribution of chain
lengths (MWD), the averaging of the small eigenvalue requires
considerable care, and is left for another time.

VI. ESTIMATING THE SMALL EIGENVALUES

The smallest nonzero eigenvalue of the Laplacian of a graph
is of great general interest [38], and is crucial to the solution
of the many-body elasticity problem. The smallest nonzero
eigenvalue has been called the “algebraic connectivity” of a
graph [39]. Unfortunately, what is known about κ1 in random
graph theory literature is not very helpful; what sets physical
random graphs apart from mathematicians’ random graphs
[40] is that physical random graphs are embedding in R3 with
a more or less uniform density of vertices, and that has a
profound influence on the spectrum at the small eigenvalue
edge. For our purposes an embedded graph in a roughly
isometric hard or soft solid has a number density ρ = μ/V of
vertices such that any slice through the graph with thickness
� = ρ−1/3 and area A = O(V 2/3) contains O(μ2/3) vertices.
For mathematical purposes this asserts a uniformity of density
of vertices (to within the usual influence of the discontinuity
at the surface) while allowing for short-range correlations that
may be of interest (and will be of great interest for many
problems).

Using this notion of slices with thickness �, a cube with
volume �3 contains one vertex on average. The connections
between a vertex and its neighbors depend, of course, on the
detailed edge-length distribution in the graph. Suppose that a
cubical elastic body is divided into a simple cubic lattice of
μ = n3 cells. A layer of these cells contains, on average, n2

crosslinks. The number distribution of crosslinks in every layer
will be a Poisson distribution, with variance n, if the crosslinks
are distributed at random. Since we are interested in the large
μ behavior, the fluctuations in the number of vertices in the
layers is sufficiently small to be neglected [variance/mean =
O(n−1)]. Because these layers contain large numbers of ver-
tices the statement effectively ignores short-range correlations.
This is not an assertion that short-range correlations are
unimportant.

Our eigenvalue problem now inherits an enumeration
scheme that looks like that used to calculate the vibrations
in a simple cubic crystal. The elastomer does not have phonon
modes in the sense of a crystalline solid. (However, the
long wavelength modes are visible in a soft material as
macroscopic oscillations or vibrations.) Instead, we have a
connectivity problem that is mathematically analogous to that
of a crystalline solid. The long wavelength eigenvectors of
the Laplacian matrix are the same as the long wavelength
eigenvectors in a crystalline solid. It is well known that the
long wavelength modes in a crystal determine the lowest
energy excitations, and the long wavelength eigenvectors,
with wavelength λ � max(�,〈r2〉1/2), will generate the small
eigenvalues of our graphs. James [13] calculated some sta-
tistical properties of a regular cubic lattice in relation to his
work on elasticity, so this idea is not new. What is new is a
better way to handle the randomness that overrides the lattice.
The fundamental reason for discretizing the space of the soft
material is to borrow the matrix indexing scheme from crystal
theory, where there is a one-to-one correspondence between
coordinates and matrix indices; this greatly facilitates the
construction of eigenvectors. There is no obvious indexing of a
random graph, so the discretization is imposed to provide this
correspondence.
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Index the cells in our subdivided cubical elastomer in
the obvious way as j = {j1,j2,j3}, where 1 � ja � n. The
probability p(r)dr ≈ p(jα,jβ)�3 that two average cells with
multi-indices jδ are connected by a polymer chain is discretized
as

p(jα,jβ)�3 = f̄ (γ∗/π )3/2 exp[−γ∗�2(jα − jβ)2]�3. (12)

Summed over all jβ , Eq. (12) yields the average number, f̄ ,
of chains connected to the crosslink located at jα . We are
assuming a homogeneous elastomer, such that the number
of chains connected to a crosslink selected at random is
translationally invariant. In Eq. (12) the parameter γ∗ =
3/2〈r2〉∗ is determined by the chain statistics at the time
the network is formed. The fundamental polymer physics
that goes into the model elastomer asserts that 〈r2〉∗ is the
unperturbed mean-square end-to-end distance of a free chain
at the temperature of cure. This is a fixed length parameter
that will not vary with temperature. At the temperature of
measurement, where we are computing the configuration
integral in Eq. (11), the corresponding parameter governing
the potential of mean force is temperature dependent. At the
time the network is formed the only role for the chain length
distribution is to determine the connectivity. After the network
is formed the chains assume their role of delivering stresses.

The long wavelength (unnormalized) eigenvectors for a
simple cubic lattice has components of the form

exp[πi(j1m1 + j2m2 + j3m3)/n],

where 1 � ja � n, 0 � ma < me, 1 � a � 3, and i = √−1.
The index set m = {m1,m2,m3} labels the eigenvalues κm.
The restriction me � n limits the eigenvectors to long wave-
lengths; if the wavelength is less than several multiples of
〈r2〉1/2

∗ the local structure of the graph will become important,
and the corresponding eigenvectors will be different from
simple Fourier functions (although one could write the exact
eigenvectors as linear combinations of Fourier functions since
the latter form a complete basis). The constant eigenvector,
with m1 = m2 = m3 = 0, generates the zero eigenvalue of
K . The components of the eigenvectors for the simple
cubic lattice are actually

∏
a cos[(ja − 1/2)maπ/n]. The

approximate complex version makes subsequent calculations
simpler and does no damage. We have no need of toroidal
boundary conditions, which would insert a factor of 2 in the
trigonometric functions and artificially render the eigenvalues
doubly degenerate.

After going to the trouble of discretizing the space we will
now undo this work by replacing sums by integrals. Of course,
the motivation for discretizing is to make the physical picture
clear and to help guide an understanding of the implications of
the long wavelength regime where the method will be valid.
Our eigenvector is now specialized to a particular plane wave
for which m1 = 1 and m2 = m3 = 0. We could just as well
have chosen m2 or m3 to be the only nonzero index. That is,
the isotropy of the network for a cubical elastomer renders
the smallest nonzero eigenvalue triply degenerate. Since the
selected eigenvector is constant on planes perpendicular to
the x axis, it picks up an entire layer of vertices in the slab
of thickness � and thereby averages the connectivity over the

slab. Our eigenvalue problem is now mapped into

κ1t1 = Kt1

κ1 exp(πix1/n�) = f̄

{
exp(πix1/n�) − (γ∗/π )1/2

×
∫

exp[−γ∗(x1 − x2)2]

× exp(πix2/n�)dx2

}

κ1 = f̄

{
1 − (γ∗/π )1/2

∫
exp[−γ∗(x1 − x2)2]

× exp[−πi(x1 − x2)/n�]dx2

}
= f̄ {1 − exp[−π2/(4γ∗n2�2)]}. (13)

(There are canceled factors of n2 that arise from summing
over the constant x2 and x3 components of the eigenvectors
on the left and over the crosslinks in the slices perpendicular
to the x1 axis on the right.) The first factor in brackets comes
from diagonal elements of the matrix, and the second factor,
the integral, arises from the average number f̄ of off-diagonal
elements, each of which has the value −1 in the Laplacian (the
actual value will be −k, where k is the number of chains that
connect the two crosslinks in question to allow for multiple
connectivity).

Since n is as large as we like, it follows that the first several
small eigenvalues will be given by

κm = f̄ {1 − exp[−π2m2/(4γ∗n2�2)]}
≈ f̄ π2m2/(4γ∗V 2/3

∗ ) = π2m2f̄ 〈r2〉∗/(6V 2/3
∗ ), (14)

where m2 = m2
1 + m2

2 + m2
3; |m| < me. We now have the

needed proof that the small eigenvalues are proportional to
μ−2/3. It is also clear that in the limit as κ → 0+, the spectral
density g(κ) of small eigenvalues of the Laplacian matrix
tends to the same distribution that Debye calculated for a
spherical continuum elastic solid. The only difference is that
our long wavelength density is determined by microscopic
parameters—the chemistry in f̄ and chain statistics in γ∗—
whereas Debye’s spectrum is determined by phenomenolog-
ical Lamé constants. Standard textbooks [41] explain the
relation between the long wavelength spectrum for the Born-
von Karman model of a simple cubic lattice and the Debye
low-frequency spectrum.

If there is a distribution of molecular weights (MWD)
of the chains connecting crosslinks the average over this
distribution couples with the graph eigenvalue spectrum,
requiring a very careful analysis of the averaging procedure.
In first approximation this MWD average can be postponed to
Eq. (14), where it simply gives an average of γ −1

∗ ∼ 〈r2〉∗.

VII. SUMMARY

On combining Eqs. (1), (3), (11), and (14), and replacing
the probability distribution by the equivalent Helmholtz free
energy, one obtains

A(S) = A0(|S|) + [kT μf̄ π2〈r2〉∗/(4〈r2〉/V 2/3
∗ )]

× (S1 + S2 + S3) − (μ − 5)kT ln(|S|1/2)

× − kT ln(|S1 − S2||S2 − S3||S1 − S3|). (15)
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Now that this result is at hand one can see that the last
term in Eq. (15), which causes the eigenvalues of X to
repel one another, is not of thermodynamic significance. It
can contribute, say, a surface tension term only if at least
one of the arguments |Sa − Sb| = O[exp(μ−2/3)]. But this
is ridiculously small; normal thermodynamic fluctuations in
macroscopic lengths will be O(μ−1/3), so that the term is at
most O[ln(μ)], and may be neglected. Furthermore, one can
ignore the difference between μ and μ − 5 in the preceding
logarithmic term.

The next point to make is that the theory gives a stable
unstressed state. This state is a minimum of the free energy;
that is,

∂A(S)/∂Sa = ∂A0(|S|)
∂|S|

∂(|S|)
∂Sa

+ G − μkT/2Sa

= G − μkT/2 − (∂A0(|S|)/∂ ln(|S|)
Sa

vanishes when evaluated at Sa = S0
a . Here G =

kT μf̄ π2〈r2〉∗/(4〈r2〉V 2/3
∗ ). At the minimum

S0
a = μkT/2 − (∂A0(|S|)/∂ ln(|S|)S=S0

G
= μkT/2 + p0V/2

G

with the last version resulting from |S| ∝ V 2.
The term involving p0 can be discarded with the following

argument: Suppose we had a good theory for A0, such that
one could solve for the equilibrium volume (∂A0/∂V )T =
−p0 = 0: the unstrained (uncompressed) state of the base
polymer is a minimum when the hydrostatic pressure vanishes.
The difference between the base polymer free energy and the
approximate A0 that has been factored from the configuration
integral in Eq. (3) is owing to the constraints of the crosslinks
that are implicit in A0, and this difference can be made small by
decreasing the density of crosslinks. The term with p0 may be
set to zero, so that the only volume dependence that survives
is that in G, so that S0

a = O(V 2/3) as it must. What is most
important about this observation is that the James-Guth theory
does not have a physically realistic unstressed state in the
absence of the log(V ) term.

The gyration tensor in the unstrained state of our cubical
elastomer has equal diagonal components

S0
a = V −1

∫ L0/2

−L0/2
x2

adx1dx2dx3 = L2
0/12,

giving Sa = λ2
a(L2

0/12) = λ2
aV

2/3
0 /12. It also follows that

|S|/|S0| = (V/V0)2. Putting these pieces into Eq. (15) gives

�A = �A0 +
[
kT μ

(
f̄ π2

4 · 12

)( 〈r2〉∗
〈r2〉

)(
V0

V∗

)2/3

× (
λ2

1 + λ2
2 + λ2

3 − 3
) − μkT ln

(
V0

V

)
. (16)

The ratio 〈r2〉∗/V
2/3
∗ came from the eigenvalue spectrum and

is fixed at the time of cure; this ratio is independent of tem-
perature. Measurement of the stress-temperature coefficient
gives d〈r2〉/dT , not d〈r2〉∗/dT . (This nomenclature differs
from that used in other work so as to make clear that there are
three states involved—the state of cure at T∗, the unstressed

state at temperature T , and the stressed state at temperature
T ′.) The number of chains in the network is ν = μf̄ /2, and
if one ignores the (usually very small) differences between
V∗,V , and V0, the elastic free energy simplifies to

�Ael = νkT (π2/24)

( 〈r2〉∗
〈r2〉

)(
λ2

1 + λ2
2 + λ2

3 − 3
)
.

Note that f̄ differs from the maximum chemical functionality
so that it effectively corrects for dangling chains and loops,
and therefore ν = μf̄ /2 is the count of “elastically effective”
chains. The surprising presence of π in the modulus (front
factor) is a consequence of the estimate of the small eigenvalue
of the Laplacian that was made with use of a plane wave
eigenvector. Of course, π appears naturally in the Rouse
spectrum of relaxation times; it should not be considered
unusual that it arises in the bulk elastomer context. Note that
π2/24 ≈ 0.41, which is comparable to values for this factor
that have appeared in the work by James and Guth and the
later work of Flory invoking the cycle rank.

VIII. CONCLUSION

It is remarkable that the James-Guth many-body theory of
elasticity gives essentially the same result that Flory deduced
over a period of several decades. The logarithmic term, chain
dimension ratio, and front factor (π2/24 rather than the cycle
rank [14]) all emerge when the problem is handled in a natural
way. As this work shows, what is natural requires some fairly
intense mathematics (at least relative to the simpler Wall-Flory
treatment), but the reward is a theory of elasticity that has a firm
foundation. Very few approximations have been made along
the way; the most critical (and the hardest) place to make
improvements is in the estimate of the small eigenvalue of the
Laplacian of the graph. The integral in Eq. (11) might also
be improved [42] with deeper understanding of the spectrum.
Improvements in the potential alter the model, which goes
beyond the present concern.

A final comment regarding potential improvements to the
model potential needs to be made. If the many-body potential
of mean force is to be augmented, for example with constraints
[9], these must be inserted at the level of the coset space.
That is, constraints depend on U − U⊗, where U⊗ is the
locus of constraints, and not on X − X⊗. This is a critical
observation because: (i) microscopic constraints cannot alter
the macroscopic dimensions directly, although they have an
indirect influence through the strength of microscopic forces,
and (ii) the logarithmic term has to be maintained in the form
of const. × μ ln(V ) so as to yield a stable unstressed state.
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APPENDIX: POLAR COORDINATES FOR MATRICES

It seems that a heavy calculation is unavoidable to get
the volume element for polar coordinates of matrices. The
approach used here makes use of the well-known relation

052601-7



B. E. EICHINGER PHYSICAL REVIEW E 91, 052601 (2015)

between the metric ds2 = gij dxidxj ,1 � i,j � n for an n-
dimensional real space and the volume element

√
gdx, where

dx = ∏
i dxi . If coordinates are arranged in an m × n,m � n

real matrix X the volume element is
∏

a,j dxaj ,1 � a �
m,1 � j � n, and clearly this belongs to the metric ds2 =
tr(dXdX′). (Note that the rank of X is assumed to be m

throughout this discussion.) The differential of the polar
decomposition [33,34], X = R′ξU , is

dX = R′(δrξU + dξU + ξdU ), (A1)

where δr = RdR′ is a skew-symmetric matrix. Here R ∈
O(m) spans the group of orthogonal matrices, ξ 2 are the
eigenvalues of XX′, and UU ′ = 1m, but U ′U �= 1n if m �= n;
in the latter case U is a Stiefel manifold, i.e., the coset space
U ∈ O(n)/O(n − m), and if m = n,U ∈ O(n). Inserting Eq.
(A1) into the metric and simplifying gives

ds2 = tr[dξ 2 + (δrξ + ξδu)(ξδr ′ + δu′ξ )

+ ξ 2dU (1 − U ′U )dU ′]. (A2)

Similar to δr , δu = UdU ′ is skew-symmetric. If m = n the
last term vanishes.

The middle term in Eq. (A2) is simplified by extract-
ing symmetric and skew-symmetric parts with δrξ + ξδu =
(ξδφ + δφ′ξ ) + (ξδθ − δθ ′ξ ), where δφ = (δu − δr)/2 and
δθ = (δu + δr)/2 are both skew-symmetric. But now the
first term in parentheses is symmetric and the second is
skew-symmetric, which enables one to simplify the expression
tr[(s + a)(s ′ + a′)] = tr[(s + a)(s − a)] = tr(s2 − a2), where
s and a are the symmetric and skew-symmetric, respectively.
In component form, this term becomes

tr(δrξ + ξδu)(ξδr ′ + δu′ξ )

= 2
∑
a<b

[
(ξa − ξb)2δφ2

ab + (ξa + ξb)2δθ2
ab

]
,

with associated volume element∏
a<b

∣∣ξ 2
a − ξ 2

b

∣∣dφabdθab ∼
∏
a<b

∣∣ξ 2
a − ξ 2

b

∣∣drabduab,

where numerical factors of no consequence to thermodynamics
have been dropped.

The last term in Eq. (A2) requires some work, but is
instructive. Write a partitioned U as U = (U1,U2) = U1(1,y),
where y = U−1

1 U2. The matrix U1 is m × m and is nonsingular
except on subspaces of lower dimension. Since UU ′ = 1, it
follows that UU ′ = U1(1 + yy ′)U ′

1 → 1 + yy ′ = (U ′
1U1)−1.

Some algebra establishes

1 − U ′U =
(

y

−1

)
(1 + y ′y)−1(y ′, − 1)

= (y, − 1)c(1 + y ′y)−1(y ′, − 1),

with use of y ′(1 + yy ′) = (1 + y ′y)y ′ and its variations. The
dimension of the y manifold, a Grassmannian, is m(n − m).
Since dU = (dU1,dU1y + U1dy) it follows that dU (y, −
1)c = −U1dy, so that

tr|[ξ 2dU (1 − U ′U )dU ′] = tr|[U ′
1ξ

2U1dy(1 + y ′y)−1dy ′].

(A3)

The final detail that one needs to calculate the volume elements
is this: Let dZ = (dzaj ),1 � a � m,1 � j � n, be an m × n

matrix with row form

dz = (dz11,dz12, · · · ,dz1n,dz21, · · · ,dz2n, · · · ,dzmn);

it can be seen that tr(AdZBdZ′) = dz(A′ ⊗ B)dz′, where A

and B are conformable. The volume element associated with
this metric is dV = |A|n/2|B|m/2 ∏

dzaj . The volume element
associated to the component defined in Eq. (A3) is

|U ′
1ξ

2U1|(n−m)/2|1 + y ′y|−m/2|
∏

dyaj

= |ξ 2|(n−m)/2|1 + yy ′|−(n−m)/2|1 + y ′y|−m/2
∏

dyaj

= |ξ 2|(n−m)/2|1 + yy ′|−n/2
∏

dyaj .

Putting the pieces together one finds

∏
a,j

dxaj = const.

{
|ξ 2|(n−m)/2

∏
a<b

∣∣ξ 2
a − ξ 2

b

∣∣∏
a

dξa

}

×{drdu}
{

|1 + yy ′|−n/2
m∏

a=1

n−m∏
k=1

dyak

}

= const.

{
|ξ 2|(n−m)/2

∏
a<b

∣∣ξ 2
a − ξ 2

b

∣∣∏
a

dξa

}
dRdU,

(A4)

where dR and dU are shorthand notations for the
volume elements on SO(m) and SO(n)/SO(n − m),
respectively. A check of physical dimensions (L =
length) will show that dim(dX) = dim[|ξ 2|(n−m)/2 ∏

a<b |ξ 2
a −

ξ 2
b | ∏a dξa] ∼ Lmn, since the orthogonal group and the Steifel

manifold are dimensionless.
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